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We investigate the entanglement spectrum in HOTRG—tensor renormalization group (RG) method combined
with the higher order singular value decomposition—for two-dimensional (2D) classical vertex models. In the
off-critical region, it is explained that the entanglement spectrum associated with the RG transformation is
described by “doubling” of the spectrum of a corner transfer matrix. We then demonstrate that the doubling
actually occurs for the square-lattice Ising model by HOTRG calculations up to D = 64, where D is the cutoff
dimension of tensors. At the critical point, we also find that a nontrivial D scaling behavior appears in the
entanglement entropy. We mention about the HOTRG for the 1D quantum system as well.
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I. INTRODUCTION

The real-space renormalization group (RG) is an efficient
numerical method for analysis of quantum/classical lattice
systems [1–3]. A main goal of the numerical RG is to extract
a small number of relevant degrees of freedom, which well
describe the physical properties of the “target state,” such as
a correlated ground state or a thermal equilibrium state, in
the Hilbert space of huge dimension. Recently a number of
real-space RG formulations refer to the entanglement between
the system and the environment, for the purpose of keeping
relevant degrees of freedom systematically. A typical example
is the density matrix renormalization group (DMRG), which
has been a powerful computational tool for one-dimensional
(1D) quantum systems and two-dimensional (2D) classical
ones [4–8]. In DMRG, the entanglement entropy is implicitly
maximized by means of the singular-value decomposition
assisted by the diagonalization of the reduced density matrix
[9–12]. It should be noted that when a gapped ground state
is targeted, the spectrum of the reduced density matrix in the
bulk limit is well described by the eigenvalue distribution of
Baxter’s corner transfer matrix (CTM) [13–15].

As a higher dimensional extension of DMRG, a corner
transfer tensor approach was first formulated for the 3D
Ising model represented as a 3D vertex model [16,17]. This
approach, however, suffers from a slow decay in eigenvalues
of the reduced density matrix, where the target scheme in
the RG transformation was not appropriate from the mod-
ern viewpoint. Complementary direct variational approaches
based on the 2D tensor product state [18,19] or the 2D
projected entangled pair state [17,20–23] has been applied
to the higher-dimensional problems. Recently, Xie et al.
proposed an improved tensor RG method [24] combined with
the higher order singular value decomposition (HOSVD) [25],
which has been abbreviated as HOTRG [26]. They precisely
estimated the critical temperature and scaling exponents for
3D classical systems and 2D quantum systems. Moreover, a
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further improvement of the tensor RG can be achieved by the
second renormalization group [26–28], but numerical cost for
this improvement is relatively high.

In HOTRG, the effective tensors representing the renor-
malized Boltzmann weights are directly constructed by the
tensor decomposition, while the second renormalization takes
account of the entanglement between the system and the
environment. Thus, we may expect that these two tensor
RG methods involve essentially different theoretical back-
grounds in some sense. In HOTRG, however, the role of
the entanglement has not yet been discussed, because its RG
transformation does not explicitly refer to the entanglement
between the system and the environment. In this paper, we
thus clarify the role of the entanglement in HOTRG for the 2D
classical models, where we can refer various exact results of the
integrable systems and conformal field theory (CFT). Note that
the observation of the 2D classical models is also relevant to 1D
quantum systems, through the well-known quantum-classical
correspondence [29]. We also investigate the scaling of the
entanglement entropy at criticality.

This paper is organized as follows. In the next section, we
briefly review the HOTRG for 2D vertex models on the square
lattice. In Sec. III, we discuss the structure of the renormalized
vertex weight at the fixed point, on the basis of the corner
double line (CDL) picture [30]. In particular, we show that
the entanglement spectrum of the reduced density matrix is
represented by “doubling” of the CTM spectrum. In Sec. IV,
the numerical evidence of the CDL picture is shown in the
off-critical region of the 2D classical Ising model. In Sec. V,
the finite size behaviors of the free energy and the entanglement
entropy at the criticality are also investigated. In addition, we
analyze the scaling of the effective correlation length with
respect to the cutoff dimension D. The last section is devoted
to a summary.

II. HOTRG

Let us consider a 2D classical vertex model on the square
lattice, where a local vertex weight is represented as a four-leg
tensor Wxx ′yy ′ . The indices x, x ′ and y, y ′ respectively
correspond to link variables in the horizontal and vertical
directions, as shown in Fig. 1. Throughout this article we
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FIG. 1. Diagram for a local vertex weight, where x,x ′,y,y ′

represent two-state link variables.

consider the two-state vertex model, typically x ∈ 1,2, etc.,
and assume the symmetry where W is invariant under the
permutation between x and x ′, and between y and y ′, for the
purpose of simplifying the formulations.

In order to capture the feature of the tensor renormalization
group, we start with a system which consists of L × L vertices
connected in the geometry of a square area with a set of
specified boundary configurations. Consider the case where
the link variables at the bottom and the top boundaries of
the area, respectively, are fixed as ya ≡ {y1, · · · ,yL} and
y ′

a ≡ {y ′
1, · · · ,y ′

L}, and those at the left and the right boundaries
as xa ≡ {x1, · · · ,xL} and x ′

a ≡ {x ′
1, · · · ,x ′

L}, as depicted in
Fig. 2. We put subscript “a” on the composite link variables, for
later convenience. Multiplying all the vertex weights in the area
and taking configuration sum for those links connecting the
neighboring vertices in the bulk region, we obtain the partition
function Wxax ′

ayay ′
a

under the specified boundary configurations
xa, x ′

a, ya, and y ′
a. We have used the letter “W ,” rather than

“Z,” for the partition function, since it is possible to interpret
Wxax ′

ayay ′
a

as a kind of vertex weight, where each index has 2L

degrees of freedom. Hereafter, we consider the case where the
linear dimension L is chosen to be 2n and explicitly show the
system size by putting the number on the tensor as W

(n)
xax ′

ayay ′
a
.

It is possible to extend the area of the lattice by joining two
vertices. For example, let us put W (n)

xbx
′
by y ′

b
on top of W

(n)
xax ′

ayay
and

contract the vertical link. We then obtain a composite tensor

M
(n+1,n)
xaxbx ′

ax
′
byay

′
b
=

∑
y

W
(n)
xax ′

ayay
W

(n)
xbx

′
by y ′

b
, (1)

which corresponds to the 2L × L(= 2n+1 × 2n) area on the
lattice. Representing the index pairs {xaxb} and {x ′

ax
′
b}, respec-

tively, as joined link variables xc and x ′
c, the tensor M (n+1,n)

can also be considered an extended vertex weight M
(n+1,n)
xcx ′

cyay
′
b
.

In the same manner, we can align two M (n+1,n) horizontally,
and contracting the joint indices, as we have done in the
above equation, we obtain a wider extended weight W

(n+1)
xcx ′

cydy
′
d
,

which corresponds to the 2n+1 × 2n+1 area on the lattice. Thus

FIG. 2. Schematic diagram of the vertex tensor W
(n)
xax

′
ayay

′
a

on a
L × L lattice with L = 2n. The indices of the tensor specify the
configurations at the edges.

FIG. 3. Graphical representation of the reduced density matrix in
Eq. (2).

starting from the original vertex weight W (0) = W , one can
define W (n) for arbitrary n.

From the computational viewpoint, there is a strong
limitation on the maximal value of n, which specifies the
system size L = 2n, since the dimension of each index of W (n)

is 2L. Thus the numerical storage of the order of 24L is required
if one keeps W (n) faithfully. To overcome this limitation, the
HOSVD is introduced in the formulation of the HOTRG, and
each tensor is compressed to that of smaller dimensions [26].

Suppose that we have reached a maximum n, where we
can generate M (n+1,n) but cannot store all tensor elements
of W (n+1). Following the standard procedure in HOSVD
proposed in Ref. [26], let us introduce a kind of density matrix

ρ
(n+1)
x ′

ax
′
b,xaxb

=
∑

x ′′
a x ′′

b yayb

M
(n+1,n)
xaxbx ′′

a x ′′
b yayb

M
(n+1,n)
x ′

ax
′
bx

′′
a x ′′

b yayb
. (2)

Figure 3 exhibits the schematic picture of ρ(n+1); sewing
three edges of two M (n+1,n), we obtain the reduced density
matrix with respect to the pair of indices {xaxb} and {x ′

ax
′
b}.

The RG transformation matrix is then constructed from the
diagonalization

ρ(n+1) = U (n+1) �U (n+1)†, (3)

where the eigenvalue matrix �—the entanglement spectrum
in HOTRG—is positive definite, and where U (n+1) is the
corresponding orthogonal matrix [31]. Let us assume that the
diagonal elements �μ of � are aligned in decreasing order.
Normally, the decay in �μ with respect to μ is rapid enough,
and it is possible to discard tiny eigenvalues �μ � 1. We thus
retain D numbers of relevant eigenvalues in accordance with
the standard DMRG scheme.

After the restriction μ � D, the orthogonal matrix U (n+1)
xaxb, μ

can be regarded as a RG transformation. It is naturally applied
to M (n+1,n) in the manner

M
(n+1,n)
μμ′yay ′

a
=

∑
xaxbx ′

ax
′
b

[U (n+1)†]μ, xaxbM
(n+1,n)
xaxbx ′

ax
′
byay ′

a
U

(n+1)
x ′

ax
′
b, μ

′, (4)

where the symmetry of the local vertex is assumed. We then
obtain the renormalized vertex tensor M

(n+1,n)
μμ′yay ′

a
, which has two

renormalized indices μ and μ′. Using M (n+1,n), we can join
two of them horizontally, as we have done in Eq. (1), to obtain
W (n+1), which is an extended tensor whose linear dimension
is 2L = 2n+1. Creating the density matrix for the vertical links
and performing the RG transformation again, we obtain a
renormalized vertex tensor W

(n+1)
μμ′νν ′ . Such a process of system

extension and RG transformation can be repeated for arbitrary
times, within a practical computational time. It is expected
that, as n increases, the renormalized tensor W (n) approaches
that of the thermodynamic limit W ∗.
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Throughout this paper we use alphabetical indices, such
as xa and yb for row/column of the original link variables,
and Greek letters, such as μ and ν, for the renormalized link
variable whose degree of freedom is D at most. We often
abbreviate indices, such as W (n), if the distinction between
renormalized and unrenormalized tensors is apparent.

In addition, we note that the partition function per site can be
obtained in terms of normalization coefficients of renormalized
vertex tensor W (n). In order to avoid an explosion of the overall
normalization of W (n), it is useful to impose the normalization∑

μν

W (n)
μμνν =

∑
μν

M (n,n+1)
μμνν = 1 (5)

for every iteration step. Practically, we calculate a nor-
malization coefficient γ̃n = ∑

μν W (n)
μμνν and then replace

W
(n)
μμ′νν ′/γ̃n → W

(n)
μμ′νν ′ . Also, we define γn+1 = ∑

μν M (n+1,n)
μμνν

and replace M
(n+1,n)
μμ′νν ′ /γn → M

(n+1,n)
μμ′νν ′ . For a given iteration

number n then, the partition function for the L × L(L = 2n)

system can be expressed as Z(L,D) = ∏n
i=1 γ

L2/2(2i−1)

i γ̃
L2/22i

i ,
where traces of the unnormalized vertex are taken in both of
the vertical and horizontal directions, respectively. Note that
the geometry of this partition function corresponds to a torus.
We can thus calculate the logarithm of the partition function
per site as

log z(L,D) = log Z(L,D)

L2
=

n∑
i=1

1

22i−1

(
log γi + 1

2
log γ̃i

)
.

(6)

The accuracy of the approximation is determined by the
truncation error

∑
μ>D �μ.

III. FIXED POINT AND DOUBLING OF THE
ENTANGLEMENT SPECTRUM

Let us consider the fixed point of the HOTRG method
in the off-critical regime, where the correlation length of
the system is finite. Recall that the spatial width of the
renormalized vertex tensor W (n) increases exponentially with
respect to the number of extension n. This implies that L

exceeds the correlation length of the system ξ above a certain
number of iterations n, and finally L � ξ is satisfied at the
fixed point. Then the link variables corresponding to the two
parallel edges of W (n) are spatially separated away beyond ξ ,
where the entanglement between them is negligible. Similarly,
it can be expected that the link variables around different
corners become disentangled with each other. In this sense,
the renormalized vertex tensor at the fixed point W ∗ can
be decoupled into four patches. When such a decoupling
scheme is realized, the vertex tensor is mentioned as the corner
double-line (CDL) tensor [24,30].

For the unnormalized fixed-point vertex tensor W ∗, there
is a remaining entanglement in the two adjacent edges
around each corner, because the distance between them is
independent of the system size L. An essential point is that
this entanglement around each corner is the same as that of
the Baxter’s CTM. Thus it is expected that the unnormalized
fixed-point vertex tensor can be decomposed as

W ∗
μμ′νν ′ = κ Cμ1ν1Cμ2ν2Cμ′

1ν
′
1
Cμ′

2ν
′
2
, (7)

FIG. 4. Double line representation of the renormalized vertex
tensor. A solid triangle at a corner indicates a CTM, and the link
variable μ is represented by a combination of the two sub-link
variables μ1 and μ2.

where Cμ1ν1 is a normalized CTM having the sub-link variables
μ1 and ν1 of the effective dimension

√
D. In addition, μ ≡

{μ1μ2}, ν ≡ {ν1ν2}, etc., represent the double line indices.
Here, we have assumed the isotropic model, for which C is the
real symmetric matrix. Also we have used the normalization
of C so that Tr [C4] = 1 is satisfied. The coefficient κ denotes
a normalization factor associated with the partition function in
the thermodynamic limit. [See Eq. (16).] In Fig. 4, we show
the schematic diagram of W ∗, where Cμ1ν1 is illustrated as
an “L” -shaped line with a small solid triangle connecting the
sub-link variables μ1 and ν1. In addition, such an index as μ in
the vertex tensor consists of the double line index of {μ1μ2}.
We have made a qualitative explanation on the CDL picture
for the fixed-point renormalized tensor W ∗. It is, however,
possible to extract the picture theoretically, by considering
matrix product states (MPS) that surround an unrenormalized
tensor W

(n)
xx ′yy ′ . The details will be discussed elsewhere [32].

On the basis of the CDL picture of the vertex tensor, we
can also see the decoupling in the reduced density matrix.
Substituting Eq. (7) into Eq. (2), we obtain

ρ∗
μ′

aμ
′
b, μaμb

= α [C2]μ1μ
′
1
[C2]μ2μ3 [C2]μ′

2μ
′
3
[C2]μ′

4μ4 , (8)

where α ≡ κ4(Tr [C2])2, and the indices of ρ∗ are given by
μa ≡ {μ1μ2}, μb ≡ {μ3μ4}, μ′

a ≡ {μ′
1μ

′
2}, and μ′

b ≡ {μ′
3μ

′
4}.

This equation can be easily understood by the graphical
representation, which is depicted in Fig. 5. A small solid
triangle at the junction of two lines represents a CTM, and
the connected lines indicate contraction of the matrix indices.

FIG. 5. Double line representation of the reduced density matrix
ρ∗ in Eq. (8). The closed loops indicate trace of the products of CTMs,
which give scalar constants.
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Note that a closed loop gives a trace of matrix product of
CTMs, which yields a scalar constant. It should be noted
that the normalization condition of Eq. (5) is equivalent to
Tr [C4] = 1. Once the CDL picture is well established, we
always obtain γn = Tr [C4] = 1. In other words, there is no
correction term to the free energy, after the decoupled fixed
point is reached.

Let us diagonalize the reduced density matrix with the help
of the CDL picture. As was discussed by Baxter [13], the CTM
has a proper thermodynamic limit in the off-critical regime.
Thus we can write

C = V 	V †, (9)

where 	 is a diagonal eigenvalue matrix with the normalization
Tr [	4] = 1 and V is the corresponding orthogonal matrix. A
key point is that the matrix rank of ρ∗ effectively reduces from
D2 to D because of the CDL property; in Eq. (8), the rank
of the matrix associated with the indices pairs {μ2μ3} and
{μ′

2μ
′
3} is just one and its eigenvalue is given by unity, which

originates from Tr [C4] = 1. Thus the descendant matrix that
we have to treat is α C2 ⊗ C2 carrying the index pairs {μ1μ

′
1}

and {μ4μ
′
4}. We can now diagonalize ρ∗ by the unitary matrix

U ∗ = V ⊗ V ;

�∗ = α 	2 ⊗ 	2, (10)

where �∗ is the fixed point spectrum of Eq. (3). This implies
that the entanglement spectrum in HOTRG is described by the
doubling of the CTM spectrum.

For a class of integrable models in the off-critical regime,
the eigenvalue spectrum 	 in the bulk limit is exactly obtained
as an infinite direct product of the 2 × 2 diagonal matrix as
follows [13]:

	 =
∞⊗

n=1

(
1 0

0 qcn

)
, (11)

where cn is a model-dependent sequence. We have used the
normalization such that the largest eigenvalue is unity. The
value of q(0 < q < 1) qualitatively represents a distance from
the critical point, and it is related to interaction parameters
of the model. For the case of the Ising model [13,33], the
sequence cn is given by

cn =
{
n (T < Tc)

2n − 1 (T > Tc)
, (12)

and q is the nome of the elliptic function with the modulus
k = sinh−2(2/T ) [34]. In the next section, we will demonstrate
that the doubling of the spectrum actually occurs for the Ising
model by numerical computations.

In the remaining part of this section, we discuss the
relation between the HOTRG formulation and the row-to-row
(or column-to-column) transfer matrix under the periodic
boundary condition. Let us introduce a single-layer row-to-row
transfer matrix

τ{x}{x ′} =
∑
{y}

4L∏
i=1

Wxix
′
i yiyi+1 (13)

of length 4L, where we have introduced notations {x} =
{x1 · · · x4L}, {x ′} = {x ′

1 · · · x ′
4L}, and {y} = {y1 · · · y4L}. We

FIG. 6. Graphical representation of the L-layer transfer matrix T
in Eq. (14).

impose the periodic boundary condition y4L+1 = y1, and the
configuration sum is taken over for the horizontal links {y}. The
thermodynamic property of the cylindrical system is described
by the maximum eigenvalue λmax of τ and the corresponding
eigenvector v.

In order to see the relation between the transfer matrix τ

and the reduced density matrix in Eq. (2), we introduce the
L-layer transfer matrix

T ≡ τL. (14)

As shown in Fig. 6, we can represent T (n) as a contraction of
the four unrenormalized W (n), or equivalently a contraction
of two M (n+1,n), where the link variables are assigned
as xa = {x1 · · · xL}, xb = {xL+1 · · · x2L}, x ′

b = {x2L+1 · · · x3L},
and x ′

a = {x3L+1 · · · x4L}. An essential point is that, for L � ξ ,
the largest eigenvalue λmax of τ becomes dominant in T .
Thus, in the thermodynamic limit, we have T ∼ (λmax)Lvv†,
where the link variables of the row and column indices of
T are disentangled with each other. For a sufficiently large
system size L, the matrix rank of T collapses to one, which
is another aspect of the CDL property. The CDL property
of T ∗ is basically maintained through the RG transformation
xaxbx

′
ax

′
b → μaμbμ

′
aμ

′
b. This suggests that the CDL property

of the renormalized vertex tensor W ∗ at the fixed point can
be quantitatively evaluated by solving the eigenvalue problem
of T ∗.

In the representation of the renormalized indices {μ}, we
further rewrite the reduced density matrix

ρ∗
μaμb, μ′

aμ
′
b
=

∑
μ̃aμ̃b

[T ∗]μaμbμ′
aμ

′
b, μ̃aμ̃bμ̃aμ̃b , (15)

where the summation corresponds to sewing of the bottom
side of T ∗. Then, with the help of the CDL representation of
T ∗ and ρ∗, we can show the relation

T ∗ρ∗ = κ4ρ∗, (16)

where all of the closed loops give a contribution of Tr [C4] = 1.
Thus, the reduced density matrix itself is the eigenvector of the
renormalized transfer matrix. Since τ includes 4L number of
the local vertices, we can also verify that the relation around the
eigenvalue κ4 = (λmax)L = z4L2

, where z denotes the partition
function per site.

IV. NUMERICAL RESULTS IN OFF-CRITICAL REGION

In order to confirm the CDL picture in HOTRG, we deal
with the spatially uniform Ising model on the square lattice,
where we represent the model as a symmetric two-state vertex
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FIG. 7. Entanglement spectrum �∗
μ of the reduced density matrix

ρ∗ for D = 49. The open circles with the solid and broken lines,
respectively, show the doubling spectra of the corresponding CTMs.

model. The local vertex weight Wx x ′y y ′ is given by

Wx x ′y y ′ =
2∑

α=1

gαx gαx ′ gαy gαy ′ , (17)

where g is a 2 × 2 matrix

g =
(√

cosh(1/T )
√

sinh(1/T )√
cosh(1/T ) −√

sinh(1/T )

)
, (18)

which is dependent on the temperature T . Note that the critical
temperature of this model is Tc = 2/ ln(1 + √

2) [35].
As in Eq. (10), the analytic form of the entanglement

spectrum at the fixed point in the off-critical region is given
by the doubling of the CTM spectrum (11). According to
the degeneracy structure in the CTM spectrum, the doubled
spectrum �∗

μ has the following sequence of the degeneracy:

1 2 1 2 4 4 5 · · · T > Tc

1 2 3 6 9 14 · · · T < Tc.

For two typical temperatures T = 2.1 (< Tc) and T = 2.5(>
Tc), we plot the above analytic sequence in Fig. 7 as small
circles with the broken line (T = 2.1) and with the solid line
(T = 2.5). In the figure, we have used the scale of the vertical
axis such that the largest spectrum �∗

1 is unity.
For T = 2.1 and T = 2.5, we have performed HOTRG

computations up to n = 50 (L ∼ 1015) with the number of
the retained basis D = 49, which is sufficient for precise
estimation of thermodynamic quantities. Details about con-
vergence of HOTRG iterations are presented in Appendix A.
Here, we just note that n = 50 is sufficient to obtain the
fixed-point tensors, except for irrelevant gauge degrees of
freedom associated with the degenerating eigenvalues.

In Fig. 7, the plus and cross symbols represent �∗
μ obtained

by HOTRG [36], which shows a good agreement with the
analytic one up to μ ∼ 30. This agreement is a numerical
evidence of the CDL picture in the off-critical region. The
deviation from the exact result in the large μ region is attributed
to the perturbation due to the cutoff D = 49.

To further confirm the CDL picture, we also evaluated
the rank of the L-layer transfer matrix T . As was discussed
in the previous section, the rank should be reduced into
one, when the number of iteration n exceeds a certain
number associated with the correlation length. We numerically
observed the spectrum of T for D = 10, where the dimension
of T is proportional to O(D4). We have verified that all the
eigenvalues of T except for the maximum one collapses to zero
after T converges to T ∗ (the numerical result is not presented
here). This result supports the CDL picture of the vertex tensors
at the fixed point.

Here, we would like to comment on the relevance to the
1D quantum system with a gapful ground state. Since there
is a well-established correspondence between 1D quantum
systems and 2D classical systems, one can expect the doubling
of the entanglement spectrum for the 1D quantum system
under the periodic boundary condition. In particular, it should
be remarked that, for the integrable model, the eigenvector
of the Hamiltonian and the corresponding transfer matrix
are equivalent. We have actually formulated an HOTRG-like
tensor RG, details of which are presented in Appendix B, and
performed a numerical computation for the 1D transverse-field
Ising model in the off-critical region. We then confirmed
that the corresponding entanglement spectrum of the 1D
transverse-field Ising model is equivalent to Fig. 7.

V. CRITICAL REGION

In the critical region T ∼ Tc the correlation length diverges
as ξ ∼ |T − Tc|−ν . Therefore the coupling between the CTMs
is non-negligible at Tc regardless of the size L = 2n, and
thus the CDL decoupling picture for the renormalized tensors
would not be appropriate any more. The numerical data
calculated at Tc, however, shows that the spectrum �μ and the
vertex tensors actually converge within n = 50 iterations with
the decoupling of CDL as shown in Fig. 13. This is because
the cutoff D introduces an effective length scale ξeff into the
system. While the system size L = 2n is less than ξeff , the finite
size scaling behavior may be observed. After L exceeds ξeff ,
a quasi-off-critical behavior emerges in the thermodynamic
quantities.

We first analyze the above crossover in the free energy level.
Remember the partition function per site z(L,D) in Eq. (6),
which can be calculated by normalization constants in HOTRG
iterations. Because of the finite size effect and the presence of
the cutoff D, z(L,D) at Tc contains some deviation from the
exact partition function per site zex in the thermodynamic limit
[35]. We observe the relative error

ε(L,D) ≡ 1 − log z(L,D)

log zex
, (19)

where log z(L,D) is equivalent to the free energy per site
except for the overall sign and temperature factors. Figure 8
shows the L dependence of |ε(L,D)| for D = 4 ∼ 64. A clear
crossover can be seen from the L-dependent (or small L) to
the D-dependent (or large L) region where ε(L,D) converges
to a constant value with respect to L. For the small L region,
we have the fitting result of |ε| ∼ a Lb with a = 0.69 and b =
−2.00, which is consistent with the standard finite-size-scaling
behavior |ε(L,∞)| ∼ L−2.
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FIG. 8. Absolute value of relative error ε(L,D) in Eq. (19) at Tc.
The solid line shows the fitting to |ε| ∼ a Lb, where the best fit is
obtained for a = 0.69 and b = −2.00.

We also analyze the D dependence in the sufficiently large
L region, as shown in Fig. 9. The error is well fitted by the
function ε(∞,D) = aD−4, where the prefactor is calculated
as a = 0.034. In order to capture the background of this
functional form, we assume the D dependence

ξeff ∼ Dθ (20)

for the effective length scale ξeff in the large L fixed point. Since
the crossover occurs around L ∼ ξeff , we have the relation
ε(ξeff,D) ∼ ξ−2

eff ∼ D−2θ , which specifies the D dependence
of the error for L � ξeff . In comparison with the fitting result
in Fig. 9, we can read off θ = 2, which is consistent with
the finite-χ scaling based on the MPS variation for the 1D
transverse-field Ising model [37–39].

VI. ENTANGLEMENT ENTROPY AT CRITICALITY

We next observe the entanglement entropy at criticality [40–
45]. As was shown in Eq. (16), the reduced density matrix ρ∗

FIG. 9. Relative error ε(L,D) in Eq. (19) at Tc in the large-L
limit. The solid line shows a fitting line aD−4 with a = 0.034.

FIG. 10. Entanglement entropy in S(L,D) at Tc. The solid line
shows the linear fit to the function (c/3) log L + b.

at the fixed point is the eigenvector of the row-to-row transfer
matrix under the periodic boundary condition. In this sense,
ρ(n) well approximates the eigenvector of T (n) even at the
critical point. We therefore define an entanglement entropy as

S(L,D) = −
∑

μ

�2
μ log �2

μ, (21)

where �μ are the eigenvalues of the reduced density matrix
for L = 2n, and are normalized so that

∑D
μ=1 �2

μ = 1. Note
that the linear dimension of the transfer matrix is 4L, and
therefore S(L,D) corresponds to the bipartition of 2L + 2L.
If D is sufficiently large, i.e., D = ∞, we expect that the
leading term of S(L,∞) follows the CFT prediction [43]

SCFT(2L) ∼ c

3
log(2L/a), (22)

where c is the central charge and a is a microscopic cutoff
scale. Figure 10 shows S(L,D) calculated at Tc. In the region
L < ξeff , a clear log L dependence is observed in S(L,D). A
linear fitting for the case of D = 49 in the window 4 � L � 32
yields c = 0.499, which is consistent with the central charge
c = 1/2 of the Ising universality.

Similarly to the free energy, let us observe the D depen-
dence of the entanglement entropy S(∞,D) for the sufficiently
large L. According to CFT [43], the entanglement entropy for
a single strip with two boundary points in the vicinity of Tc is
given by

SCFT(ξ ) ∼ c

3
log ξ, (23)

where the system size and the length of the strip are assumed
to be much longer than the correlation length of the system.
Substituting Eq. (20) into Eq. (23), we obtain the finite-D
scaling of the entanglement entropy for L � ξeff as

S(ξeff,D) ∼ c

3
θ log D. (24)

Figure 11 shows the D dependence of the entanglement
entropy S(∞,D) calculated by HOTRG. Although the plotted
data are rather scattered, the overall behavior is consistent
with the function (θ/6)logD + b, with which we have the
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FIG. 11. The D dependence of S(∞,D) at Tc. The line represent
the least square fitting to the function (θ/6)logD + b.

fitting result of θ  3.5 and b  0.02. However, it should
be remarked that the estimated exponent, θ  3.5, is not
consistent with θ = 2 obtained from ε(L,D) for the free
energy.

A reason for this inconsistency would be attributed to the
crossover of the reduced density matrix around L ∼ ξeff . As
was discussed in Sec. II, the accuracy of the free energy is
determined by HOTRG iterations up to L ∼ ξeff , where the
reduced density matrix in Eq. (3) has the full dimension of
D2; an example of this region is shown in L � 107 of Fig. 13
in Appendix A. Thus, ξeff is evaluated by the reduced density
matrix of dimension D2, and thus the proper finite-size-scaling
result with θ = 2 is observed. On the other hand, the effective
matrix dimension of the reduced density matrix for L > ξeff

collapses to D even at Tc as shown in Fig. 13, where the CDL
decoupling effectively occurs. One may be afraid that this
reduction of the effective dimension might possibly induce a
reduction of the entanglement entropy in L > ξeff . As is shown
in Fig. 10, however, S(L,D) is the approximate nondecreasing
function of L and is saturated toward a fixed point value.
This suggests that, at the critical point, the crossover behavior
around L ∼ ξeff is responsible for a decoupling of the tensor
W (n) to CTMs containing a nontrivial effective length scale.

In order to analyze the CDL property at Tc in detail,
we present the entanglement spectrum with D = 49 after
the numerical convergence, in Fig. 12. We have also per-
formed a corner transfer matrix renormalization group [46,47]
(CTMRG) calculation at Tc with m = 7, where m is the number
of the retained bases in the CTMRG calculation, and obtained
the eigenvalues 	∗

μ of the CTM. An interesting point in Fig. 12
is that the entanglement spectrum �∗

μ (plus symbols) and the
doubling spectrum of 	∗

μ (circles) exhibit the correspondence

�∗
μ  ([	∗2 ⊗ 	∗2]μ)0.294, (25)

with the nontrivial power. This fact shows that the entangle-
ment spectrum of HOTRG at Tc in the region L � ξeff deviates
from a naive expectation, �∗

μ  	∗2 ⊗ 	∗2, although the CDL
picture holds for L � ξeff even at Tc. In particular, the power
0.294 indicates that the HTORG spectrum maintains more
entanglement than the CTMRG with m = 7.

FIG. 12. The entanglement spectrum �∗ with D = 49 at Tc. For
comparison, a nontrivial power of the doubling of the CTM spectrum
	∗ obtained by a CTMRG calculation under the condition m = 7 is
presented as a solid line with circles.

As is in the MPS variational formulation of the 1D
transverse field Ising model [37], we have confirmed that
the correlation length at the fixed point of CTMRG scales
as ξCTM ∼ m2, where m is the number of block spin state kept
in the CTMRG [47]. Thus, we may expect that the doubling
of the CTM spectrum in HOTRG would draw the length
scale ξCTM ∼ (

√
D)2 ∼ D. However, the numerical result of

Eq. (25) indicates that the effective length scale at the HOTRG
fixed point has much longer length scale than the naive
expectation ξCTM. Indeed, the entanglement entropy holds the
value acquired in the region L < ξeff , even after L � ξeff . Thus
it is concluded that the fixed point of HOTRG retains the scale
of the order of ξeff > ξCTM, although the fixed-point vertex
weight collapses to the tensor well described by the CDL
picture. At the present stage, however, it is difficult to clarify
the detailed mechanism of such nontrivial CDL behavior of
the vertex tensor.

VII. CONCLUSIONS AND DISCUSSIONS

We have studied the structure of the entanglement spectrum
in HOTRG for the 2D classical vertex model. In the off-critical
region, we have clarified that the spectrum at the fixed point,
where the renormalized tensor converges, is described by the
doubling of the CTM spectrum having the effective dimension√

D. This is in accordance with the CDL decoupling picture in
the renormalized vertex tensor, as was discussed in the tensor
RGs [24,30]. The reduction of the matrix ranks in the reduced
density matrix, and the transfer matrix also confirms the CDL
picture. Moreover, the same doubling of the entanglement
spectrum is verified for the ground state of the 1D transverse
field Ising model in the off-critical region.

We have also investigated the finite-D scaling at the
criticality, where the cutoff D introduces an effective length
scale ξeff . For the 2D Ising model, we confirmed ξeff ∼ Dθ with
θ = 2 in the free energy level, where the exponent θ = 2 is
determined within the range L < ξeff . Also, θ = 2 is consistent
with the finite-χ scaling of the MPS variational method for the
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1D quantum Ising model at the critical point [37]. On the other
hand, the finite-D scaling applied to the entanglement entropy
suggests a nontrivial exponent θ ∼ 3.5, although the numerical
result shows the CDL decoupling of the vertex tensors. A rea-
son for the discrepancy of θ is attributed to the fact that the en-
tanglement spectrum is described by the doubling of the CTM
spectrum with the nontrivial power, as in Eq. (25). Then, a key
point is that, at the critical point, geometry of the reduced den-
sity matrix may affect the structure of the effective fixed point
of HOTRG, because the HOTRG algorithm accumulates devi-
ations originating from the geometry during iterations. For ex-
ample, the geometry of the wave function in the MPS variation
for the 1D quantum system [37,39] is the half-infinite cylinder,
while that of Eq. (3) is a finite size cluster where one end of the
cylinder is bound off. We think that this difference of the ge-
ometry is a possible reason for the nontrivial exponent θ = 3.5
of HOTRG. A similar geometrical effect is also expected for
the HOTRG-like algorithm for the 1D quantum system, which
was described in Appendix B, at the criticality. Nevertheless,
we would like to leave the detailed analysis as a future issue.

In this paper, we have not considered the second renor-
malization group, which takes account of the entanglement
between the vertex weight and surrounding environment. In
contrast to HOTRG, the reduced density matrix in the second
renormalization does not undergo the reduction of the matrix
rank, which is a possible reason for the improvement of the
accuracy in the second renormalization. Also, we have not
discussed HOTRG in higher dimensions. We can expect that
the renormalized tensor is described by “corner transfer tensor”
in the fixed point level. However, the nature of the spectrum
of the corner transfer tensor is not well understand. For further
analysis of HOSRG/TRG, it may be interesting to discuss the
issue of network structure of the tensors.
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APPENDIX A: CONVERGENCE OF HOTRG ITERATIONS

We present typical behaviors of the HOTRG iteration at
T = 2.1 and Tc. As was discussed in Sec. II, the matrix rank
of the reduced density matrix (3) is expected to crossover from
D2 to D, reflecting the CDL decoupling. In Fig. 13, thus, we
plot the rank of � in Eq. (3) as a function of the system length
L = 2n, where the maximum dimension of the renormalized
vertex tensor is D = 49. In the figure, a numerical threshold
for judging the zero eigenvalue is �μ/�1 < 1.0 × 10−15.

In the region of L � 64, the tensor dimension increases
exponentially without any cutoff of the tensors. For T =
2.1 (< Tc), the rank of � rapidly collapses, as L increases
beyond the correlation length of the system. Indeed, the rank
of � becomes stable for L > 256. However, it should be
remarked that this value of the rank is 2D rather than D. This is
because all spectra below Tc has the trivial double degeneracy
associated with the Z2 symmetry. As n further increases, the

FIG. 13. System size dependence of rank � in Eq. (3), where
�μ/�1 < 10−15 is regarded as zero numerically.

Z2 symmetry of the spectrum is spontaneously broken around
L ∼ 108, triggered by the numerical error. Then, the rank of
� finally arrives at D, which indicates the proper CDL fixed
point with the broken Z2 symmetry. We thus confirmed the
CDL decoupling at the off-critical region.

At T = Tc, the correlation length is intrinsically infinite.
Accordingly, the rank of � maintains D2 in the region of 64 �
L � 107. As was mentioned in Sec. IV, however, a finite D

introduces an effective correlation length, and, as L increases
beyond it, the CDL decoupling may occur. In the region of
L � 108, it can be actually seen that the rank of � drastically
collapses to D. Thus, we have also confirmed the decoupling
scheme of Eq. (7), even at the critical temperature.

APPENDIX B: HOTRG-LIKE RG ALGORITHM FOR 1D
QUANTUM SYSTEMS

As was mentioned in Sec. IV, it is possible to formulate
a 1D quantum system version of the HOTRG algorithm. Let
us consider a 1D quantum spin model of length 4L described
by a Hamiltonian having a nearest-neighbor interaction under
the periodic boundary condition, where L = 2n. It is useful to
introduce the matrix product operator (MPO) representation
[48,49] of a Hamiltonian

Ĥ =
∑

{σ }{σ ′}
Tr

[
4L∏
i=1

Wσiσ
′
i

]
|σ 〉〈σ ′|, (B1)

where Wσiσ
′
i

is the MPO constructed from the local Hamilto-
nian at i and i + 1 sites, and {σ } ≡ {σ1, · · · ,σ4L}. We divide
the Hamiltonian Ĥ into four blocks

Ĥ(n) =
∑

{σ }{σ ′}
Tr

[
O

(n)
σaσ ′

a
O

(n)
σbσ

′
b︸ ︷︷ ︸

System

O
(n)
σcσ ′

c
O

(n)
σdσ

′
d︸ ︷︷ ︸

Environment

]
|σ 〉〈σ ′|, (B2)

where O
(n)
σaσ ′

a
≡ Wσ1σ

′
1
· · ·WσLσ ′

L
and so on. Here, we

also introduce composite spin indexes σa = {σ1, · · · ,σL},
σb = {σL+1, · · · ,σ2L}, σc = {σ2L+1, · · · ,σ3L}, and σd =
{σ3L+1, · · · ,σ4L}.

Suppose that the ground state eigenvector of this Hamilto-
nian �(n)

σaσbσcσd
is calculated by the exact diagonalization of the
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Lanczos algorithm. Here, we remark that the relation between
the Hamiltonian and the wave function � is quite reminiscent
of Eq. (16) for the 2D vertex model. Thus, � in the quantum
systems approximately corresponds to ρ in the HOTRG for
the 2D classical vertex model.

We divide the ground state wave function of the total
system into two blocks containing 2L sites. Assuming the
parity symmetry, we then perform SVD as �(n)

σaσbσcσd
=∑

μ U (n)
σaσb,μ

�μU (n)†
μ,σcσd

, whereU (n) is a unitary matrix containing
singular vectors, and � is a diagonal matrix containing nonneg-
ative singular values. We can useU (n) as the RG transformation
in the spatial direction for the Hamiltonian, namely

O
(n+1)
νaν ′

a
=

∑
σaσbσ ′

aσ
′
b

U (n)†
νa,σaσb

O
(n)
σaσ ′

a
O

(n)
σbσ

′
b
U (n)

σ ′
aσ

′
b,ν

′
a
. (B3)

Thus, we can formulate a recursive numerical RG algorithm
for the 1D quantum system similar to HOTRG. Repeating
iterations, we obtain the singular values at the fixed point,
which we refer to as �∗

μ.
Particularly for the integrable model, the eigenvector of

the Hamiltonian and the corresponding transfer matrix are
exactly equivalent. Indeed, we have performed a numerical
computation of the above tensor RG for the 1D transverse-field
Ising model in the off-critical region and actually confirmed the
relation �∗ = �∗ under an appropriate normalization. At the
critical point where the intrinsic correlation length is infinite,
however, we should note that difference of geometries of �(n)

for the 1D quantum system and ρ(n) for the 2D classical model
may affect the entanglement structures of the effective fixed
points, as in Sec. VI.
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