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Time-dependent mean-field theory for x-ray near-edge spectroscopy

G. F. Bertsch1 and A. J. Lee2

1Institute for Nuclear Theory and Department of Physics, University of Washington, Seattle, Washington, USA
2Department of Physics, University of Washington, Seattle, Washington, USA

(Received 27 June 2013; revised manuscript received 31 January 2014; published 27 February 2014)

We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and
condensed matter, based on a two-determinant approximation and Dirac’s variational principle. The theory
provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal
interactions in some basis. We numerically solve the equations to compare with the Mahan–Nozières–De
Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are
similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can
be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from
correlation-exchange potentials.
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I. INTRODUCTION

Time-dependent density functional theory (TDDFT) has
proven to be a very useful tool for calculating the linear
response of molecules and condensed matter systems. The
overall features of the dielectric function are reproduced quite
well, and the agreement at zero frequency in insulators is often
at the few percent level. It also describes the plasmon peaks
in the UV absorption spectrum and the corresponding energy
loss spectrum in inelastic electron scattering.

The good experience in TDDFT in the optical regime
encourages its application to x-ray absorption, which has a
rich near-edge structure that is only partially described by
single-electron physics. Indeed, some aspects of the x-ray
response are accessible to TDDFT [1–4]. However, other
aspects, particularly the dynamics of core-hole relaxation, are
beyond the scope of the theory. This is because the fundamental
assumption that the wave function be represented by a single
Slater determinant is too restrictive when the core orbital is part
of that determinant. In the single-determinant approximation
for the linear response, most of the wave function is in
the ground state. It requires at least two determinants to
treat the effects of the core-hole potential. To overcome this
deficiency, we propose here a theory based on two separate
Slater determinants, one for the initial and another for the final
state. We derive the equations of motion in Sec. II below. We
refer the reader to Ref. [5] for an review of the foundations
of TDDFT and its recent extensions. In Sec. III following we
apply our extension to the well-known Mahan–Nozières–De
Dominicis (MND) Hamiltonian. A comprehensive discussion
of analytic and numerical methods to solve it is given in the
review by Ohtaka and Tanabe [6]. The equations we solve
numerically are exact for the MND Hamiltonian. We will argue
that they are much easier than other methods to apply to DFT
functionals which contain electron-electron interactions.

We note that a multicomponent TDDFT has already been
derived as a generalization of the Runge-Gross theorem
[10,11]. It can be motivated as follows [12]. The ansatz
permits a closer approximation to the physical starting wave
function, and thus the accompanying density functional is then
likely to be amenable to a simpler approximation. However,
the extensions derived from the Runge-Gross theorem are

typically based on a representation by particle-hole excitations
of a single determinant [9]. Our derivation and equations of
motion are different, resembling more the multideterminant
theory of nuclear excitations proposed in Ref. [13]. There is
no underlying functional in our treatment here, although the
equations are motivated by TDDFT. Each Slater determinant
has its own density and evolves with the Kohn-Sham equation
based on that density.

The final time-dependent equation that we solve numer-
ically is Eq. (15) below; the response is evaluated using
Eqs. (13) and (16).

II. THE TWO-DETERMINANT APPROXIMATION

We derive equations of motion from Dirac’s variational
principle

δ

∫
dt〈�(t)|i d

dt
− H |�(t)〉 = 0, (1)

varying the wave function |�〉 in the space of Slater de-
terminants. The resulting time-dependent Kohn-Sham (KS)
equations are then solved for the time-dependent wave function
|�(t)〉. For discussion of the action principle in the context of
TDDFT, see Refs. [7,8].

The linear response to an operator O is obtained from the
time-dependent correlator 〈[O(t),O(0)]〉/i calculated from

R(t) = lim
λ→0

1

λ
〈�λ(t)|O|�λ(t)〉. (2)

Here the initial state has been prepared by applying an
impulsive field V (r,t) = λOδ(t) to the KS ground state |�g〉.
In linear order, this modifies the initial wave function to

|�λ(0+)〉 = (1 − iλO)|�g〉. (3)

The resulting wave function is evolved by KS equations to
determine the matrix element in Eq. (2). The connection of
Eq. (2) to the more familiar frequency-dependent response
S(ω) is given by

S(ω) ≡
∑
f

〈f |O|0〉2δ(Ef − ω) = 1

π

∫ ∞

0
dtR(t) sin ωt. (4)
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Since λ is small in Eq. (2), the evolved wave function is still
largely in the ground state with only a small amplitude of
excited states. This is fatal for calculating effects of the core
hole excitation such as the relaxation of the valence wave
function in the presence of the core hole. By considering
separate determinants for the components of the wave function
with and without the core electron excitation, the correlations
associated with valence electrons can be treated as well as they
are in the optical response. There is no danger of violating
the Fermi statistics because the two components of the wave
function are necessarily orthogonal.

Our starting point is the following ansatz for the variational
wave function:

|�〉 = agc
†
c|�vg〉 + ac|�c〉. (5)

Here |�vg〉 = ∏Ne

α c†α|〉 is the Slater determinant of the valence
electrons in a state with the core electron in its ground state
orbital, where Ne is the number of active electrons in addition
to the core electron. Correspondingly, |�c〉 = ∏Ne+1

β c
†
β |〉 is

the Slater determinant for a state with the excited core electron
in the valence band. The two sets of valence-band orbitals
are expressed in terms of the valence-band basis states i

as c†α = ∑
aαic

†
i and c

†
β = ∑

aβic
†
i where aαi and aβi are

time-dependent amplitudes. We may choose these expansion
coefficients to satisfy the conditions

∑
i a

∗
αiaα′i = δαα′ , etc.

The amplitudes of the two Slater determinants (SDs) ag(t) and
ac(t) will determine the mixing of the two determinants. They
satisfy the normalization condition |ag|2 + |ac|2 = 1.

The MND Hamiltonian has the form

Ĥ = Ĥv(c†i ,ci) + Ĥc(c†i ,ci)ccc
†
c. (6)

The first term is the valence Hamiltonian to be constructed
from the corresponding Kohn-Sham density functional. The
second term adds the excitation energy of the core hole as well
as its field acting on the valence electrons.

The variation in Eq. (1) is to be carried out with respect to
changes in the wave function |�〉 that preserve its character
as a sum of two SDs. In the single-determinant theory, one
takes the variational derivatives of |�〉 with respect to aα,i

treating them as independent variables. This results in the usual
time-dependent Kohn-Sham (KS) with the single-particle
Hamiltonian given by

ĤKS =
∑
i,j

〈�| δ2Ĥv

δc
†
i δcj

|�〉c†i sij cj , (7)

where sij = ±1 is a phase factor depending on the ordering
of the operators in Ĥv . However, as a consequence of the
overcompleteness of the variables, the overall phase of the
time-dependent KS wave function no longer has any physical
meaning. For example, if the orbitals are eigenstates of
the KS Hamiltonian, the overall phase is exp(−i

∑Ne

n εnt),
where εn are the KS eigenvalues. The correct phase is
exp(−i〈�|H |�〉t); the two are only equal in the absence
of electron-electron interactions. This phase plays no role in
the single-determinant theory, but with two determinants it is
crucial to have correct relative phases.

The proper procedure to apply Eq. (1) is to require that the
wave function variations in

〈δ�|i d

dt
− Ĥ |�(t)〉 = 0 (8)

are independent of each other. An orthogonal (and thus
independent) set of wave function variations may be defined
by making use of Thouless’s representation [14] of the SDs.
The equations of motion are obtained by taking |δ�〉 as the
set of 1-particle 1-hole excitations of the instantaneous SD,

|δ�〉 ∈ |αpαh〉 ≡ c†αp
cαh

|�(t)〉, (9)

in accordance with Thouless’s theorem. For a state of Ne

particles in a basis of dimension Nb, there are Ne(Nb − Ne)
particle-hole amplitudes to be determined compared to the
NeNb amplitudes in the representation Eq. (5). However, the
use of Eq. (9) requires calculating both particle and hole or-
bitals in an instantaneous basis, which is very costly in carrying
out the time evolution. An easier way to avoid the phase
introduced by the Kohn-Sham single-particle Hamiltonian is
by projection. The action of ĤKS on the SD can be expressed
in the instantaneous particle-hole basis as

ĤKS |�〉 = EKS |�〉 +
∑
αp,αh

v(αp,αh)|αpαh〉, (10)

where EKS = 〈�|ĤKS |�〉. The unwanted first term can be
removed in any basis simply by updating the wave function
using the projected KS Hamiltonian ĤKS − EKS . Thus, the
single-particle orbitals are calculated as usual, but the phase
of the SD is corrected by exp(+i〈ĤKS〉�t) at each time step.
For our numerical example below, the problem does not arise
because there is no electron-electron interaction in the valence
space.

To summarize, we solve independently the time-dependent
Kohn-Sham equations for |�g〉 and |�c〉. The two determinants
are coupled by the x-ray photon interaction,

Ĥx = vx(c†xcc + c†ccx), c†x =
∑

i

fic
†
i (11)

with f a form factor. Varying with respect to ag,ac one obtains
the 2 × 2 matrix equation for these variables,

i
d

dt

(
ac

ag

)

= ac

(
〈�c|Ĥ − EKS,c|�c〉 vx〈�c|Ĥxc

†
c|�vg〉

vx〈�vg|ccĤx |�c〉 〈�vg|Ĥ − EKS,g|�vg〉

)

×
(

ac

ag

)
. (12)

The hermiticity of Ĥx ensures that the normalization condition
remains satisfied during the course of the evolution. The off-
diagonal matrix element in this equation is expressible as the
N+1 × N+1 determinant

〈�c|c†x |�vg〉 =

∣∣∣∣∣∣∣∣∣

〈β1|α1〉 ... 〈β1|x〉
〈β2|α1〉 ...

...

〈βN+1|α1〉 ... 〈βN+1|x〉

∣∣∣∣∣∣∣∣∣
. (13)
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While this determinant is well known in the analytic theory
of the near-edge response [6], it is absent from the usual
time-dependent Kohn-Sham theory based on a single Slater
determinant.

To evaluate the linear response to the field of the x-ray
photon, we start with the ground state wave function at time
zero, which we call |�g(0)〉. We now perturb the system by
an impulsive x-ray field, λĤxδ(t). The immediate evolution
introduces a small component of the core-excited state into
the wave function,

|�(0+)〉 = |�g(0)〉 + iλvx |�c(0)〉, (14)

where |�c(0)〉 = c
†
x |�vg(0)〉. Equation (14) has the required

form as a sum of two determinants. Each is evolved in time
with its own Kohn-Sham Hamiltonian. The evolution of |�vg〉
is trivial since the ground is stationary. All the dynamics
come from the evolution of |�c〉 by the time-dependent HS
equations,

i
daβi

dt
=

∑
j

〈i|ĤKS |j 〉aβj for 1 � β � Ne + 1. (15)

Then the real-time response from Eq. (2) is

R(t) = 2v2
xRe〈�c(t)|c†x |�vg(t)〉. (16)

This can be easily Fourier transformed by Eq. (4) to give the
absorption spectrum.

Our procedure provides an exact solution for the linear
response if Ĥv and Ĥc are strictly one-body operators. This
is because the intrinsically two-body part of the Hamiltonian
does not make two-particle excitations or entangle the two
Slater determinants after the initialization.

III. NUMERICAL CALCULATIONS

In this section we demonstrate the practicality of the method
as applied to the MND Hamiltonian. The computer codes
employed here are available at Ref. [15].

We write the two terms in the Hamiltonian as

Ĥv = Eb

Nb − 1

Nb∑
i=1

(i − Nb/2)c†i ci (17)

and

Ĥc = vc

Nb

c†xcx, c†x =
Nb∑
i

c
†
i . (18)

Here Eb is the width of the band, and Nb is the number of
orbitals in the band. We shall express energies in units of Eb,
and time in units of �/Eb. We start with a half-filled band,
taking the number of valence electrons Ne to be Ne = Nb/2.
We present calculations for the parameter sets listed in Table I.

As explained in the literature [6], the core-hole interaction
strength vc is not the most physically direct quantity determin-
ing the near-edge response. The effect of the Fermi-surface
edge is more closely related to the shift of the single-particle
orbital energies due to the core hole. Calling the shift �ε, the
relevant quantity is

�ε
dn

dε
= δ

π
, (19)

TABLE I. Parameter sets for the Hamiltonian Eqs. (17) and (18).

case Nb Ne vc δ/π

A 256 128 −0.8 0.38
B 8 4 −0.8 0.39
C 512 256 −0.8 0.38
Z 256 128 0 0

where dn/dε is the density of orbital states at the Fermi level.
In the last equality, this is related to the scattering phase shift
δ at the Fermi surface. The values of δ associated with the
computed parameter sets are given in the last column of Table I.

The Green’s function theory in Ref. [16] for the time-
dependent response decomposes it into two factors, the overlap
of Fermi sea determinants and the Green’s function of the
electron that was promoted to the valence band. We write the
overlap of the Fermi sea determinants as

G(t) = 〈�vg|e−i(Ĥv+Ĥc)t |�vg〉. (20)

The main quantity of interest is the determinant in Eq. (16)
which we call gc, as

gc(t) = 〈�c(t)|c†x |�vg(0)〉. (21)

Nozières and De Dominicis decompose it into two factors,
gc(t) = g(t)G(t). We will not make use of that separation.

A. Fermi sea evolution

We first examine the Fermi sea overlap. To remove the
phase of the core-excited ground state, we will examine the
quantity

G′(t) = ei
∑

α εαt 〈�vg|e−i(Ĥv+Ĥc)t |�vg〉, (22)

where εα are the Kohn-Sham eigenvalues of the ground-state
orbitals. Figure 1 shows ReG′(t) for parameter set A of Table I.
It is plotted on a log-log scale to facilitate comparison with
result of Ref. [16],

G(t) ∼ (1/t)(δ/π)2
. (23)

 0.1

 1

 1  10  100

 R
e 

G
’(

t)

 t   

FIG. 1. ReG′(t) as a function of time for parameter set A.
The line shows a visual power-law fit, G′(t) ∼ t−0.13.
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FIG. 2. ReG′(ω) as a function of ω. Left-hand panel: Results for a low-dimensional system, parameter set B. Right-hand panel: Results for
parameter set A.

The predicted power-law dependence should be applicable
over the time domain starting from t0 ∼ 1/Eb and going to
t1 ∼ dn/dε = Nb/Eb, the time necessary to resolve individual
orbitals in the band. In our units the range is (t0,t1) =
(1,Nb). One notices immediately that G′(t) has a considerable
oscillatory component. The oscillation has been found in other
treatments of the problem as well, e.g., Eq. (3.4) of Ref. [17].
As discussed in Ref. [6], the oscillation may be attributed to
the deeply bound orbital at the bottom edge of the valence
band.

The line in the graph corresponds to the power law G(t) ∼
(1/t)γ with γ = 0.13. This is rather close to the predicted
power law derived in Ref. [16], γ = (δ/π )2 ≈ 0.14.

The spectral function associated with G′(t) is its Fourier
transform,

G′(ω) =
∫ ∞

0
dteiωtG′(t). (24)

Figure 2 plots ReG′(ω) for parameter sets A and B. For the
set A shown in the left-hand panel one can see the peaks
associated with individual states of the many-particle wave
function. The dimension of the many-particle space is given
by

(
Nb

Ne

) = 20. The ground state is the peak on the far left, and
8–9 other states are visible in the plot. The right-hand plot
shows ReG′(ω) for parameter set A. Here the individual states
are so closely spaced that one can see only smooth curves.
There are clearly two peaks in the spectrum, one associated
with the ground state and its low-energy excitations, and the
other associated with a localized orbital bound or nearly bound
to the core hole. The secondary peak was discussed in Ref. [18]
and also recently in Ref. [19]. In Fig. 3 we have replotted the
ReG′(ω) ground-state peak on a log-log scale to make visible
a power-law dependence on ω. The expected range of validity
for a power law is within the interval (ω0,ω1) = (1/Nb,1) in
our units. The line in Fig. 3 shows the power law ω−1.13. We
can see that it provides a reasonable fit in the range (0.02,0.3)
with some oscillation at low frequency.

B. Inclusion of the core electron

We now examine the propagation of the core-hole excited
determinant with the core electron promoted to the valence
band. The number of electrons in the determinant is now
Nb/2 + 1. The initial wave function has equal amplitudes for

the x electron in all the unoccupied orbitals; it thus has the same
localization as the core-hole potential. Just as a reminder of the
noninteracting physics, we show in Fig. 4 the imaginary part of
gc(ω) at vc = 0. It is uniform across the region of unoccupied
orbitals, with sharp edges at the Fermi surface and at the top
of the band. The right-hand panel shows the Green’s function
with parameter set A. Note that the peak associated with a hole
at the bottom of the valence band is missing. Evidently, the
electron added by c

†
x operator ensures with a high probability

that the hole is filled. The results in the right-hand panel are
plotted in Fig. 5 on a log-log scale. The line is a visual fit to
power-law behavior. Evidently, a power law gives a reasonable
description over the energy interval 0.02–0.3. According to the
theory, the exponent is determined by the phase shift according
to the dependence1

γ = −2
δ

π
+ δ2

π2
. (25)

Taking δ/π from Table I, the predicted value is γ = −0.62,
compared to γ = −0.85 from the fit.

The small disagreement we find here persists over a large
range of δ. Figure 6 shows a comparison over the range of
δ accessible to the Hamiltonian. We see that the exponent is

1This is for a single partial wave and spin projection.
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FIG. 3. The same G′(ω) as in Fig. 2(b), plotted on a log-log scale.
The line shows a visual power-law fit, G′(ω) ∼ ω−1.13.
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FIG. 4. Left panel: Core-excited Green’s function with no interaction, parameter set Z. Right panel: The same quantity with parameter
set A. Note the difference in vertical scale.

proportional to δ for small δ as in Eq. (25), but the coefficient
is somewhat higher.

C. Other numerical treatments

Various numerical treatments of the MND Hamiltonian
have been discussed and reviewed in Ref. [6]. The two main
approaches are the Green’s function formulation [17,20–23]
and the formulation in terms of many-body determinantal wave
functions [24–28]. The former requires constructing functions
of at least two variables in the time or frequency domain,
governed by equations that are nonlocal in those variables.
In this respect, the real-time wave function method is much
more efficient since there is only one time variable and the
equations to be solved are local in time. An early numerical
work following the wave function approach is Ref. [24]. These
authors constructed the numerically exact solutions of the
core-hole excited Hamiltonian, and then used the ground state
and one-particle excitations of the Hamiltonian as the final
states. This procedure of enumerating the eigenstates was also
used in Ref. [27]. The wave function approach was also used
in Ref. [28], and the determinant was evaluated in real time,
as in our approach. However, the procedure adopted there
was based on the formulation of Ref. [18] which requires a

 10
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 0.01  0.1  1

  g
c(

ω
)

ω

FIG. 5. The determinant gc(ω), plotted on a log-log scale. The
line shows an approximate power-law fit, gc(ω) ∼ ω−0.85.

matrix inversion. The near singularity of the matrix apparently
caused numerical difficulties that do not arise in the real-time
approach. From a computational point of view, our approach
is closest to that used in Refs. [25] and [26]. We note that these
authors found that the critical exponents of the analytic Green’s
function treatment were only in qualitative agreement with the
numerical results outside of a very small interval near ω = 0.

IV. SUMMARY AND OUTLOOK

We have derived an extension of time-dependent density
functional theory that contains at least some of the subtle
many-particle physics of x-ray near-edge absorption in metals.
Numerically, the real-time theory is easy to carry out if the
time-dependent electron-electron interaction is neglected. The
absorption shows that the x-ray absorption power-law behavior
is in qualitative agreement with the analytic results of Ref. [30],
but not identical to them. A similar conclusion was obtained
in Ref. [25].

Physically, the most important effect of the many-electron
physics is core-hole screening. There are several numerical
calculations in the literature that follow the Green’s function
formalism of Ref. [16] and focus on this screening effect. For

-1.2
-1

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

-0.2 -0.1  0  0.1  0.2  0.3  0.4

γ

δ/ π

FIG. 6. Solid circles: The power-law exponent extracted from
the extended TDDFT response for the space (Nb,Ne) = (256,128).
Dashed line: The analytic formula Eq. (25). The numerically
computed exponent was extracted from the calculated gc(ω) at
ω = 0.03 and 0.2.
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the absorption spectra, a commonly used approximation treats
the system as fully relaxed in the presence of the core hole.
Good fits can also be obtained under the assumption that the
dynamic screening reduces the core-hole effects by a factor
of two [4]. That work also presented a real-time dynamic
calculation, but apparently used a diagonal approximation to
Eq. (16). In any case, dynamic effects related to the core hole
can be easily calculated in the real-time method, so there is no
reason to use any of these approximations.

So far we have not discussed the electron-electron interac-
tions within the valence band. They are potentially important
and are needed to treat the additional screening associated
with the plasmon degree of freedom. Langreth has proposed
a way to include plasmon effects in the Green’s function
approach [29] and it was applied with some success in
Ref. [31]. However, it involves distinct calculations for the
plasmon physics and for the x-ray absorption. In contrast, the
real-time TDDFT provides a unified framework for including
the electron-electron interaction in the calculation. In the

two-determinant theory one can simply add the Coulomb field
of the instantaneous charge density of |�c〉 to the field gener-
ated by vc. Of course, the presence of the interaction requires
considerably more computational effort. The Coulomb field
has to be calculated at each time step. Also, the overall phase
of the |�c〉 has to be computed using one of the methods
discussed in Sec. II. We believe that the problem is still
computationally quite tractable; we leave the implementation
to a future publication.
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