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Non-Hermitian Hamiltonians arising from parity-time (PT)-symmetric potentials have been extensively
explored in optical systems, owing to their ability to generate asymmetric and even nonreciprocal light
propagation. In this paper, we investigate such PT potentials in plasmonic systems, demonstrating asymmetric
optical propagation in deeply subwavelength waveguides. In particular, we investigate a five layer plasmonic
waveguide composed of metallic layers separated by dielectric media containing either loss or gain in equal
quantities. Through an analytic solution of Maxwell’s equations, we identify the four lowest order modes of the
waveguide, including two positive index modes and two negative index modes, and investigate their evolution
with increasing but balanced gain and loss, κ . Both the exact analytic approach and an approximate one based on
Rayleigh-Schrodinger perturbation theory demonstrate eigenvalue merging and state coalescence with increasing
κ , unlike the familiar energy-level splitting observed in conventional coupled systems. The state coalescence
always occurs between modes of opposite parity. Also, by changing the coupling between the waveguide layers,
state coalescence can occur between modes with opposite refractive indices, resulting in the merging of a positive
index mode with a negative index mode at the exceptional point. We use dispersion diagrams and field profiles
to illustrate the asymmetric plasmon propagation properties with increasing κ . We also show that at the system’s
exceptional point, the modal power varies quadratically along the waveguide. This study represents a spectral
analysis of deeply subwavelength PT-symmetric plasmonic and multimodal photonic waveguides and provides a
foundation for designing asymmetric and unidirectional nanophotonic devices.
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I. INTRODUCTION

In the past decade, plasmonic components such as lasers
[1–5], spasers [6–9], modulators [10–14], waveguides
[15–21], and detectors have provided a route toward optical
communication and computation on deeply subwavelength
scales. As these components rely on plasmons—collective
oscillations of conduction electrons in a metal coupled to
photons in a dielectric—their spatial footprint is much smaller
than conventional optical devices. Additionally, because plas-
mons are characterized by very strong electromagnetic field
intensities, these components exhibit enhanced nonlinearities
compared to conventional optical components. For example,
plasmonic lasers can now exhibit thresholdless behavior [5],
even at room temperature, and plasmonic modulators have
been demonstrated with input powers as low as femtowatts
and bandwidths exceeding 100 THz [22,23].

Despite this progress, electronic devices still exhibit one
key advantage over plasmonic and photonic components:
They rely on charged carriers (electrons), which, with appro-
priate electronic potentials, can exhibit nonreciprocal signal
propagation. Such nonreciprocity is critical to construct
devices such as diodes and circulators. While recent research
efforts have utilized static magnetic fields and paramagnetic
materials to break the reciprocity of optical or plasmonic
signal propagation [24–27], these strategies rely on somewhat
bulky elements, and so may not be ideally suited for on-chip
nanophotonics. An alternate strategy to achieve asymmetric
and directional optical propagation relies on non-Hermitian,
parity-time (PT)-symmetric optical potentials.

PT-symmetric potentials first arose in the context of
quantum mechanics. Bender and colleagues demonstrated that
Hermiticity is a sufficient but not necessary condition to

ensure real-valued eigenvalues [28–31]. Instead, the weaker
condition of PT symmetry ensures a real spectrum below a
certain threshold. Above this threshold, the eigenvalues of the
system cease to be real and become complex conjugates of each
other. In relating this concept to optics, researchers have noted
that the paraxial wave equation and Schrodinger equation
are isomorphic, with time evolution substituted with wave
propagation. In this case, the refractive index of the structure
takes on the role of the potential in quantum mechanics. The
required condition of the system potential to be PT symmetric
is translated to the permittivity properties as ε(r) = ε∗(−r).
In other words, to achieve a PT-symmetric optical potential,
the real part of the permittivity must be an even function of
position while its imaginary part must be odd.

To date, PT-symmetric potentials in optics have been used
to attain nonreciprocal reflection, unidirectional invisibility
[32–34], power oscillations, and electromagnetic induced
transparency (EIT). Double refraction, band merging, asym-
metric power transmission, and transitions from lasing to
perfect absorption have also been observed [35–40]. Further,
the inclusion of nonlinear materials in PT systems has been
suggested as a platform to excite optical solitons [41–43] and
to realize optical insulators and diodes [44].

In this paper, building on the extensive foundation of
PT-symmetric optics, we investigate the modal properties of
PT-symmetric plasmonic waveguides. In particular, we focus
on a five-layer planar metal-insulator (MIMIM) structure—
perhaps the simplest yet most fundamental PT-symmetric
plasmonic waveguide. As seen in Fig. 1, it is composed
of metallic layers separated by dielectric media containing
either loss or gain in equal quantities. Our study is unique
in that, unlike most wavelength-scale PT-optical studies, we
do not rely on a paraxial wave approximation or coupled
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FIG. 1. (Color online) (a) Schematic of the five-layer plasmonic
waveguide, composed of planar metallic slabs separated by loss
(yellow, n + iκ) or gain (red, n − iκ) media. The waveguide can be
considered as a system of two coupled three-layer MIM waveguides
as shown in (b). For a sufficiently thin dielectric, each MIM waveguide
supports only two modes with even and odd symmetries. The typical
magnetic field profile of these even and odd modes is shown by the
black curves in each waveguide.

mode theory, which would both fail in this regime. Rather, we
use exact solutions of Maxwell’s equations to investigate the
dispersion, propagation, field distribution, and power evolution
as a function of the loss/gain parameter.

Our paper is organized as follows: In the first section,
we determine the transverse-magnetic (TM) modes of a
five-layer PT-symmetric MIMIM plasmonic waveguide. Our
calculations illustrate eigenmode evolution and the crossing
of the mode propagation constants with increasing non-
Hermiticity parameter. Then, we demonstrate how tuning the
coupling between the metallic and dielectric layers of the
MIMIM waveguide affects state coalescence and propagation
constant merging. In the second section, we develop a
Hamiltonian formulation of electromagnetic wave propagation
in the waveguide. This formulation allows us to derive the
perturbational solution for the mode propagation constants
with increasing loss/gain, providing key insight into the
physics of mode merging and coalescence. This Hamiltonian
formulation also allows us to study the modal properties
right at the exceptional point, revealing the existence of
two independent solutions. One solution has the form of a
typical waveguide mode, with a real propagation constant
and a constant power along the direction of propagation,
while the second solution has the same propagation constant
but a power that varies quadratically along the waveguide.
These results motivate the introduction of a conserved quantity
in PT-symmetric waveguides, the generalized power. In the
final section, we discuss likely applications for PT-symmetric
plasmonic waveguides, including low-power and fast optical
modulators with gain and nonlinear, nonrecripocal optical
components. We note that while our discussion focuses on
waveguide geometries, our derivation and results can be
extended to other coupled PT-symmetric systems, such as
coupled resonators and quantum wells.

II. EXACT MODAL SOLUTION TO PLASMON
PROPAGATION IN PT-SYMMETRIC POTENTIALS

A. PT-symmetric plasmon dispersion

Figure 1(a) illustrates the five-layer plasmonic waveguide
studied in this paper. We consider silver as the metallic layer,

with a permittivity described by a lossless Drude model:
εAg = 1 − (ωp

ω
)2, with ωp (the bulk plasma frequency of silver)

equal to 8.85 × 1015 rad
sec [45]. We consider a lossless Drude

model to highlight the emergent features of PT potentials in
plasmonic waveguide systems, but note that similar effects
are obtained with a lossy metal (see, i.e. Ref. [46]). The
dielectric layers are assumed to be TiO2 with real(εTiO2 ) =
10.2 [real(n) = 3.2]. Parameter κ corresponds to the amount
of loss or gain in the dielectric layers, and is hereafter called
the non-Hermiticity parameter. Note that regardless of the
value of κ , loss and gain are always balanced in the system.
As seen in Fig. 1(b), our system can be viewed as two
MIM plasmonic waveguides, each supporting a symmetric and
antisymmetric plasmon mode, coupled through the metallic
layer. The transverse-magnetic (TM) modes of this five-layer
MIMIM system are described by(

d2

dx2
+ k2

0εl − k2
z

)
Hyl

(x) = 0, (1)

where kz is the wave vector along the propagation direction z,
Hyl(x) is the magnetic field, and the subscript l denotes the lth
layer.

Using the transfer matrix formalism described in Ref. [17],
we obtain the dispersion relations. First, we consider metallic
and dielectric layer thicknesses of tm = td = 30 nm. Fig-
ure 2(a) shows the dispersion curves of the four lowest order
modes, labeled B1, B2, B3, and B4, of the structure as a function
of normalized frequency (ω/ωp) for κ = 0 (i.e., a lossless
waveguide). As seen in Fig. 2(a), all modes have divergent
wave vectors at a free-space energy of 1.73 eV (0.3 ωp),
corresponding to the surface plasmon resonance frequency
(ωsp) of Ag and TiO2. Such divergent wave vectors are
typical for lossless plasmonic systems. For a non-Hermiticity
parameter κ = 0, ε(x) = ε(−x), and all distinct modes have
definite magnetic field parities with respect to x: modes B1

and B3 are odd with respect to x = 0 (the midpoint between
the five-layer MIMIM waveguide), while modes B2 and B4

are even. Note that modes below ωsp are positive index
modes, while modes above ωsp are negative index modes
[17,47].

A simple way of rationalizing these four MIMIM modes
is through the concept of coupled systems. The five-layer
MIMIM waveguide is effectively a system of two coupled
three-layer MIM waveguides as denoted in Fig. 1(b). For td =
30 nm, each MIM waveguide supports only two plasmonic
modes: an even parity mode below ωsp and an odd parity mode
above the surface plasmon resonance frequency. When these
two waveguides are coupled together to form the five-layer
waveguide of Fig. 1(a), even and odd superpositions of the
two lowest order plasmonic modes form four distinct branches
B1–B4. This feature can be clearly observed in panels (b)–(e)
of Fig. 2, which plot the real part of Hy(x) and z component
of the mode Poynting vector (side panels) for each branch.
For modes B1 and B2, the fields are indeed in- or out-of-phase
superpositions of even MIM modes. In contrast, modes B3 and
B4 are superpositions of odd MIM modes.

As the non-Hermiticity parameter κ is increased, the wave
vectors begin to move into the complex plane. For example,
Fig. 3(a) shows the dispersion curves of the MIMIM structure
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FIG. 2. (Color online) Dispersion curves (a) and spatial distribu-
tion of the real part of Hy for each branch B1–B4 (b)–(e) when κ = 0.
The dashed line in panel (a) shows the surface plasmon resonance
frequency ωsp . The side panels of (b)–(e) show the distribution of
the normalized Poynting vector along the stacking direction x. In
field profile panels the black dashed lines show the boundaries of the
layers.

for κ = 0.2 (the next section will highlight trends as a function
of κ). Below the surface plasmon resonance, modes B1

and B2 appear to coalesce at an energy of 1.34 eV (0.23
ωp), while above the surface resonance frequency, B3 and
B4 merge at 1.8 eV (0.31 ωp). Beyond these “exceptional
points” (EP), the wave vectors become complex conjugate
pairs. Therefore, they can be distinguished in the imaginary
plane: One mode corresponds to an exponentially-growing
mode along the propagation axis (z), while the other exhibits
exponential decay. It should be noted that the propagation
constant is complex beyond the exceptional point, even though
the loss and gain values in the dielectric layers are always
balanced.

The bottom panels of Fig. 3, (b)–(e), show the distribution
of Hy for κ = 0.2. As in Fig. 2, field profiles are shown for
wavelengths of 1165 and 615 nm, corresponding to energies
less than and greater than the exceptional point energies,
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FIG. 3. (Color online) Dispersion curves (a) and spatial distribu-
tion of the real part of Hy for each branch B1–B4 (b)–(e) when κ = 0.2
at two wavelengths in the unbroken phase. The dashed line in panel
(a) shows the surface plasmon resonance frequency ωsp . The side
panels of (b)–(e) show the distribution of the normalized Poynting
vector along the stacking direction x.

respectively. As seen, the distributions of the fields are not
symmetric. Notably, the fields become skewed compared to
their lossless counterparts, and, as discussed below, begin to
appear more similar to each other as the exceptional point is
approached. However as the side graph in each panel shows,
the power is still distributed symmetrically with respect to x,
which is consistent with having a real propagation constant in
these regions. As the symmetry of the power is still preserved
with respect to x, these regions are called “unbroken” phases
of the PT system.

Figs. 4(a) and 4(b) shows the distribution of the real part
of Hy(x) at frequencies very close to, but still within, the
unbroken phase regime. Here, it can be clearly observed that
the distribution of B1 approaches that of B2 while that of
B3 evolves toward B4. Similarly, while the modal energy is
distributed symmetrically with respect to the x axis, it becomes
quite similar for the two merged modes. These features indicate
that the crossing of the branches is not a simple degeneracy
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FIG. 4. (Color online) Hy field distribution of the four branches of the five-layer MIMIM, considering κ = 0.2. In panels (a) and (b), the
energies are chosen close to the exceptional point, but still in the unbroken phase regime. In panels (c) and (d), field distributions are plotted in
the broken phase regime. Each plot includes a cross section of the normalized Poynting vector at z = 0. Note that the scale bars are different
in the left and right columns.

of states with multiplicity of 2 (i.e., having two different field
profiles with the same energy), but instead a coalescence of
two states.

In contrast, Figs. 4(c) and 4(d) illustrate the fields and power
profiles for frequencies in the merged region of the dispersion
curves. Here, the modes again become distinguishable, both in
their complex wave vector and in their field localization. While
they have the same phase velocity, they are either growing or
decaying in amplitude as they propagate along the waveguide.
Accordingly, the fields concentrate exclusively in either the
gain region (modes B2,B3) or the loss region (modes B1,B4)
of the waveguide. Further, this asymmetric field concentration
is accompanied by an asymmetric power distribution: For
the decaying/growing modes, power is concentrated in the
loss/gain regions, respectively. Due to this asymmetry, this
region is termed a “broken” phase of the system.

B. Waveguide coupling and its effect on exceptional point

In this section, we explore the effect of coupling between
the gain and loss regions of the MIMIM waveguide, controlled
via the metal thickness tm. As will be shown, such coupling
not only determines the exceptional point energy, but also
which modes coalesce. We consider tm = 30 nm, as in the prior
section, and also tm = 50 nm and 20 nm. As before, we keep the
dielectric layer thicknesses fixed at td = 30 nm, to maintain
the same number of waveguide modes. Figure 5 plots the
exceptional point energy as a function of the non-Hermiticity
parameter κ . For brevity, we only show the merging of mode B1

in this figure. As seen, for fairly large thicknesses, tm = 30 nm
and 50 nm, this mode merges with B2. By increasing κ or
increasing the metal thickness (i.e., decreasing the coupling),

the exceptional point shifts to lower energies. Though not
shown, for modes above ωsp (B3,B4), the exceptional point
occurs at higher energies with increasing non-Hermiticity
parameter and decreased waveguide coupling. For tm = 30 nm
and 50 nm, the waveguides are not strongly coupled, and
coupled mode theory (CMT) can be used to describe the
behavior [48]. CMT analysis (not shown) indicates that the
exceptional point occurs where the coupling coefficient and
the loss of the three-layer MIM modes are identical.

As the metal thickness is reduced to 20 nm, mode B1 no
longer merges with mode B2 and instead merges with mode
B4. The merging of a positive and negative index mode is
illustrated in the dispersion diagrams of Fig. 6. For a zero
non-Hermiticity parameter, four distinct modes exist, similar
to the dispersion for waveguides with tm = 30 nm. As the
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FIG. 5. (Color online) Exceptional point energy as a function of
κ . The results are shown for the merging behavior of B1, the mode
below ωsp , for tm = 20, 30, and 50 nm. Note that tm in the thickness
of the intermediate metallic layer determining the coupling between
two MIM waveguides.
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FIG. 6. (Color online) Real part of the dispersion curves of the
five-layer MIMIM waveguide with td = 30 nm and tm = 20 nm. The
non-Hermiticity parameter is 0 and 0.2 in (a) and (b), respectively.

non-Hermiticity parameter is increased, modes B1 and
B4 merge together while B2 and B3 merge. As seen in
Figs. 5 and 6, this exceptional point energy is along the surface
plasmon resonance frequency (ωsp), and is approximately con-
stant with increasing κ . We will later use a perturbational anal-
ysis to explain which modes merge in a multimodal system.

C. Nonplasmonic modes in PT-symmetric potentials

As a final specific example of PT-symmetric potentials in
nanophotonic waveguides, we consider the behavior when
the number of waveguide modes is increased by increasing
the thickness of the dielectric core layers. Figure 7 plots the
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FIG. 7. (Color online) Dispersion curves of the five-layer
MIMIM waveguide of Fig. 1(a) for κ = 0 (solid blue line) and 0.2
(solid red line). The thickness of the dielectric layers (td ) and metallic
layer (tm) is 100 nm and 30 nm, respectively. The black dashed line
shows the TiO2 light line, and the dotted line corresponds to ωsp .

dispersion curves for a five-layer MIMIM waveguide with
metal thicknesses of 30 nm and dielectric thicknesses of
100 nm. Note that for clarity we only show modes with a
purely real propagation constant. When κ = 0 (blue line),
there are eight distinct branches: Two are similar to the
plasmonic modes B1 and B2 already investigated, two are
hybrid “plasmonic-photonic” modes, and four are photonic
modes, which have wave vectors exclusively smaller than those
in the dielectric (the light line is shown as a black dashed line
in Fig. 7). When the non-Hermiticity parameter is increased
to 0.2, the modes begin merging. As seen in the red curves of
Fig. 7, the modes merge together based on their energy and
propagation constant. The plasmonic modes merge with the
hybrid plasmonic-photonic modes, while the purely photonic
modes merge with each other. For the lower-energy photonic
modes, real wave vectors exist only in a very narrow band. The
higher-energy photonic modes with real propagation constants
completely disappear for κ = 0.2. Note that the disappearance
or quenching of the modes is a continuous phenomena, in that
increasing κ causes more real branches to merge and disappear.

III. PERTURBATIONAL APPROACH TO
NON-HERMITIAN NANOPHOTONICS

The above examples illustrated how modes merged when
subjected to PT-symmetric potentials: Merging modes always
had opposite parity and similar energies. In this section, we
address whether these results are general to PT-symmetric
optical systems (it turns out they are). To do so, we apply a
perturbation analysis that gives key insight into the merging
phenomena, describes the state coalescence, and describes this
property based on the symmetries of the states.

A. Hamiltonian formulation and perturbation theory for wave
propagation in multilayer waveguides

First, we begin by arranging Maxwell’s equation in Hamil-
tonian format [49,50], to make them more suitable for a
perturbational analysis. We focus on TM modes, though the
results can be readily extended to more general hybrid modes.
Assuming no spatial variation along y, the TM modes have
only (Ex,Ez,Hy) nonzero field components and are described
by

−i
∂

∂z
B̂

(
x̂Ex(x,z)

ŷHy(x,z)

)
= Ĥ

(
x̂Ex(x,z)

ŷHy(x,z)

)
. (2)

Here,

B̂ =
[

0 −ẑ×
ẑ× 0

]
(3)

and

Ĥ =
[
ωε0ε(x) 0

0 ωμ0 + 1
ωε0

∂
∂x

(
1

ε(x)
∂
∂x

)
]
. (4)

Defining

| �F 〉 =
(

x̂Ex(x,z)

ŷHy(x,z)

)
(5)
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one can rewrite Eq. (2) in Dirac notation as

−i
∂

∂z
B̂ | �F 〉 = Ĥ | �F 〉 . (6)

For waveguide modes of the system that vary as eizkz , the
propagation constant of kz and the spatial distribution are given
by

kzB̂ | �F (x)〉 = Ĥ | �F (x)〉 . (7)

If | �F 〉 is a solution of Eq. (6), the expectation value of B̂ will
be determined as

〈B̂〉 = 〈 �F |B̂| �F 〉 = 2
∫ ∞

−∞
Re(Ex(x,z)H ∗

y (x,z))dx = 4Pz(z).

(8)

Throughout the rest of this work we assume that the lossless
modes are normalized in such a way that 〈B̂〉 = 1.

Likewise, the expectation values of 〈Ĥ 〉 will be given by

〈Ĥ 〉 = 〈 �F |Ĥ | �F 〉 = ωε0

∫ ∞

−∞
ε(x)|Ex(x)|2 dx

+ωμ0

∫ ∞

−∞
|Hy(x)|2 dx

−ωε0

∫ ∞

−∞
ε∗(x)|Ez(x)|2 dx. (9)

From Eqs. (8) and (9) it can be observed that while B̂ is
always Hermitian, Ĥ is Hermitian only for real ε(x), i.e.,
lossless materials. For a general Hamiltonian Ĥ = ĤR + iĤI

(nonmagnetic materials are still assumed), the following
relation holds for the expectation value of ĤI :

κδ = 〈ĤI 〉 = 〈 �F |ĤI | �F 〉 = ωε0

∫ ∞

−∞
εi(x)| �E(x)|2 dx. (10)

Note that | �E(x)|2 in the above equation is the magnitude of
the electric field vector, accounting for both the transverse and
longitudinal components.

Starting from the lossless case where Ĥ = ĤR is Hermitian,
one can show that the propagating modes are orthogonal via B̂,
i.e., 〈 �Fk′

z
|B̂| �Fkz

〉 = δkzk′
z
. Further, for the specific arrangement

of Fig. 1(a), ĤR is even with respect to x, so that the modes have
definite even or odd parities with respect to x. However, when κ

is increased, the Hamiltonian ceases to be Hermitian. For small
values of the non-Hermiticity parameter, one can treat iĤI as a
perturbation to the system. Utilizing the Rayleigh-Schrodinger
perturbation method [51], and considering the orthogonality of
0th order modes via B̂, the following equations can be derived
for 1st and 2nd order corrections to the propagation constants
of the lossless waveguide:

k(1)
zn = i

〈 �F (0)
n

∣∣ĤI

∣∣ �F (0)
n

〉
(11a)

k(2)
zn = −

∑
m,m�=n

∣∣ 〈 �F (0)
n

∣∣ĤI

∣∣ �F (0)
m

〉 ∣∣2

k
(0)
zn − k

(0)
zm

. (11b)

Considering that ĤR is an even function with respect to x

while ĤI is odd, and considering that the modes of the lossless
waveguide (0th order modes) have definite parities, it can be
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FIG. 8. (Color online) Second order perturbational correction of
propagation constants for modes B1 and B2 of the MIMIM waveguide
when κ equals 0.1, 0.2, and 0.3. Here, the metal and dielectric
thicknesses are tm = td = 30 nm. The inset shows the comparison
between the energies of the exceptional points calculated via the
perturbational method and the exact approach.

seen that k(1)
zn vanishes for all states. In other words the 1st

order correction for the modes of the lossless waveguide is
identically zero for all states.

In contrast, the 2nd correction of k(2)
zn is not zero, and its

value depends on the overlap integral:

〈 �F (0)
n

∣∣ĤI

∣∣ �F (0)
m

〉 = ωε0

∫ ∞

−∞
εi(x) �E(0)∗

n (x). �E(0)
m (x)dx. (12)

Notably, Eq. (12) has nonzero values only for modes of
opposite parities, consistent with all of our case studies in
the prior section.

The presence of the minus sign in front of Eq. (11b)
arises from the anti-Hermiticity of the perturbing operator and
has a significant physical meaning. Here, unlike a Hermitian
perturbation which leads to an energy splitting hence state
repulsion, the fundamental mode is raised while the 1st
exited state is lowered and the separation of the propagation
constants decreases. This result means that unlike Hermitian
perturbations, here the perturbed eigenvalues approach each
other. We will elaborate more on this concept in the next
section.

Figure 8 shows the dispersion of modes B1 and B2

calculated through Eq. (11b) for κ = 0.1, 0.2, and 0.3. As
in Eq. (12), the larger the non-Hermiticity parameter κ , the
stronger the perturbation—meaning that modes merge at lower
energies. This behavior can be clearly observed in Fig. 5
where the crossing point occurs at lower energies for larger
κ . Note that the real wave vectors and exceptional points
show very good agreement between both our exact analytic
and perturbational approaches, as illustrated in the inset of
Fig. 8. Not surprisingly, the agreement between models begins
to deviate with increasing κ , where higher order corrections
are needed to accurately model the perturbed system. The
appendix presents calculated results including higher order
corrections, demonstrating improved accuracy.

B. State coalescence and generalized power

As a final application of our Hamiltonian formulation,
we describe state coalescence and power flow along the
waveguide. As described before, Ĥ is Hermitian at κ = 0,

075136-6



NON-HERMITIAN NANOPHOTONIC AND PLASMONIC . . . PHYSICAL REVIEW B 89, 075136 (2014)

so the modes of the lossless waveguide form an orthogonal,
complete basis which can be used to find the equivalent matrix
representation of any general Hamiltonian in Eq. (7). If | �F (0)

n 〉
represents the nth eigenvector of the Hermitian case (κ = 0)
the matrix elements of Ĥ in this basis are given by Hnm =
〈 �F (0)

n |Ĥ | �F (0)
m 〉. Here, we consider only two eigenvectors of the

lossless waveguide (i.e., the ones that will merge together).
However, it should be noted that the below formalism is still
applicable if more modes are considered.

The general Hamiltonian Ĥ of a PT system in the basis of
ĤR can be written as

Ĥ = ĤR + iκĤI =
[
kz1 0

0 kz2

]
+ iκ

[
0 δ

δ∗ 0

]
, (13)

where kz1 and kz2 are the propagation constants of the lossless
waveguide, κ is the non-Hermiticity parameter, and δ is the
overlap integral given by Eq. (12). Note that the diagonal
elements of the second matrix in Eq. (13) vanishes, resulting
from the symmetry of the lossless modes described before.
Also, due to the orthogonality of the lossless modes, B̂ is an
identity matrix. So according to Eq. (7), the eigenvalues of
the matrix in Eq. (13) are indeed the propagation constants of
the modes in a PT-symmetric waveguide with non-Hermiticity
parameter κ . The eigenvalues are given by

kz± = (kz2 + kz1) ±
√

(kz2 − kz1)2 − 4κ2|δ|2
2

. (14)

For a small non-Hermiticity parameter, where 2κ|δ| 	
(kz2 − kz1), the above equation is simplified to Eq. (11b),
directly obtained from perturbation theory. However, this
equation is more general and valid even for large values of
κ . From Eq. (14), one can observe that the two roots become
the same when |kz2 − kz1| = 2κ|δ|, hence the formation of an
exceptional point. This equation analytically determines the
amount of non-Hermiticity parameter κ the system can tolerate
without entering into the broken phase beyond the exceptional
point. Right at the exceptional point, the propagation constant
is in fact the average of the propagation constants of the lossless
waveguide, kz2+kz1

2 .
Solving for the eigenvectors of Eq. (13), we find the modes

of the PT-symmetric waveguide as well. The eigenvectors are

[
a1

a2

]
±

=
[

1

i
(kz1−kz2)∓

√
(kz2−kz1)2−4κ2|δ|2
2κδ

]
. (15)

At the EP, the states superimpose with a π/2 phase difference
and the same weight, i.e., |a2±| = 1. Also note that when the
eigenvalues become identical, there is only one eigenstate,
verifying the mode coalescence. Before the exceptional point,
two real, distinguishable propagation constants are given by
Eq. (14). In this regime, the system supports two different but
nonorthogonal modal solutions, based on Eq. (15):

| �F 〉+ = eizkz+
( ∣∣ �F (0)

1

〉 + a2+
∣∣ �F (0)

2

〉 )
(16)

| �F 〉− = eizkz−
( ∣∣ �F (0)

1

〉 + a2−
∣∣ �F (0)

2

〉 )
.

-3 +30
z(nm)

P
z

0

0.5

1 |F>
1

|F>
2

FIG. 9. (Color online) Power propagation at x = 0 for the
MIMIM waveguide at the exceptional point for k = 0.1. The values
are normalized to show the relative power of each mode.

At and beyond the EP, the two above solutions become

| �F 〉1 = eiz
kz1+kz2

2
( ∣∣ �F (0)

1

〉 − i
∣∣ �F (0)

2

〉 )
(17)

and

| �F 〉2 = eiz
kz1+kz2

2

(
(1 + z)

∣∣ �F (0)
1

〉 − i

(
1 + z − i

kδ

) ∣∣ �F (0)
2

〉 )
.

(18)

Assuming 〈B̂〉 is normalized, then the power of the second
state is given by 2(1 + z)2 + 1

κ2|δ|2 . Figure 9 shows the
dependency of the power of these two solutions along the
z direction. As seen, while | �F 〉1 has a constant power along
the waveguide, the power of | �F 〉2 varies quadratically with
z. The presence of the z dependency in the power flow in
this case is a signature of the EP in the system. Here the
difference between the degeneracy and the EP is clear. While
in the degenerate case one has an eigenvalue and various
modal type eigenvectors, at and above the EP, only one mode
exists. The second solution is not a mode in the typical sense,
since (as aside from the exponential factor), its shape is also z

dependent.
Accordingly, there are three distinct regimes that describe

modes in a PT-symmetric system. Below the exceptional point,
the system is in the unbroken phase, there are distinguishable
propagating modes, and the power remains constant upon
propagation. Right at the exceptional point, the system
supports two very different solutions. While one mode is
propagating and preserves power upon propagation, the other
solution has a quadratic power dependency in the direction
of propagation. In the broken regime, above the exceptional
point, the propagation constants depart from purely real values
and appear as complex conjugate pairs. There, one can find
an exponential growth or decay of the modal power upon
propagation.

As evidenced above, power is not conserved in a PT-
symmetric potential. It only is conserved when the system is in
an unbroken phase where the field profiles have definite pari-
ties, |E|2 is even, and the power distributes itself symmetrically
in the system. There, due to the odd parity of εl(x), 〈ĤI 〉 van-
ishes and power does not vary as it propagates along the waveg-
uide. However, in a PT system, we can define a generalized
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power as

Q(z) = 〈 �F (−x,z)|B̂| �F (x,z)〉 . (19)

A brief check shows that this quantity has the dimension of
power. Also note that if the system is Hermitian (i.e., κ = 0) or
if it is PT symmetric but in the unbroken phase, Q is simplified
to the typical definition of power. The evolution of Q is given
by the following equation as

dQ

dz
=

〈
B̂

∂ �F (−x,z)

∂z
| �F (x,z)

〉
+

〈
�F (−x,z)|B̂ ∂ �F (x,z)

∂z

〉

= 〈iĤ (−x) �F (−x,z)| �F (x,z)〉 + 〈 �F (−x,z)|iĤ (x) �F (x,z)〉
= i 〈 �F (−x,z)|Ĥ (x) − Ĥ †(−x)| �F (x,z)〉 ⇒ dQ

dz
= 0.

(20)

This result implies that generalized power is always conserved
in a PT-symmetric system, whether the system is in the
unbroken phase, right at the exceptional point, or in the broken
phase.

IV. CONCLUSION

In conclusion, we have studied the behavior of a PT-
symmetric plasmonic waveguide, where the PT potential arises
from loss/gain balance in the dielectric permittivity. Through
an exact modal solution, we derived the propagation constants
and field distributions of the four lowest order modes of the
waveguide. We investigated the modal behavior as a function
of a non-Hermiticity parameter, giving particular attention to
state coalesce and evolution of the exceptional points. We also
showed that waveguide-layer coupling can control PT modal
properties and coalescence. The results were rationalized
through a Hamiltonian formulation of the waveguide, which
allowed development of a perturbational analysis and insight
into state coalescence before, after, and right at the exceptional
point.

These results may enable the design of PT-symmetric
plasmonic devices, including nanophotonic modulators with
gain. In particular, systems near the exceptional point will
exhibit very rapid and significant modal transformations,
giving rise to fast, sensitive, and low-power all-optical mod-
ulators. These results could also be extended to investigate
nonlinear PT-symmetric waveguides, with the aim of making
asymmetric and nonreciprocal nanophotonic devices. More

kz(ωp/c)
0 1.75 3.5

0.15

0.30

ω
(ω

p)

ĸ = 0.1

B1B2
1500

725
w

avelength(nm
)

ĸ = 0.2
ĸ = 0.3

0.28

0.18
0.1 0.2 0.3

κ

exact

2nd order 
4th order 

FIG. 10. (Color online) Fourth order perturbational correction
of propagation constants for modes B1 and B2 of the MIMIM
waveguide when κ equals 0.1, 0.2, and 0.3. Here, the metal
and dielectric thicknesses are tm = td = 30 nm. The inset shows
the comparison between the energies of the exceptional points
calculated via the perturbational method (2nd and 4th) and the exact
results.

generally, PT-symmetric plasmonics may enable a class of
nanophotonic devices—from optical diodes to nonrecripocal
reflectors—based on a judicious balance of loss and gain
media.
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APPENDIX: PERTURBATIONAL ANALYSIS INCLUDING
HIGHER ORDER CORRECTIONS

As mentioned in the text, the perturbational analysis can
include higher orders of correction to increase the accuracy of
the approximation. Here, we extend the method up to the next
nonzero order correction, i.e., fourth order. The correction to
the propagation constant is given by

k(4)
zn = −

∑
i,m,i,m�=n

∣∣ 〈 �F (0)
n

∣∣ĤI

∣∣ �F (0)
i

〉 ∣∣2∣∣ 〈 �F (0)
n

∣∣ĤI

∣∣ �F (0)
m

〉 ∣∣2(
k

(0)
zn − k

(0)
zm

)(
k

(0)
zn − k

(0)
zi

)2 +
∑

i,m,k,i,m,k �=n

〈 �F (0)
i

∣∣ĤI

∣∣ �F (0)
m

〉 〈 �F (0)
m

∣∣ĤI

∣∣ �F (0)
k

〉 〈 �F (0)
k

∣∣ĤI

∣∣ �F (0)
n

〉 〈 �F (0)
n

∣∣ĤI

∣∣ �F (0)
i

〉
(
k

(0)
zn − k

(0)
zi

)(
k

(0)
zn − k

(0)
zm

)(
k

(0)
zn − k

(0)
zk

) .

(A1)

Figure 10 shows the calculated propagation constant
when including this higher order correction. The fig-
ure inset clearly indicates improved accuracy compared
to the 2nd order correction. However, note that caution

is advised when including even higher order corrections.
Due to the recursive nature of this perturbational method,
increased error might be observed after higher order
corrections.
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