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We study entanglement renormalization group transformations for the ground states of a spin model, called
cubic code model H, in three dimensions, in order to understand long-range entanglement structure. The cubic
code model has degenerate and locally indistinguishable ground states under periodic boundary conditions.
In the entanglement renormalization, one applies local unitary transformations on a state, called disentangling
transformations, after which some of the spins are completely disentangled from the rest and then discarded. We
find a disentangling unitary to establish equivalence of the ground state of H, on a lattice of lattice spacing a to the
tensor product of ground spaces of two independent Hamiltonians H, and Hj on lattices of lattice spacing 2a. We
further find a disentangling unitary for the ground space of Hp with the lattice spacing a to show that it decomposes
into two copies of itself on the lattice of the lattice spacing 2a. The disentangling transformations yield a tensor
network description for the ground state of the cubic code model. Using exact formulas for the degeneracy as a

function of system size, we show that the two Hamiltonians H, and Hp represent distinct phases of matter.
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I. INTRODUCTION

The renormalization group (RG) is a collection of trans-
formations that select out quantities relevant to long-distance
physics [1]. It generally consists of averaging out short-
distance fluctuations and rescaling of the system in order to
recover the original picture. In practice, however, details of
RG transformations are context dependent. When an action is
given and the corresponding partition function is of interest,
the RG transformation concerns the effective parameters (e.g.,
coupling constants, temperature) of the theory as a function
of probing length/energy scale. When a wave function is of
interest, the RG transformation takes place in a parametrization
space of the wave functions such that the transformed wave
function recovers correlations at long distance.

This paper is on the wave-function renormalization, focus-
ing on long-range entanglement structure. As the entanglement
of many-body systems is not characterized by a single number,
our general goal is to compare states with well-known states
or to classify them under a suitable RG scheme [2-4]. The
entanglement between any adjacent pair of spins can be
arbitrary since it can be changed simply by applying a local
unitary operator, which will certainly not affect the long-range
behavior in any possible way. This means that we should allow
local unitary transformations in our definition of equivalence
of long-range entanglement, and the block of spins on which
the local unitary is acting should generally be regarded as a
single degree of freedom; the long-range entanglement will
only depend on the entanglement among the coarse-grained
blocks. In the case where the state is represented by some
fixed network of tensors [5], this observation has been used to
choose the most relevant part of the tensors [2,4] and to speed
up certain numerical calculations [6].

Here, we study long-range entanglement of the ground
states of a particular three-dimensional gapped spin model, via
local unitary transformations that simplify the entanglement
pattern. This model, called the cubic code model [7], shares
an important property with intrinsically topologically ordered
systems [8], namely, the local indistinguishability [9] of
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ground states. However, there are two crucial differences: One
is that the degeneracy under periodic boundary conditions is a
very sensitive function of the system size. The other is that it
only admits pointlike excitations whose hopping amplitude is
exactly zero in presence of any small perturbation. Although
the cubic code model as presented is exactly solvable, it is
important to ask for a corresponding continuum theory. This
is one of the main motivations of this work.

Our result is as follows. Let H4 (a) be the Hamiltonian of the
cubic code model [see Eq. (4)]. Ha(a) lives on a simple cubic
lattice with two qubits per site where the lattice spacing is a.

(We will mostly use the term “qubit” in place of “spin-%” from
now on since only the fact that each local degree of freedom
is two dimensional is important.) Let Hg(a) denote another
gapped spin Hamiltonian on a three-dimensional simple cubic
lattice with four qubits per site where the lattice spacing is
a. Hg(a) will be given explicitly later in Eq. (14). We find
a constant number of layers of local unitary transformations
(finite-depth quantum circuit) U such that for any ground state

[ a(a)) of Ha(a), we have

Ula@) = ) alvhCa)® [vpa)@t ... 1), (1)

1

where ¢; are complex numbers that depend on [{4(a)), and
[Wa2a)),|¥p(2a)) are ground states of Hy(2a),Hg(2a),
respectively. Note that on the right-hand side, the wave
function lives on the coarser lattice with lattice spacing 2a.
The coarser lattice is depicted in Fig. 1. The unit cell of the
coarser lattice has 16 qubits per Bravais lattice point; 10 qubits
in each unit cell are in the trivial state, disentangled from the
rest. The Hamiltonians H4 and Hp live on the disjoint systems
of qubits designated by A and B in Fig. 1, respectively.

Furthermore, we find another finite-depth quantum circuit
V such that for any ground state ¥rz(a) of Hg(a),

VIys@) =Y c[ypQa) @ [ypa) @1 ... 1) (2)

l
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FIG. 1. Simple cubic lattice of lattice spacing of 2a and the unit
cell. There are 16 qubits labeled by 0, A, or B in the unit cell. Those
that are labeled by O are in the trivial product state. |{4) and |¥5)
in Eq. (1) are states of the system of the qubits labeled by A and B,
respectively.

for some numbers cl/. . Again, on the right-hand side, the wave

functions live on the coarser lattice. The qubits in the trivial

state in Eq. (2) are uniformly distributed throughout the lattice,

similar to Fig. 1. The first and second | 3) in Eq. (2) are states

of disjoint systems of qubits, similar to A and B of Fig. 1.
The result can be written suggestively as

R(Hy) = Hy ® Hp, R(Hp)= Hp @ Hp, 3)

where R denotes the disentangling transformation followed
by the scaling transformation by a factor of 2. This is
rather unexpected and should be contrasted with the previous
results [4,10-13]. It has been known that the Levin-Wen
string-net model [14] and Kitaev quantum double model [15]
are entanglement RG fixed points. Those results would have
been summarized as R(H) = H. The ground-state subspace
is retained at the coarse-grained lattice. There was no splitting.
We will comment further on it later.

This paper is organized as follows. We begin by defining
the model and reviewing its properties in Sec. II. We give
details on the entanglement RG in Sec. III. The actual unitary
operators appearing in Egs. (1) and (2) will not be displayed
in the text, but in a MATHEMATICA script in the Supplemental
Material [16]. Next, we argue in Sec. IV that the newly found
Hamiltonian Hp represents a different phase of matter, based
on the degeneracy formulas of the models on periodic lattices.
In Sec. V, we point out the relevance of so-called branching
multiscale entanglement renormalization ansatz (MERA) [17]
description for the ground states of the cubic code model. In
Sec. VI, we describe a special representation of the models,
exploiting the translation symmetry and properties of Pauli
matrices. The special representation simplifies the calculation
of the unitaries of Egs. (1) and (2) significantly. Section VII
builds on the preceding section, giving an algebrogeometric
criterion and some intuition behind the entanglement RG
calculations. We conclude with a short discussion in Sec. VIIL.
The Appendix contains a direct bound [18] on the entangle-
ment entropy of a branching MERA state for a box region.

II. MODEL

The spin model primarily considered in this paper is
described by an unfrustrated translation-invariant Hamiltonian
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on the simple cubic lattice A = Z3 with two qubits per lattice
site [7]:

— X Z
HA_—J§ (G + Gi), 4)
ieA
where J > 0 and
X __ X X X X X X X X
Gi = 071072071 410145,19i 421014542201 +24£.20i 4345.2°
(5

z __ Z z Z Z Z Z Z Z
G} = 071020, 420, 520220521033 1%i—5—3.1 (6

are eight-qubit interaction terms consisted of Pauli matrices.
The index i runs over all elementary cubes. The terms G} and
Gy are visually depicted as

X1 IX Z1 1z
ST S,
11X 11 1z YA o0 —>
XX X1 }»II Z1 A
X1 X Z1 1z

For the arrangement of the Pauli matrices on the vertices of
the unit cube, this is called the cubic code model. (It is a
quantum-error-correcting code, but we will not discuss the
theory of quantum-error correction.) One can easily verify
that each term G} or G; commutes with any other term ij or
Gji in the Hamiltonian H,4. A ground state |y) of H,4 can be
written as

W)= GItt...1), (7)

Geg

where G is the Abelian group generated multiplicatively by
terms G;’s and G;’s. Since |11 ... 1) is an eigenstate of G
for any i with eigenvalue +1, the group G can be replaced by
a smaller group consisting all products of G7’s. The ground
state is degenerate (ground space). This will not concern us.

The energy spectrum can be understood by commutation
relations among Pauli matrices since the Hamiltonian (4) is
a sum of commuting tensor products of Pauli matrices. Let
us call a tensor product of Pauli matrices o*,0”,0% a Pauli
operator. If |{) is a ground state and P is any Pauli operator,
then P|vy) is also an energy eigenstate. In fact, it is a common
eigenstate for G} and G?. This is because any term G or G}
in the Hamiltonian, being a Pauli operator, either commutes
or anticommutes with P (PG** = £G**P) and the ground
state |v) is stabilized by any G* and G* (G**|¢) = |)).

To understand the (excited) state P|ir) better, imagine
that we measure all G* and G* simultaneously. This is
possible since they are pairwise commuting. The measurement
outcomes on P|yr) are definite and take values 1. Let us
say that there is an X-type defect at i if the expectation
value of G7 is —1. Likewise, we define Z-type defects.
Each defect has energy 2J, and a state with no defect is
a ground state. A configuration of the defects characterizes
an excited state effectively, but not uniquely due to the
ground-state degeneracy; for orthogonal ground states |y)
and |¢), orthogonal states P|y) and P|¢) give the same
configuration of defects. Note that the whole Hilbert space
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is spanned by states of form P|yr) for some Pauli operator P
and some ground state |[).

An exotic property of the cubic code model is that the
excitations are pointlike but immobile. They are pointlike
because a single isolated defect is a valid configuration, but
are immobile because they are not allowed to hop to another
position by a local operator. Here, the locality is important.
There indeed exists a nonlocal operator that annihilates a defect
and creates another at a different place. The statement remains
true even if we loosen our restriction that there be exactly one
defect at p. In a general case, one should distinguish a cluster of
defects that is locally created, in which case we call the cluster
neutral, from a cluster that is not locally created, in which
case we call the cluster charged. (Since the charged cluster has
nothing to do with any symmetry, it is termed “topologically
charged.”) The immobility asserts that any charged cluster can
not be transported by any operator of finite support.

Rigorously, the immobility is stated as follows. Suppose |/)
is a state with a single defect, or more generally any charged
cluster of defects, contained in a box of linear dimension w. Let
T denote a translation operator by one unit length in the lattice
along arbitrary direction. Then, for any operator O of finite
support (i.e., O is local), one has (¥|OT"|y) = 0 whenever
n > 15w. The number 15 is merely a convenient number to
make an argument smooth. Important is that there is some
finite n = n(w) such that the transition amplitude becomes
exactly zero. See Ref. [7] for proofs.

The cubic code model is topologically ordered [8] in the
sense that the ground-state subspace is degenerate and no local
operator is capable of distinguishing any two ground states [7];
if O is an arbitrary local operator and |¢) and |y,) are two
arbitrary ground states, then one has

(Yr1101Y1) = c(O) (Y1 1¥2) (8)

for some number c(O) that only depends on the operator O
but not on the states |y ). In addition, the model satisfies
the so-called “local topological order” condition [19] which
implies that the degeneracy is exact up to an error that is
exponentially small in the system size [9]. In other words,
all ground states have exactly the same local reduced density
matrices, and this property does not require a fine tuning. For
an application of the model in robust quantum memory, see
Ref. [20].

The actual degeneracy and questions on nonlocal operators
that distinguish different ground states are fairly technical. One
can show [21] that the degeneracy of the cubic code model on a
L x L x L lattice with periodic boundary conditions is equal
to 2F where

14+ +x)r
k+2 L
e =deg, ged | 14+ (1 + wx) C))
2.NL
14+ (14 wx) F,
1 if L=2P+1(p=1),
_ . (p=z1 (10)
L if L=27(p=1).

That is, one computes three polynomials over the field of
four elements F4 = {0,1,w,w?} and takes the greatest common
divisor polynomial and reads off the degree in x. The proof of
this formula contained in Ref. [21] is based on an algebraic
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representation of the Hamiltonian (4), which will be reviewed
in Sec. VL.

The cubic code Hamiltonian (4) belongs to a class of
so-called stabilizer (code) Hamiltonians, as it is defined as
a sum of commuting Pauli operators. The Kitaev toric code
model [15] and the Wen plaquette model [22] are well-known
examples of stabilizer Hamiltonians. The ground states in these
models have a nice geometric interpretation in terms of string
nets [14], whereas, unfortunately, there is no known geometric
interpretation for the ground state of the cubic code model,
other than the trivial expression (7).

III. ENTANGLEMENT RENORMALIZATION
AND BIFURCATION

It will be useful to recall the notion of finite-depth quantum
circuit. A depth-1 quantum circuit is a product of local unitary
operators of disjoint support. We do not restrict the number of
the unitary operators participating in the product, but each
unitary operator must be local, that is, its support can be
covered by some ball of fixed radius. This radius is referred
to as the range of the circuit. A finite-depth quantum circuit
is a finite product of depth-1 quantum circuits. The number
of layers must be independent of system size. The finite-depth
quantum circuit is a discrete version of the unitary evolution
e~ by a sum H of local Hermitian operators for t = O(1).

The entanglement renormalization group transformation
is a procedure where one disentangles some of degrees of
freedom by local unitary transformations, and compares the
transformed state to the original state. The purpose is to
understand “long-range” entanglement. Given a many-qubit
quantum state |¢) and a finite-depth quantum circuit U such
that Uly) = |¢) ® 1) ® ... ® |1), we discard the qubits in
the trivial state |1) from U|y). Then, we proceed with |¢) in
the next stage of entanglement RG transformations.

The entanglement RG analysis can be done in the Heisen-
berg picture when we are interested in a state that is a common
eigenstate of a set of operators. Suppose |y) is defined by the
equation

Gily) =y) foranyi, QY
where i is some index. Then, the transformed state U|y) is
described by the equation

(UG UNUY) = Uly).

If UG,U" happens to be an operator, say o° on a single
qubit, then that qubit must be in the state |1), disentangled
from the others. This is the criterion by which we identify
disentangled qubits in the calculation below. In addition, we
can use this information to restrict other G; in the next stage
of entanglement renormalization.

The ground-state subspace of our model (4) is described by
the stabilizer equation (11) where the stabilizers G; are just G7
and G;. Here, observe that the stabilizers G; in Eq. (11) are
invertible operators; G;’s form an Abelian group G = (G;),
called the stabilizer group. Then, the disentangling criterion is
that for some element G of the stabilizer group G, UGU acts
on a single qubit, where G can be a product of several G;’s.
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In fact, only the group G is important. Consider two gapped
Hamiltonians

H=-JY .G, H=-1) G,
i J

where the terms G; and G; generate the same multiplicative
group G = (G;) = (G}). The ground-state subspace of the two
gapped Hamiltonians are identical and they represent the same
quantum phase of matter, in which case we will write

H=H. (12)

One can say that H' is another parent gapped Hamiltonian of
the ground-state subspace of H.

Since the ground state is degenerate, the stabilizer equa-
tion (11) does not pick out a particular state. Nevertheless, the
disentanglement criterion in the Heisenberg picture determines
a qubit in the trivial state unambiguously for any ground
state. Thus, even after discarding disentangled qubits, the
transformed Hamiltonian U HU ' has a ground-state subspace
that is isomorphic to that of H. Our entanglement RG
transformation preserves the ground-state subspace.

We can now state our main result. Let H4(a) be the cubic
code Hamiltonian defined in Eq. (4). Here, the lattice spacing
constant a is specified for notational clarity. We find a finite-
depth quantum circuit U such that

UH(a)U' = Hy(2a) + H(2a), (13)

where no qubit is involved in both H4(2a) and Hp(2a). In
Eq. (13), we have suppressed disentangled qubits; single o*
terms are dropped. The new model Hp is defined on a simple
cubic lattice with four qubits per site, with the Hamiltonian

Hp=—JY (SF'+87+ 5" +87%)., (14

ieA
where
x,l _ _x X X X X X X X
S = 0i4£1074210720i4£ 20144301 45,397,404 4>
X2 _ _x _x X X X __x X X
S = 071074£,10:.20i12207.30i 15,39 404 4>

Ll 7z _z
S; =0;1%9i-3.1

z Z Z z z 2z
0i,20i-£,29i,30i-£,39i,40i 34>
2,2 _ 2 z z 2 z z z 2
S =00 4101510205204 30i—230;40; 3 4
are eight-qubit interactions. The interaction terms are visually
depicted as

XIIT IXII

S S S

IXIX | IIXX XXXX | IIXI

XXXfi/ XHXi/
1271 | 7177,

S S/

ZI11l — 72777 ZZI1 — 1717

/ N

1117 1171
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We perform a similar entanglement RG transformation for Hg,
and find a finite-depth quantum circuit V such that

VHg(a)V' = Hp(2a) + Hy(2a) (15)

with no qubit involved in both Hg(2a) and Hy(2a). Hp and
Hj, are the same but act on disjoint sets of qubits. We have
dropped single qubits in the disentangled states on the right-
hand side of Eq. (15). The proof of these formulas and a
compact representation of the models are given in Sec. VL.
The new model Hp is different from the original cubic
code model H,. We will argue in the next section that they
represent different quantum phases of matter. However, they
resemble each other in many ways because they are related by
the finite-depth quantum circuit of Eq. (13). Recall that under
a finite-depth quantum circuit, any local operator is mapped
to a local operator, and the corresponding operator algebras
are isomorphic. In particular, the two models admit pointlike
excitations, which are immobile in both cases. They have
degenerate ground states that are locally indistinguishable.

IV. MODELS A AND B ARE DIFFERENT

By the quantum phase of matter, we mean an equivalence
class of gapped Hamiltonians where the equivalence is defined
by adiabatic paths in the space of gapped Hamiltonians and
finite-depth quantum circuits assisted with some ancillary
qubits [4]. The equivalence may be observed at some different
length scale, so one might have to coarse grain the lattice in
order to see the equivalence. The nonequivalence, on the other
hand, must be proved by contrasting some invariants. We focus
on the degeneracy of the ground states for this purpose.

Suppose the two models A and B represent the same
quantum phase of matter. They must have the same ground-
state subspace structure, and in particular the dimension of
the ground-state subspace must be the same. In view of the
fluctuating degeneracy as in Eqgs. (9) and (10), it means that
the degeneracy is given by the same function of the system
size under the same boundary conditions. Let k4(L) be log,
of the ground-state subspace dimension of the model A, the
original cubic code model, on L x L x L periodic lattice, and
let k5 (L) be that of the model B, the new model discovered by
the entanglement RG transformation. From Eq. (13), we have

ka(2L) = ka(L) + kp(L).
Equation (10) implies that
ka(QL) = 2ka(L) + 2. (16)
Then, it follows that
kg(2L) = 2kg(L), a7

which can also be shown by Eq. (15). It is clear that the function
L + ka(L) is different from the function L + kg(L). This is
the basis of the argument for distinctness of the two phases.
We need to take into account the possibility of the
equivalence at different length scales or on distorted lattices.
For example, we know that the Wen plaquette model [22]
exhibits the same phases of matter as the toric code model [15].
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FIG. 2. Equivalence between the Wen plaquette model and the
toric code model can be observed, only when a unit cell is properly
chosen.

However, the Wen plaquette model

_ Z,.x X z
Hyen = § :Ui 0i+:0i+50i4+5+5
i

has one qubit per lattice site, whereas the toric code model has
two. The degeneracies as functions of system size are different,
too:

1 if L isodd,

(L)=2 L)=
kiorie (L) + kwen(L) {2 if L iseven.

To see the equivalence, one has to take a new Bravais lattice
for the Wen plaquette model such that the new unit cell now
contains two qubits, and the unit vectors for the coarser lattice
are in the diagonal directions of the original lattice. The
toric code model is recovered once we make local unitary
transformations ¢ <> o* on every, say, first qubit in each new
unit cell (see Fig. 2).

For the most general choice of new Bravais lattice (smaller
translation group) in the cubic lattice, the new unit translation
vectors have integer coordinates such that the 3 x 3 matrix
M of the coordinates in the columns is nonsingular. The unit
vectors define a rhombohedron unit cell. Conversely, given a
3 x 3 nonsingular integer matrix M, one can introduce a new
Bravais lattice to the original cubic lattice by declaring the
columns of M to be new unit translation vectors. Imposing pe-
riodic boundary conditions amounts to specifying the number
of translations in each new direction L’ = (L;,L;,L;) before
the translations become the identity translation. Hence, the
degeneracy under periodic boundary conditions is a function
of M and the lattice dimension vector Z’; k=kM ,Z/).

Suppose now that two models H4 and Hp are equivalent,
and the equivalence is made explicit at coarser lattices A’,
and A’y defined by nonsingular integer matrices M4 and Mp,
respectively, with respect to the original cubic lattice A. In
particular, we must have

ka(Ma,L') = kp(Mg,L")

for any lattice dimension vector L’. Consider an even coarser
lattice A’} defined by a nonsingular integer matrix N with
respect to A’;, and A’ defined by the same N with respect to
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A'p. We must have
ka(MsN,L") = kg(MpN,L")

for any lattice dimension vector L”. Note that N was arbitrary.

Set the matrix N to be the adjugate matrix of My soﬁthat
M 4N = det(M4)I553. N isnonsingular and integral. For L” =
£,£,0), we have

ka(det(Ma)I3x3,(€,€,0)) = kg(MpN ,(¢£,£,0))
= ka(det(M4)0),

where the last function is one that has appeared in Eq. (16).
The function ¢ : € +— kg(MpN,({,£,£)) has a property that
¢p(2¢) = 2¢ (L) because of Eq. (15), regardless of how Mp
or N is chosen. However, we know from Eq. (16) that the
function ¢4 : € — k(det(M)€) has a property that ¢p4(2¢) =
2¢4(£) + 2. This is a contradiction, and therefore the models
H, and Hp represent different phases of matter.

V. A TENSOR NETWORK DESCRIPTION:
BRANCHING MERA

The entanglement RG transformation yields a tensor net-
work description for the state. If one reverses the transforma-
tion starting from, say, a state on the L? lattice, one gets a state
on the (2L)* lattice. After many iterations, one obtains a state
on an infinite lattice. It will be an exact description since our
finite-depth quantum circuits U,V are exact. In this section,
we will refer to local degrees of freedom as qudits.

Let us review multiscale entanglement renormalization
ansatz (MERA) states [3,23]. The MERA state is a many-qudit
state that is obtained by reversing the entanglement RG
transformations as follows. One starts with a qudit system
on some lattice. (Step 1) Apply a finite-depth quantum circuit
with some ancillary qudits in a fixed state [1). Due to the
insertion of the ancillary qudits, the number density of qudits
is increased. In order to retain the number density (Step 2) one
expands the lattice. Then, (Step 3) iterate Steps 1 and 2. In a
scale-invariant system, one expects that the quantum circuit in
Step 1 is the same for every level of the iterations. The class of
states that can be written as a MERA is proposed to describe
ground states of some critical systems, and is shown to admit
efficient classical algorithms.

Since the ground state of the toric code model for example
is an entanglement RG fixed point, it naturally has a scale-
invariant MERA description. On the other hand, the cubic
code model is not a usual fixed point. At a coarse-grained
level, the ground-state subspace is a tensor product of two
independent ground-state subspaces [Eq. (13)], each of which
is again a tensor product of two independent ground-state
subspaces [Egs. (13) and (15)]. Reversing the entanglement
RG flow, we see that the final state is obtained by entangling
two states, each of which is again obtained by entangling two
states, and so on.

The “branching MERA,” recently introduced by Evenbly
and Vidal [17], is a variant of MERA that captures this
scenario. In a branching MERA, the ancillary trivial qudits in
the Step 1 of the usual MERA are allowed to be in branching
MERA states. The self-referential nature is essential. The
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total number of branches would grow exponentially with the
coarse-graining level.

The branching structure usually yields very highly entan-
gled states. For example, in a one-dimensional (1D) spin
chain, a typical branching MERA state with the total number
of branches being b, = 2" at coarse-graining level n obeys
a “volume” law of entanglement entropy. In general, the
entanglement entropy of a ball-like region of linear dimension
L, for a branching MERA state in a D-dimensional lattice,
scales like

log, L

L D—1
S < 0() Z b,,(z—n) , (18)

n=0

where b, is the total number of branches at RG level n [18]. A
proof of the formula is given in Appendix. In case of our cubic
code model where b, = 2", it gives an area law. It is consistent
with the fact that it is a stabilizer code Hamiltonian [24].

It should be noted that the entanglement entropy scaling
alone does not necessitate the branching structure; it does not
nullify the possibility of a description by the usual unbranched
MERA. Our bound in Eq. (18) merely illustrates that the
branching MERA description of the cubic code model is
consistent in view of the entanglement entropy scaling, despite
the intuition that the branching MERA yields much more
entanglement.

Rather, the necessity of the branching structure relies on the
ground-state degeneracy. If a usual MERA description were
possible, the ground space of the cubic code model on L? (with
L = 2") lattice would have a one-to-one correspondence with
the Hilbert space of O(1) = O(L®) qubits in the top level of
the MERA, and therefore would be of a constant dimension.
This would contradict Eq. (10).

VI. CALCULATION METHOD

The finite-depth quantum circuits U and V are complicated
and not very enlightening. Explicit circuits and calculation
can be found in a MATHEMATICA script in the Supplemental
Material [16]. In this section, we explain a method to compute
U and V. It heavily depends on a special structure of the
Hamiltonians H4 and Hpg. The content here is essentially
presented in Ref. [21], so we will be brief.

A. Laurent polynomial matrix description

The Pauli 2 x 2 matrices 0*,0”,0° have a special property
that (i) they square to identity, (ii) the product of any pair of
the matrices results in the third up to a phase factor £1, + i,
and (iii) they anticommute with one another. In other words,
they form an Abelian group under multiplication up to the
phase factors. This group, ignoring the phase factors, is just
Z, x Z,. A conventional correspondence is given by

(@' € (o*,07,0%) /{£]1, £ i}
(3 (19)
(n,m) € Lo X 1.

The correspondence easily generalizes to Pauli operators
(tensor products of Pauli matrices). An n-qubit Pauli operator
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corresponds to a bit {0, 1} string of length 2n: The first half of
the bit string expresses o*, while the second half expresses o°*.

If a qubit system admits translations, e.g., one-dimensional
spin chain, the corresponding bit string can be written in
a compact way: Write the bits in the coefficients of the
translation group elements in a formal linear combination.
For example,

L.RTRTRIRITR ...
.10 0 1 ...

V.01 0 1 ..
...+1t—‘+0t°+0t1+1t2+...>
e 0T 1O 0 12

Ry Sy 2 E
:<...+1+r2+...)’ 20)

where ¢ denotes the translation by one unit length to the right.
This is merely a change of notation. It yields a particularly sim-
ple expression for translation-invariant Hamiltonians whose
terms are Pauli operators because one only has to keep a few
polynomials that express different types of local terms. Local
terms are expressed not by an infinite Laurent series, but by
a finite linear combination of the translation group elements.
Summarizing, we have introduced a notation for Hamiltonians
of Pauli operators using the translation group algebra with
coefficients in Z,.

The cubic code model H4 in Eq. (4) can now be written as

l+x+y+z 0
1+xy+yz+2zx 0
G — y+yz+z G = 0
0 I +Xxy+yz+7zx
0 I+x+y+2
(21

where x,y,z are translations along +X, + §, + Z directions,
respectively, and X = x~ 1 etc. Since the unit cell of the cubic
code model contains two qubits, we need 2 X 2 = 4 rows in
the matrix. The first row expresses ¢ in the first qubit at each
site, the second row o* the second qubit, the third row ¢ in
the first qubit, and the fourth row o in the second qubit. It is
the most convenient to write two matrices in a single matrix
where each type of term is written in each column:

I+x+y+z 0
1+xy+yz+ 0
o= Ty L @
0 14+Xxy+yz+2zx
0 l4+X+7+472

We refer to this matrix o as a generating matrix of Hy.

B. Applying periodic local unitary operators

A subclass of finite-depth quantum circuits is effectively
implemented using this Laurent polynomial description. It
consists of unitaries that respect the translation symmetry and
map Pauli operators to Pauli operators. More specifically, they
are compositions of so-called CNOT, Hadamard, and phase
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gates. For example, the Hadamard gate

1 IRV K]
UHadamard - ﬁ(l —1)'»1/)

swaps o* and o*:
Uno*Uy, =o°, UHUZ'UL =o".

If the Hadamard is applied for every qubit on the lattice, then
the upper half and the lower half of the Laurent polynomial
matrix will be interchanged. Similarly, one can work out the
action of the CNOT gate

10 0 0\t
s |0 10 ofity
eNor= 1o g o a s
0 0 1 0/l

and phase gate

NS
U"*‘”“(O i)m

on the Laurent polynomial matrix. The result is that they
correspond to row operations on the Laurent polynomial
matrix. That is, any elementary row operation E, viewed as a
left matrix multiplication o — Eo, is admissible as long as E
satisfies the symplectic condition

(0 I 0 I
ET< ")E = < ") mod 2, (23)
I, 0 I, 0

where the bar means the antipode map under which x — x~!,

y + y~!, and z — z~!. Here, ¢ is the number of qubits per
unit cell. 1, is the g x ¢ identity matrix. For a proof, see
Ref. [21].

Note that when the two-qubit unitary operator CNOT above
acts within a unit cell, the antipode map is trivial since E in
Eq. (23) will not involve any variable x,y,z, etc.; the antipode
map does not do anything to coefficients. When the CNOT
acts on a pair of qubits across the unit cells, which is allowed
only if the unit cell contains two or more qubits, the antipode
map is nontrivial. Of course, in any case, the overall unitary
must have the same periodicity with the lattice.

Using the above row operations, one can only generate
a finite-depth quantum circuit whose periodicity is 1. If one
wishes to apply, say, Hadamard gates on every other qubit
(periodicity 2), one has to choose a subgroup 7' of the
original translation group 7, so that one unit of translation
under 7" is the translation by two units under 7. Then, one
can implement the periodicity 2 quantum circuit, using the
prescription above. Under such a coarse translation group, our
matrix representation of the Hamiltonian must be different.
Computing a new representation is easy, and a prescription is
as follows. If one wishes to take the coarse translation group
to be

T =(x',y.2) < (x,y,2) =T,
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where x’ = x2, one simply replaces each Laurent polynomial

f(x,y,z) of o with the matrix

66D e

If the old generating matrix o was 2g x m, then the new
generating matrix is 4g x 2m. Again, a proof of this claim can
be found in Ref. [21].

C. Example: Toric code model

Let us perform an entanglement RG for the toric code model
(Ising gauge theory) [15]. As we call for strict translation
invariance, we take the square lattice with the unit cell at a
vertex consisting of one horizontal edge on the east (1) and
one vertical edge on the north (2). The Hamiltonian is

o x X X _x _ z .z 2
Hioric = E:ai,laifﬁ,lgi,zaify,Z E 0i10i4$,10i 2014 ,2-

i l

Following the correspondence (20), the generating matrix is

1+ x 0
I+5 0

Otoric = 0 14y . (25)
0 14x

Let us take a smaller translation group 77 = (x’,y) < (x,y)
where x’ = x?. According to the prescription (24), the new
generating matrix with respect to 7' becomes

1 1
x' 1
145 0
/ 0 147
Otoric = 1+ y 0 (26)
0 14y
1 x'
1 1

Some zeros are not shown. Now, we apply row operations that
satisfy Eq. (23):

1 0 0 O
x 1 0 0
y+1 0 1 0
F+1 0 1 1 n
1 x' 14y 0] o
0 1 0 0
0 O 1 1
0 O 0 1
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1 1

0 x'+1

0 y+1

= 0 0 . 27)

0 0
0 I+4y
0 1+x
1 1

Let us recover the Hamiltonian. We have found a finite-depth
quantum circuit U from Eq. (27) such that

. T x X X X X X
UHiU' = Oir | 071100120 312071301 53
it i’

2 : z § : 4 z z z z
— Ui’,4 - Gi’,2ai’+y,20i’,30i’+i’,3Ui’,4'
i’ i’

Since the Hamiltonian is frustration free, it is clear that the
first and fourth qubits in each unit cell are in a trivial state
and are disentangled from the rest. As noted above in Sec. III,
only the multiplicative group generated by the terms in the
Hamiltonian is important, and we recover Hyjc we started with
at a coarse-grained lattice 7. The example demonstrates that
any column operation on the generating matrix o is allowed in
view of equivalence Eq. (12). This shows that the ground state
of the toric code model is a fixed point in an entanglement RG
flow [10].

In the Supplemental Material, we perform similar calcula-
tions for three-dimensional (3D) and four-dimensional (4D)
toric code models. (The 3D toric code model is also known as
3D Ising gauge theory [25], 4D toric code is similar; qubits
live on plaquettes, and the gauge transformation flips qubits
around an edge [26].) We verify that they are all entanglement
RG fixed points.

VII. AN ALGEBROGEOMETRIC TEST
ON ENTANGLEMENT RG

Our example of the bifurcation is very specific to the cubic
code model, and general criteria for the bifurcation to happen
are not well understood. However, we can rule out certain
possibilities as follows. We have found an equivalence by
a finite-depth quantum circuit between the ground space of
Hy(a), where a in the parentheses is the lattice spacing,
and that of H,(2a) ® Hg(2a). Can we find a similar relation
between the ground space of H4(a) and that of, say, Hs(3a) ®
H' for some Hamiltonian H'? Put differently, how coarse
should a new Bravais lattice be, if one wishes to find a copy
of H, on the new Bravais lattice by a finite-depth quantum
circuit?

In this section, we give a necessary condition for this
question to be answered positively by exploiting our Laurent
polynomial matrix descriptions. The condition will detect
cases when one will not find a copy of the original model one
started with on a coarser lattice. Our choice of new Bravais
lattice of lattice spacing 2a for the cubic code model and the
toric code model satisfies the condition, as it must do.

Let us restrict ourselves to the simplest situation where the
generating matrix o is 2q X g, where ¢ is even, and block
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diagonal, as in Eqgs. (22) and (25). This is the case when the
number of qubits in the unit cell is the same as the number
of interaction types in the Hamiltonian. Note that in either
Eq. (22) or (25), the upper-left block is described by two
polynomials f,g: For the cubic code model, they are 1 4+ x +
y+zand 1 + xy + yz + zx. For the toric code model, they
are 1 +x~!and 1 4+ y~!. The lower-right blocks in both cases
are related to the upper-left blocks by the antipode map, so we
can focus only on the upper-left blocks.

Consider all g /2 x g /2 submatrices of the upper-left block
of the generating matrix o, and take the determinants of
them. Let (o) = {f;} be the set of all such determinants.
For example, I(0iric) = {1 +x",1 4+ v~} and I(owwpic) =
{1+x+y+z,14+xy+yz+2zx}. Let V(o) be the set of
solutions of the polynomial equations f; = 0. For example,
V(0ioric) = {(x, DT +x7" = 0,1+ y~' =0} = {(1,D)}. Tt is
shown in Ref. [21] that V(o) is invariant under a class of local
unitary transformations such that the transformed Hamiltonian
still admits a description by a Laurent polynomial matrix. V (o)
is the object for our algebrogeometric test.

V(o) is a variety, a rather abstract geometric set. In our
Laurent polynomial matrix description, the variables x, y, etc.,
were directly related to translations. But, now we are treating
them as unknown variables and furthermore equating the poly-
nomials in those variables with zero! Indeed, it requires a good
deal of preparation before defining the variety properly, which
is out of the scope of this paper. We will state facts that are use-
ful for our purpose. Interested readers are referred to Ref. [21].

We have seen in Sec. VIC that the generating matrix o
takes a different form o — o’ depending on our choice of
translation group. Upon taking a coarse translation group, the
variety is changed to V(o) — V(o’). Interestingly, one can
show that the change is again given by a nice algebraic map.
For example, if we take

T =y, 7)< {x,y,2) =T,

where x' = x", y' =y", and 7/ = 7" in three-dimensional
lattice, which means 77 sites are blocked to form a single new
site, then the change is given by an almost surjective map [27]

V(o) 3 (a,b,c) — (a",b",c") € V(o). (28)

The variety V(o1 @ o0) for the juxtaposition of two indepen-
dent systems o} and o, as in Eq. (13) is given by the union
V(o1) U V(0,) of respective varieties.

We have noted that V(o) is invariant under local unitary
transformations. The entanglement RG is a combination of
local unitary transformations after a choice of a smaller
translation group. Hence, if a copy of the original model is
to be found in the coarse lattice, the new variety V(c') must
contain the original V(o). This is a criterion by which the
bifurcation, or an occurrence of the original model at a coarse
lattice, may happen. It is unknown if the criterion is a sufficient
condition.

A. Examples

Let us apply the criterion to the toric code model and the
cubic code model. As we have seen above, V (0¢ric) = {(1,1)}.
Upon achoice of a coarser lattice, blocking 2 x 2 sites as a new
one site, the variety is transformed by the map x + x? and
y > y2. Obviously, the point (1,1) is invariant under this map,
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which is consistent with the fact that the toric code is a RG
fixed point [10] (see Sec. VIC). The readers are encouraged
to compute V(o,,;.) from Egs. (26) and (27): Compute the
determinants of all possible 2 x 2 submatrices of the upper-left
block of o, equate them with zero, and decide the set of
solutions.

For the cubic code, the variety is also simple. It consists
of two lines, each of which is parametrized by an auxiliary
variable s:

x=1+s x=1+s
y=1+4+ ws, y=1+a)zs,
z=14w’s z=1+ws

where w is a third root of unity satisfying @®> + w + 1 = 0. (It
should be noted that the numbers are not complex numbers;
they belong to extension fields of the binary field F,.) On
a coarser lattice blocking 2° sites together, the variety is
transformed by the squaring map [see Eq. (28)]. Over the
binary field, (a + b)* = a® + 2ab + b*> = a* + b*forany a,b.
Hence, the image of the squaring map is the union of two lines

x=1+s> x=1+5s>
y=14w%> y=1+ws’
7 =14 ws? z=1+w’s?

This is indeed the original variety, although the two lines are
interchanged by the squaring map. This is consistent with the
fact that we have found the original copy Hj4 in the coarse
lattice. Note that the varieties for H4, and Hp are the same.
They do not distinguish two different phases of matter; the
variety is a crude algebrogeometric object associated to the
Hamiltonian.

Before concluding the section, we illustrate an example
where the test helps to choose a correct new unit cell. The
color code model [28], which is known to be equivalent to
two copies of the toric code model [29], lives on a honeycomb
lattice with one qubit at each vertex. Being a hexagon, any
plaquette p has six vertices v. The color code model is defined
by the Hamiltonian

H:—JZP:(HGUZ—FHUJ),

vep vep

where the sum is over all hexagons. This is expressed with
Pauli matrices and each term commutes with any other, and
thus our Laurent polynomial matrix description is applicable.
Since the honeycomb lattice has two vertices in the conven-
tional unit cell (Fig. 3), our generating matrix ocojor 1S 4 X 2,
as in the toric code model. Explicitly,

1+x+y 0

X +y+xy 0
Ocolor = 0 T4+x+y
0 xX+y+xy

The associated variety is
V(0color) = {(X»y)|1 +x+y=0x+y+xy= 0}

= {(w,0%),(0*,»)},
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FIG. 3. Honeycomb lattice with qubits numbered within a unit
cell.

where w is a third root of unity over the binary field.

Suppose one tries to find a copy of itself at a coarser lattice
to see if the model is an entanglement RG fixed point. One
could choose a new Bravais lattice A’ by saying that x’ = x?
and y’ = y? are new unit translations. According to Eq. (28),
the new variety V(o,,,) would be a single point (1,1) since
@’ = (w*)* = 1. The original variety is not contained in the
new variety, and therefore one will not find a copy of the
original model on the coarse Bravais lattice A’.

On the other hand, if one tried to show the equivalence of
the color code model and the toric code model, then one should
take the mentioned Bravais lattice A’; otherwise, the variety of
the transformed color code model would not match that of the
toric code model, and the equivalence would never be explicit.

VIII. DISCUSSION

We have shown that under the entanglement renormaliza-
tion group flow, the cubic code model bifurcates. The cubic
code model A does not simply produce exactly the same two
copies of itself, but yields a different model B. In order to
complete the entanglement RG, we have further shown that
the model B bifurcates into two copies of itself.

The bifurcation alone, as seen in phase B, can be observed
in a trivial and rather ad hoc example: an infinite stack of toric
codes. We need to be a little formal because the example is
too trivial. Let Hoic(a) be the Hamiltonian of the toric code
model on a 2D square lattice with qubits on edges, where lattice
spacing is a. The entanglement RG transformation reveals that
there is a finite-depth quantum circuit U such that

U Hloric(a)UT = Htoric (261)

Consider an infinite stack of 2D square lattices with qubits
on the edges. Suppose each layer is parallel to the xy plane,
and the total system is stacked in the z direction. Our ad hoc
Hamiltonian is

o0
Hgacx(a) = Z Hyyic(a),,

Z=—00

where the subscript z designates the layer that Hyic(a) lives
on. Choosing a new Bravais lattice such that (0,0,2) is a new
unit translation vector, we have

00
Hstack(a) = Z Htoric(a)Zz’ + Htoric(a)22’+1~

7/=—00
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Let V = ®§°;700 U, be a finite-depth quantum circuit where

U, is just U acting on the layer z. Then,

VI—Istack(a)VT = Z Uzy Hioric(@)2z U;Z'

7=—00

o0
+ Z U2z’+1Htoric(a)2z’+1U;Zurl

7/=—00

00 00
= Z Htoric(za)2z’+ Z Htoric(za)Zz/-H

7/=—00 7/=—00

= stack(za )even + Hstack(za)odd~

In contrast, our model can not be written as a stack of
lower-dimensional systems. If it were possible, the ground-
state degeneracy could not have such complicated dependence
on the system size; at least one parameter, say L., must be
factored out from Eq. (9). The fact that the model A and the
model B are different gives a more direct proof that the model
A can not be described in terms of 2D systems. If the model A
was a stack of lower-dimensional ones, the entanglement RG
would have yielded the same two copies of itself.

In our tensor network description, the branching MERA,
one parametrizes states by a network of tensors. The topology
of the network is fixed and the entanglement RG changes
the values of components of the tensors: it is the space of
tensors where the entanglement RG flows. It should be pointed
out, however, that in our calculation of entanglement RG the
disentangling transformations are obtained accidentally. The
calculation was not guided by any equation, but we just tried to
disentangle as many qubits as possible and discovered that the
state belongs to the ground space of two independent systems.
(In fact, the only guide was the consistent behavior of the
algebraic variety under a choice of a new Bravais lattice.) This
motivates us to establish RG equations that incorporate the
branching structure. In previous studies in this direction [2,30],
it was implicitly assumed that there is no branching at the
coarse-grained level.

Recently, Swingle [31] has shown several examples where
entanglement entropy does not decrease under renormaliza-
tion group transformations, and argued that the so-called
¢ theorem [32] and its higher-dimensional analogs [33,34]
can be violated if Lorentz symmetry is broken. In other
words, he argues that the entanglement entropy is not a
RG monotone in non-Lorentz-invariant theories. Our example
is a yet different (counter)example to those RG-monotone
theorems. The picture that the number density of effective
degrees of freedom should decrease under RG is manifestly
broken. Although it is not straightforward to directly relate
our entanglement RG and the field-theoretic RG, it will not be
the case that in any renormalizable field theory the number of
distinct fields increases as the probing energy scale decreases.
This suggests that the model admits no conventional field
theory description that gives the correct ground space.
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APPENDIX: ENTANGLEMENT ENTROPY
OF BRANCHING MERA STATES

In this section, we bound the entanglement entropy of a
branching MERA [17] state between some ball-like region and
its complement by a function of the region’s size. The proof
here will be a simplified version of Ref. [18]. We will relate
the entropy scaling with spatial dimension and the number
of branches. A simple lemma will be useful. Each qudit has
Hilbert space dimension .

Lemma. Let A, B,C, D be disjoint sets of qudits of dimen-
sion x, and U be a unitary operator acting on B and C. Let
Sag(p) = S(Trcap) p) be the von Neumann entropy. Then, we
have

ISas(UpU") — Sap(p)| < (2 In x)|C],

where |C| is the number of qudits in C.
Proof. Let p' = UpU'*:

1Sas(0") — San(p)l
= |SaB(p") — Sasc(p’) + Sapc(p") — San(p)l
= |Sa8(0") — Sarc(p’) + Sapc(p) — San(p)l
< 18a8(p") = Sasc(p) + [Sasc(p) — Sas(p)l
< Sc(p) + Sc(p) < 2 In x)IC|.

In the second inequality, we used the subadditivity of
entropy. |

The inequality is saturated by the swap operator. If
A, B,C, D are single qubits, respectively, and i consists of two
pairs of singlets in AB and C D, then S4p(¥) = 0. Swapping
B and C, we have Syp(¥’) = 2 In2. The lemma implies that
a finite-depth quantum circuit can only generate entanglement
between two regions along the boundary.

We wish to consider the entanglement entropy So(|v)) =
S(p), where p = Trg(|¥) (¥ |), between a (hyper)cubic region
B of linear size L and its complement of a branching MERA
state |).

By definition, |y) accompanies entanglement RG transfor-
mations U, (t = 1,2,...). U;|y) is either a tensor product of
one or more states [y} ),[¥?), ...,[¥?) (b > 1) each of which
is living on a coarser lattice (branch), or some entangled state
of those. To be concrete, suppose the density of degrees of
freedom decreases by a factor of 2° on the coarser lattice. The
number b of branches should be < 27.

Let pi”, e ,pib) be reduced density matrices of U, |¢) for
the corresponding region B! on each branch. Each B! contains
(L/2)P qudits. By the lemma and the subadditivity of entropy,
we have

(AD)

S(p) < S(Tre Uy [¥) (w|U]) + c|a B

<S(e") + -+ S(o)") +cldBl. (A2
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where c is a constant depending only on the detail of the circuit
Uy’s locality property. Here, |0 B| is the number of qudits
outside B but within the range of U; from B. So, c|d0B| <
(2 In x)2D(L + 2)P~1 if U; is of depth 1 and range 2. One
can iterate the inequality (A2) with B! in place of B:

by 0 ) N-1 L D-1
S(p) < S(py) + ¢ b, — A3

() ; (on) 2 <2> (A3)
for any N > 0 where b, is the total number of all branches,
and pﬁf,) is the reduced density matrix of UyUpy_; ... Uy |y) for
the region B](\’}) of linear size L /2" on branch i. In particular,
bo = 1 and b; = b above. In a usual MERA, we have b, = 1
for all n. The constant ¢’ only depends on x and the details of

the depth and range of circuits Uy, ...,Uy.
An appropriate N must be chosen in order for Eq. (A3) to
be useful. A straightforward choice is such that Bl(\i,) contains
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a constant number of qudits, i.e., N = [log, L. Then, p%) is

a density matrix of a constant number of qudits, so S (pl(\i,)) =
O(In x). Equation (A3) finally implies

Llog, L] L\ P!
S(p) < O(ny) > bul 7 . (Ad)
h n=0 ! 2"
Specializing, we get
O(LP~ if b, =b"<@P 'y,
S(p)={O(P'InL) if b, =P, (A5)

O(LP=CR2" Dy if b, = b" > 2Py,

The number 2 is of course the linear size of a superblock, and
can be replaced by any positive integer.
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