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Network models of photonic Floquet topological insulators
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A recently proposed class of photonic topological insulators is shown to map onto Chalker-Coddington-type
networks, which were originally formulated to study disordered quantum Hall systems. Such network models
are equivalent to the Floquet states of periodically driven lattices. We show that they can exhibit topologically
protected edge states even if all bands have zero Chern number, which is a characteristic property of Floquet band
structures. These edge states can be counted by an adiabatic pumping invariant based on the winding number of
the coefficient of reflection from one edge of the network.
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I. INTRODUCTION

Since the work of Thouless and co-workers [1], physicists
have recognized that the exotic physics encountered in quan-
tum Hall systems [2], and more recently topological insulator
materials [3–5], is intimately tied to the topological properties
of their band structures. Topological band theory has since
been extended in several interesting directions beyond its
original context. For example, several groups have shown that
when cold-atom or condensed-matter lattices are subjected to
a time-periodic drive, the resulting Bloch-Floquet states can
form topologically nontrivial bands [6–11]. These “Floquet
topological insulators” [10,12] exhibit many of the properties
expected of topological materials, such as edge states which are
immune to disorder-induced backscattering, but they also have
some unique and peculiar characteristics of their own; for ex-
ample, topologically protected edge states can exist even when
all the bands have zero Chern number and would thus normally
be considered “topologically trivial” [9,13]. Topological band
structures have also been identified in photonic systems,
including magneto-optic photonic crystals [14–17], cavity
QED circuits [18,19], metamaterial photonic crystals [20],
and ring resonator lattices [21–23]. Interest in these systems
is driven, in part, by the possible device applications of
topologically protected photonic modes (e.g., the stabilization
of slow-light transmission), and in part by the fundamental
interest of combining topological band physics with optical
phenomena (e.g., gain and nonlinearity). The literature on
topological photonics has intersected in interesting ways
with the Floquet topological insulator concept: notably, Fang
et al. have studied the Floquet band structures formed by
lattices of photonic resonators which are driven periodically
(e.g., by electro-optic modulators) [24], while Rechtsman
et al. have experimentally demonstrated a coupled-waveguide
array which acts like a Floquet topological insulator, with
adiabatic wave-packet evolution along a spatially modulated
axis simulating a time-periodic drive [25]. We will focus on
ring resonator lattices of the sort studied in Refs. [21–23].
Such photonic topological insulators have the technologically
desirable properties of being on chip, realizable at optical
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frequencies, and not requiring an external drive or magnetic
field. As originally proposed by Hafezi et al. [21], ring
resonators are arranged in a two-dimensional (2D) lattice,
and coupled weakly by specially engineered waveguides
which produce phase shifts incommensurate with the lattice,
analogous to the Landau gauge in the quantum Hall effect. Sub-
sequently, it was shown that a topological band structure could
be obtained in a lattice with commensurate couplings [23],
analogous to the zero-field quantum Hall effect [26]. The
transition into the topologically nontrivial phase occurs by
tuning the inter-ring couplings to large values, such that
the system must be treated with transfer-matrix rather than
tight-binding methods.

In this paper, we point out that these resonator-and-
waveguide photonic topological insulators [21–23] can be
modeled as networks of the sort developed by Chalker and
Coddington in the 1980s to study the Anderson transition in
quantum Hall systems [27–30]. The Bloch modes of periodic
network models can be mapped onto the Bloch-Floquet
states of driven lattices [31–33]. As mentioned above, the
latter have attracted a great deal of recent attention [6–13],
although ideas from the network model literature have not
been widely employed for studying them. As we shall see, the
network picture allows a topological invariant to be formulated
based on adiabatic pumping [34,35], relating the number
of topologically protected edge states in the projected band
structure to the winding number of a coefficient of reflection
from one edge of the network.

In its original context, a Chalker-Coddington (CC) network
model [27] describes a 2D electron gas subject to a strong
magnetic field and a smooth disorder potential. In this regime,
equipotential contours form a directed network, where each
link is associated with an Aharonov-Bohm phase and each
node is associated with a unitary scattering matrix

S =
[

sin θeiχ − cos θei(ϕ−ξ )

cos θeiξ sin θei(ϕ−χ)

]
, (1)

where θ parametrizes the coupling strength between adjacent
links. Although the model was originally formulated for
studying the effects of disorder, Ho and Chalker [36] sub-
sequently applied the evolution operator analysis to a periodic
square-lattice network, and showed that an effective 2D Dirac
Hamiltonian emerges at the critical value θ = π/4, with chiral

1098-0121/2014/89(7)/075113(10) 075113-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.075113


MICHAEL PASEK AND Y. D. CHONG PHYSICAL REVIEW B 89, 075113 (2014)

edge states appearing when θ > π/4. This result was later
rederived, in the context of photonic topological insulators, in
Ref. [23], together with the bulk and projected band structures.
One of the aims of the present paper is to clarify the band topol-
ogy and the nature of the bulk-edge correspondence in these
band structures. It turns out that the band structures derived in
Ref. [23] are characteristic of “anomalous Floquet insulators”
(AFIs) [9,13]: all bands have zero Chern number despite the
existence of topologically protected edge states. We shall also
see that network models based on the honeycomb lattice have
richer phase diagrams, containing both “Chern insulator” (CI)
phases [26] (where the bands have nonzero Chern number) and
AFI phases. Similar behavior has previously been found in a
2D hexagonal tight-binding model with periodically varying
hopping amplitudes [9].

It is interesting to note that in their original context, network
models were intended to be effective descriptions of a system
with a definite underlying Hamiltonian—a noninteracting
electron gas in a magnetic field and disorder potential.
However, the situation is reversed for photonic resonator
lattices: here, the wave-amplitude description of coupled ring
resonators [37,38] is valid for arbitrary coupling parame-
ters, and an effective Hamiltonian (tight-binding) description
emerges for weak coupling [21].

II. PHOTONIC NETWORKS AND FLOQUET MAPS

We begin by examining how a photonic lattice maps onto a
network, and how the network may be described by a unitary
evolution matrix. As described in Refs. [21–23], and depicted
in Fig. 1(a), a photonic topological insulator can be constructed
from a lattice of ring resonators. Each resonator acts as an
optical waveguide, constraining light to propagate along the
ring. Each quarter ring serves as a “link” in a photonic network,
which is associated with a phase delay whose value depends
on the operating frequency. The direction of propagation in
each ring acts as a twofold-degenerate degree of freedom,
which can be thought of as an analog of the electron spin in
a quantum spin Hall insulator [4]. The primary ring in each
unit cell is coupled to its neighbors via waveguide loops [21],
shown in Fig. 1(a) as a set of smaller rings. If the couplings
have negligible internal backscattering, the inter-ring coupling
is “spin” conserving. The clockwise and counterclockwise
modes then form separate directed networks; the network for
clockwise modes is shown in Fig. 1(b). The interlink couplings,
corresponding to the nodes of the network, are described by
unitary scattering matrices.

Propagation in such a network can be described by an
evolution operator [36,39]. Consider a unit cell of a periodic
network, such as the one shown in Fig. 1(b). For each cell, at
lattice index n, we can define a surface which is penetrated
by q input amplitudes |an〉 ≡ [a1n, . . . ,aqn], and the same
number of output amplitudes |bn〉 ≡ [b1n, . . . ,bqn]. The input
and output amplitudes are related by Sint|an〉 = |bn〉, where
Sint is a unitary matrix describing scattering from the interior
of the designated surface. As the network is periodic, Sint is
independent of n. We will focus on the special case where the
interior consists of equal-length delay lines with phase delay
φ, as shown in Fig. 1(b). Then, with appropriate definitions of

FIG. 1. (Color online) (a) Schematic of a unit cell in a two-
dimensional lattice of photonic ring resonators. (b) The equivalent
periodic network. Within the unit cell, we define a surface (blue
rectangle) which is penetrated by input amplitudes |a〉 and output
amplitudes |b〉, related by |b〉 = eiφ |a〉. These amplitudes also scatter
with those of neighboring cells, with coupling matrices Sx and Sy .
(c) A supercell consisting of Ny unit cells joined along the y direction,
with twisted boundary conditions along the x direction with twist
angle kx and variable phase delays w± along the upper and lower
boundaries.

|a〉 and |b〉,
|an〉 = e−iφ |bn〉. (2)

Furthermore, due to the connections between neighboring unit
cells, the amplitudes |bn〉 leaving the surface of cell n scatter
with those from other cells. For Bloch modes |an〉 = |ak〉eik·rn

and |bn〉 = |bk〉eik·rn , the intercell scattering can be described
by

S(k) |bk〉 = |ak〉, (3)

where S(k) is unitary and is periodic in k with the periodicity
of the Brillouin zone. Combining Eqs. (2) and (3) gives

S(k) |bk〉 = e−iφ |bk〉. (4)

In a photonic structure, the phase delay φ is generally
proportional to the operating frequency, when working within
a limited frequency range. We can regard the eigenvectors |bk〉
in Eq. (4) as Bloch wave amplitudes, with φ(k) playing the
role of a band structure, analogous to the band energy of a
Bloch electron or the band frequency in a photonic crystal,
apart from the fact that it is an angle variable (φ ≡ φ + 2π ).
Hereafter, we will refer to φ as the “quasienergy.”

From the above description, we can also see that the
Bloch modes of a periodic network are equivalent to the
Floquet modes of a periodically driven lattice. Suppose
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we have a lattice, of the same spatial dimension as our
network, with a Hamiltonian Hk(t) that is periodic in time
with period T . Then the Floquet state with state vector
|bk〉 and Floquet quasienergy φ(k)/T obeys exactly Eq. (4),
provided S(k) is the time-evolution operator over one period.
Explicitly,

S(k) = T exp

[
−i

∫ T

0
dt Hk(t)

]
, (5)

where T is the time-ordering operator. Note that an exact
expression for S(k) typically cannot be obtained from Hk(t) or
vice versa; but it can be computed numerically.

This relationship between network models and Floquet
lattices has previously been pointed out [31–33]. One can
regard S(k) as a discrete time-evolution operator acting on a
particle which is initially localized at one point in the network
(say the midpoint of a link); over one time period, the particle
moves along the link, tunnels instantaneously across a node,
and moves midway along a neighboring link [36]. To our
knowledge, however, the consequences of this relationship
for the band topology of network models have not been
systematically explored.

III. FLOQUET BAND TOPOLOGY OF
NETWORK MODELS

Let us consider how the topology of a periodic network’s
band structure might be characterized. Following the usual
topological classification of band insulators [40–42], one
might take the matrix logarithm of Eq. (4) to obtain an effective
time-independent Hamiltonian, then look for topologically
nontrivial bands by computing topological band invariants
(e.g., the Chern number for a 2D lattice without time-reversal
symmetry [1]). However, doing so for the square-lattice
network in the large-θ phase reveals that the Chern number is
zero despite the presence of topologically protected “one-way”
edge states. As discussed in Ref. [13], such anomalous Floquet
insulator behavior can arise in Floquet band structures because
the quasienergy φ is an angle variable. At the topological
transition, each band has simultaneous Dirac band-crossing
points with the band “above” and the band “below,” modulo
2π ; these band-crossing points are respectively associated with
+1 and −1 Berry flux, so that the band has zero Chern number
on both sides of the transition. In a static gapped Hamiltonian
system, the number of chiral edge states in a bulk gap can
be related to the sum of Chern numbers for all bands below
the gap, but this does not apply to Floquet systems since the
quasienergy φ of a Floquet evolution operator is periodic and
not bounded below.

The square-lattice network has a rather simple phase
diagram: it is an AFI for values of the inter-ring coupling
strength θ > π/4, and a conventional insulator otherwise,
regardless of all other model parameters (see the projected
band structures shown in Fig. 4).

More complicated behaviors can be observed in other
network models, such as networks based on a honeycomb
lattice. To our knowledge, such networks have not been studied
previously, partly because the network model literature was
focused on the Anderson transition, and the lattice geometry
was not thought to have a significant influence on properties

CI

CI

CI

AFI

(a)
(b)

FIG. 2. (Color online) Phase diagram of a honeycomb network.
The network is described in Appendix B; here we take the coupling
matrix parameters ϕ = χ = 0. The phase boundaries are found by
searching numerically for band crossings (dots). The topological
nature of each phase is determined by computing the Chern number
of each bulk band, as well as counting the number of edge states in
the strip geometry. In the Chern insulator phase, bands have nonzero
Chern numbers and are separated by band gaps with one-way edge
states (as well as band gaps with no edge states). In anomalous Floquet
insulator phases, each band has zero Chern number but each band
gap has a pair of one-way edge states. The unlabeled phases are
conventional insulators. The points labeled (a) and (b) indicate the
parameters used for the projected band diagrams in Fig. 3(a) and 3(b),
respectively.

such as the critical exponent of the localization length [27].
The honeycomb network, which is described in Appendix B,
has phases that depend on the inter-ring coupling θ as well as
on the parameters ξ and ϕ, which describe the phase shifts
induced at the nodes [cf. Eqs. (1) and (B22)]. The phase
diagram for ϕ = 0 is shown in Fig. 2. Unlike in the square
lattice, topologically nontrivial phases exist even for low values
of θ . In these low-θ Chern insulator phases, the bands have
nonzero Chern number, similarly to 2D systems with broken
time-reversal symmetry [26], and the projected band structure
exhibits topological edge states as shown in Fig. 3(a). At larger
values of θ , the system undergoes a transition from a CI phase
to an AFI phase, where all bands have zero Chern number and
all band gaps are traversed by topologically protected edge
states [9,13], as shown in Fig. 3(b).

As pointed out by Kitagawa et al., Floquet band structures
can be characterized by homotopy-class-based topological
invariants [9], such as the “ν1 invariants”

1

2π

∫ π

−π

dkμTr
[
S(k)−1 i∂kμ

S(k)
]

for μ = x,y in 2D. In simple terms, these are the winding
numbers for the quasienergy bands over their [0,2π ] domain,
as kμ is advanced through [0,2π ]. They are nonzero in the
AFI phase, where every band gap is topologically nontrivial
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(a)

(b)

FIG. 3. (Color online) Projected quasienergy band structures for
the honeycomb network, in a strip geometry with width N = 20 unit
cells and zigzag edges. The bands are computed from Eq. (B16); see
Fig. 7 for a schematic of the network. The coupling parameters are
ξ = π/2, ϕ = χ = 0, and (a) θ = 0.15π (CI phase; upper figure),
(b) θ = 0.45π (AFI phase; lower figure). The Chern number C for
each band is indicated. These Chern numbers were computed from
the momentum-space line integral of the Berry connection Ann(k) =
−i〈nk|∇k|nk〉, where |nk〉 is the nth Bloch eigenstate [1].

and occupied by edge states; however, the winding numbers
are zero in CI phases where at least one of the band gaps
is topologically trivial [9]. Subsequently, Rudner et al. have
shown that the nontrivial topology of both the AFI and CI
phases can be characterized by a bulk ν3 invariant [13].
This invariant involves integrals over kx and ky , and over
the time variable t . In the context of network models, there
is no meaningful definition of the “evolution operator” for
intermediate t . In practice, one can define any S(k,t), such that
S(k,T ) is the evolution operator for the network; the choice
is nonunique but will not affect the value of ν3 thus obtained.

In the following section, we will investigate an alternative
topological characterization based on adiabatic pumping. As

we shall see, the adiabatic pumping procedure is also capable
of distinguishing the AFI and CI phases, and it has the
additional advantage of having a natural physical interpretation
for network models, which could be useful for understanding
the general class of Floquet band structures.

IV. ADIABATIC PUMPING METHOD AND
EDGE-STATE INVARIANTS

The adiabatic pumping method of characterizing topo-
logical systems was originally introduced by Laughlin [34],
and we will adapt an elegant reformulation of the Laughlin
argument which was recently given by Meidan et al. [35].
Working in the context of static Hamiltonian systems, these
authors imagined rolling a 2D lattice into a cylinder, attaching
scattering leads to one cylinder edge, and then calculating
the eigenvalues of the scattering (reflection) matrix. As one
magnetic flux quantum is threaded through the cylinder,
the scattering eigenvalues acquire phase shifts which can
be related, via standard scattering theory, to the number of
resonances crossing the specified energy. For midgap energies,
scattering resonances correspond to edge states of the isolated
cylinder, and these can be counted by the winding numbers of
the scattering matrix’s eigenvalues [35].

A related procedure can be carried out for a network model.
Let us consider a two-dimensional network, which is infinite
in (say) the x direction, and finite in the y direction with Ny

periods. For convenience, we normalize the lattice spacings so
the quasimomentum kx becomes an angle variable. The system
can be regarded as a supercell of Ny unit cells, featuring twisted
boundary conditions along the x boundaries with twist angle
kx : translating one unit in the +x direction is equivalent to
multiplying the wave amplitude by exp(ikx). Following the
discussion in Sec. II, we can designate a scattering surface
for this supercell, consisting of the union of the scattering
surfaces for the individual unit cells. This is shown in Fig. 1(c)
for the simple square-lattice network. The inputs entering this
supercell surface are |a〉 = [|a1〉, . . . ,|aNy

〉], and the output
amplitudes are |b〉 = [|b1〉, . . . ,|bNy

〉]. The scattering from
the interior of the surface gives |a〉 = e−iφ|b〉. As for the
scattering from the exterior of the surface back into the
interior, that depends on the intercell connections (which
are assumed constant), and on kx (due to scattering across
the x boundaries). There is one more set of constraints which
must also be specified: the relations between the input and
output amplitudes penetrating the scattering surface along
the y boundaries of the supercell. As depicted in Fig. 1(c),
we denote these “edge amplitudes” by |a±〉 and |b±〉, with
the ± subscripts indicating the upper and lower edges. Let the
number of edge amplitudes on each edge be n⊥. In general,
we have

S⊥

[
|b+〉
|b−〉

]
=

[
|a+〉
|a−〉

]
(6)

for some 2n⊥ × 2n⊥ unitary matrix S⊥. From this, we can
construct an exterior scattering matrix for the supercell, Ssc,
such that

Ssc(kx,S⊥)|b〉 = e−iφ |b〉. (7)
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FIG. 4. (Color online) Projected band structures for the periodic square-lattice network of Fig. 1(c), with Ny = 6 periods in the y direction.
(a)–(d) show topologically trivial band structures (θ = 0.1π , where θ is the inter-ring coupling strength [23]), and (e)–(h) show topologically
nontrivial band structures (θ = 0.4π ). Varying w+, the angle variable controlling the upper edge, affects the edge states on the upper edge
(highlighted in red). The lower edge angle is fixed at w− = 0, and the other coupling matrix parameters [23] are ϕ = χ = 0, ξ = π/2.

We are free to specify S⊥, and it is useful to consider a case
where the upper and lower boundaries are “disconnected.”
Specifically,

S⊥(w+,w−) =
[
eiw+

I 0

0 eiw−
I

]
. (8)

The values of φ(kx) obtained from Eqs. (7) and (8) form
a projected quasienergy band structure for the semi-infinite
lattice of width Ny , with the set of 2n⊥ edge angles {w±}
acting as tunable edge conditions.

The edge angles w± can be used to define topological
edge invariants. Suppose we keep w− fixed and consider
only variations in w+. For any φ,kx ∈ [0,2π ], there must be
exactly n⊥ values of w+ ∈ [0,2π ] consistent with Eqs. (7)
and (8); in physical terms, by specifying φ and kx (as well as
fixing w− and other network parameters entering into Ssc), we
have defined an n⊥-channel scattering problem, and the input
amplitudes |a+〉 and output amplitudes |b+〉 for the scatterer
must be related by some unitary reflection matrix whose
eigenvalues are eiw+

. Let us fix a value for the quasienergy
φ which lies in a bulk band gap, and consider the n⊥-valued
function w+(kx), which must come back to itself (modulo 2π )
as kx is advanced over [0,2π ]. Each value of w+ corresponds
to a separate projected band structure, but within each gap only
the dispersion curves for edge states localized to the upper edge
can vary, since w+ cannot affect the lower edge. As a result,
the winding number of w+(kx) counts the net (forward minus
backward) number of upper edge states in the specified band
gap. By evaluating the w+ edge invariants in each band gap,
we can determine the Chern number of each band, which is
the difference between the invariants for the band gaps above
and below the band [13].

To illustrate the above discussion, consider the previously
discussed square-lattice network, for which n⊥ = 1 [i.e.,
w+(kx) is single-valued]. Projected band structures for this
network are shown in Fig. 4; for details of the calculation, see
Appendix A. In the conventional insulator phase, correspond-
ing to Figs. 4(a)–4(d), w+(kx) has zero winding number in
each gap, as shown in Fig. 5(a). Note, however, that Fig. 5(a)
also shows that there are certain values of w+ for which upper
edge states do exist. In the projected band structure, these take
the form of isolated bands of two-way edge states which are
“pumped” downwards across each gap during each cycle of
w+.

In the AFI phase, w+(kx) has winding number +1 in each
gap, as shown in Fig. 5(b). The projected band structures,
shown in Figs. 4(e)–4(h), exhibit one-way edge states spanning
each gap. Each band of edge states “winds” across the Brillouin
zone during one cycle of w+, with the overall effect of pumping
one band down across each gap during one cycle of w+, as
in the conventional insulator phase. Each gap also has a band
of edge states that is invariant in w+, corresponding to states
localized on the lower edge. We expect this to be the generic
effect of adiabatic pumping on quasienergy band structures.
Because w+ is a well-defined function of kx , winding w+
by 2π has the effect of transporting a band of edge states
across each gap. This transport occurs even for conventional
(topologically trivial) band gaps, in the form of a band of two-
way edge states. The band structure as a whole returns to itself
over one such cycle, which is possible since the quasienergy
is an angle variable.

In the honeycomb network, the conventional insulator and
AFI phases behave in the same way as for the square-lattice
network. In the CI phase, each cycle of w+ transports a band
of two-way edge states down across the topologically trivial
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FIG. 5. (Color online) Plots of the edge angle w+ versus kx , in
the square-lattice network with width Ny = 6. (a) In the conventional
insulator phase (θ = 0.1π ), the winding numbers are zero; (b) in
the AFI phase (θ = 0.4π ), the winding numbers are +1. In both
cases, plots are given for φ = π/4 and φ = −π/4, which lie in two
different band gaps (see Fig. 4). In all cases, w− = 0 and all the other
parameters are the same as in Fig. 4.

gaps [where w+(kx) has zero winding number], while simul-
taneously winding the one-way edge states in the topological
gaps [where w+(kx) has winding number ±1]. For example,
for the band with Chern number +1 shown in Fig. 3(a), w+
has winding number +1 in the band gap above and 0 in the
band gap below.

The relation of the winding number of w+(kx) to the
edge states relies on the assumption that the upper edge
angles have no effect on the lower edge states. Hence, φ

must be chosen within a band gap, and the width Ny must
be sufficiently large (compared to the edge state penetration
depth). This is demonstrated in Fig. 6, where we plot
w+(kx) using Ny = 1,2,3 for the square-lattice network in
the AFI phase. For Ny = 1, we observe that w+(kx) has zero
winding number. As Ny is increased, the curve develops an
anticrossing, occurring at a value of kx coinciding with the
quasimomentum of an edge state localized to the lower edge
(for the specified value of φ). For sufficiently large Ny , the
lower edge state is independent of w+, so the anticrossing
narrows into a numerically undetectable vertical line. Because
the anticrossing is associated with a −1 winding number, the
remainder of the w+(kx) curve acquires +1 winding.

For recent related works on the measurement of topological
properties in 2D photonic lattices, see Refs. [43–45].

V. DISCUSSION

In this paper, we have discussed the relationships be-
tween photonic resonator lattices, Chalker-Coddington net-
work models, and Floquet topological insulators. Within the
emerging field of topological photonics, these analogies may
provide insights for realizing additional topological phases.
For example, some years ago Chalker and Dohmen [46]

FIG. 6. (Color online) Plots of w+ versus kx for small values
of Ny , showing the emergence of a nonzero winding number. For
all three plots, we use φ = 0.25π and θ = 0.4π , corresponding to
a midgap quasienergy in the AFI phase. All other parameters are
as in Fig. 4. For Ny > 1, an anticrossing develops near kx ∼ π/2,
coinciding with the dispersion curve for the lower edge states in the
projected band diagram. The width of this anticrossing goes rapidly
to zero with Ny , and the rest of the curve acquires a nonzero winding
number.

studied a hypothetical three-dimensional network consisting
of weakly coupled 2D stacked layers of CC networks (a
configuration reminiscent of a 3D weak topological insula-
tor [4]). Photonic lattice analogs of such 3D networks may
be realizable, possibly at microwave frequencies for ease of
fabrication. Furthermore, as discussed in the Introduction,
a photonic Floquet topological insulator has recently been
realized [25], in which the 2D bands were shown to possess
nonzero Chern numbers. It would be interesting to analyze
this or a similar system using the scattering formalism of a
network model, with the aim of realizing an AFI phase where
topologically protected edge states are present despite all bands
having zero Chern number. (A photonic AFI-like phase has
previously been realized in 1D [47]).

We have restricted our attentions to directed network
models. In the photonic context, this means considering the
flow of light in a single direction within the waveguides,
and assuming no backscattering into time-reversed modes.
Apart from this restriction, there are no further symmetry
requirements on the coupling matrices. The two possible
directions of propagation through the network are analogous to
two decoupled spin sectors in a 2D quantum spin Hall insulator.
However, in the electronic case a topological phase can exist
even in the presence of spin mixing: the Z2 topological
insulator. This relies on the fact that edge states cannot be
backscattered by time-reversal-symmetric perturbations due
to the particular nature of fermionic time-reversal-symmetric
S matrices [4]. Indeed, the CC network model concept has
been generalized to study quantum spin Hall insulators by
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imposing fermionic time-reversal symmetries on the links
and nodes [48–50]. However, bosonic edge states are not
protected from backscattering by time-reversal-symmetric
perturbations, so topologically nontrivial behavior can occur
only if mixing into time-reversed modes is negligible. This is
an important limitation of photonic topological insulators, but
not necessarily a fatal one, since such mixing processes can
often be engineered away.

We have also, in this paper, considered translationally
periodic systems. It would be interesting to return to the
original motivation for introducing network models, which
was to study disorder-induced Anderson transitions in a
2D electron gas [27]. In the photonic context, Anderson
localization of light has been observed in 1D and 2D [51,52].
However, there is no Anderson transition in such systems,
since they map onto time-reversal-symmetric electron gases
for which localization is marginal in 2D [53]. By contrast, an
Anderson transition does exist in 2D disordered quantum Hall
systems, tied to the phenomenon of classical percolation [27].
Random photonic networks might thus manifest a photonic
localization-delocalization transition, which has not yet been
observed.

ACKNOWLEDGMENTS

We thank M. Rechtsman, A. Szameit, M. Hafezi, and G. Q.
Liang for helpful comments. This research was supported
by the Singapore National Research Foundation under Grant
No. NRFF2012-02.

APPENDIX A: BAND STRUCTURE OF A
SQUARE-LATTICE NETWORK

Figure 1(b) shows a unit cell of the square-lattice network,
which consists of two nodes with coupling relations

Sx

[
b1,n

b3,n+x

]
=

[
a4,n+x

a2,n

]
, (A1)

Sy

[
b4,n

b2,n+y

]
=

[
a3,n+y

a1,n

]
, (A2)

where

Sμ =
[
rμ t ′μ
tμ r ′

μ

]
. (A3)

Using the relations between wave amplitudes ai,n and bi,n

coming from link phases, we can write Eq. (A2) as

Sy

[
a4,n

a2,n+y

]
=

[
b3,n+y

b1,n

]
e−2iφ. (A4)

From the translational invariance of the network strip in the x

direction, the wave amplitudes in Eq. (A1) can be written in
the Bloch form to obtain

Sx

[
b1,n

b3,ne
ikx

]
=

[
a4,ne

ikx

a2,n

]
. (A5)

By reordering the terms in (A4) and (A5), one obtains

S ′
x(kx)

[
b3,n

b1,n

]
=

[
a2,n

a4,n

]
, (A6)

S ′
y

[
a4,n

a2,n+y

]
=

[
b1,n

b3,n+y

]
e−2iφ. (A7)

In order to obtain the band structure of the square-lattice
network in the strip geometry, we need to construct a scattering
matrix for the supercell, Ssc, defined in Fig. 1(c). This obeys

Ssc(kx,w
+,w−)|b〉 = e−iφT |b〉, (A8)

where |b〉 is a wave-amplitude vector, and the angles w+ and
w− set the boundary conditions at the strip edges such that (cf.
Fig. 1)

eiw−
b2,1 = a3,1, (A9)

eiw+
b4,Ny

= a1,Ny
, (A10)

or, equivalently,

eiw−
a2,1 = b3,1e

−2iφ, (A11)

eiw+
a4,Ny

= b1,Ny
e−2iφ. (A12)

Finally, using Eqs. (A6), (A7), (A11), and (A12) one can
construct the 2Ny × 2Ny matrices MA and MB such that

MA(w+,w−) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

eiw−

S ′
y

. . .

S ′
y

eiw+

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A13)

MB(kx) =

⎡
⎢⎢⎣

S ′
x

. . .

S ′
x

⎤
⎥⎥⎦, (A14)

to obtain

MA(w+,w−)MB(kx)|b′〉 = e−2iφ |b′〉, (A15)

where |b′〉 = [b3,1,b1,1, . . . ,b3,Ny
,b1,Ny

], which is similar to
Eq. (A8) with T = 2.

APPENDIX B: BAND STRUCTURE AND PHASE
DIAGRAM OF A HONEYCOMB NETWORK

The honeycomb network unit cell is represented in Fig. 7,
with the corresponding wave amplitudes. We define the
scattering relations at the nodes of the network such that
the first (second) reflection block of the S matrix describes
the hopping in the +δi (−δi) direction, where i = 1,2,3.
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FIG. 7. (Color online) Schematic of a unit cell in a two-
dimensional honeycomb periodic network.

This gives

Sα2

[
b1,n

b5,n+α2

]
=

[
a6,n+α2

a2,n

]
, (B1)

Sα1

[
b3,n

b4,n+α1

]
=

[
a5,n+α1

a1,n

]
, (B2)

S0

[
b2,n

b6,n

]
=

[
a4,n

a3,n

]
. (B3)

Using the phase relations on network links, we can rewrite
Eqs. (B1)–(B3) as

Sα2

[
b1,n

b5,n+α2

]
=

[
a6,n+α2

a2,n

]
, (B4)

Sα1

[
a3,n

a4,n+α1

]
=

[
b5,n+α1

b1,n

]
e−2iφ, (B5)

S0

[
a2,n

a6,n

]
=

[
a4,n

a3,n

]
e−iφ. (B6)

We can now use Bloch’s theorem, taking the honeycomb
network to be translationally invariant in the α2 direc-
tion (which yields zigzag edges). Equations (B5) and (B4)
become

S ′
α1

[
a3,n

a4,n+α1

]
=

[
b1,n

b5,n+α1

]
e−2iφ (B7)

S ′
α2

(k)

[
b5,n

b1,n

]
=

[
a2,n

a6,n

]
. (B8)

We have the edge angle relations as

eiw−
b4,1 = a5,1, (B9)

eiw+
b3,Nα1

= a1,Nα1
, (B10)

or, equivalently,

eiw−
a4,1 = b5,1e

−2iφ, (B11)

eiw+
a3,Nα1

= b1,Nα1
e−2iφ. (B12)

One can thus construct the following matrices:

MA(w+,w−) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

eiw−

S ′
α1

. . .

S ′
α1

eiw+

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B13)

MB =

⎡
⎢⎢⎣

S0

. . .

S0

⎤
⎥⎥⎦, (B14)

MC(k) =

⎡
⎢⎢⎣

S ′
α2

. . .

S ′
α2

⎤
⎥⎥⎦, (B15)

such that

MA(w+,w−)MBMC(k)|b′〉 = e−3iφ |b′〉, (B16)

where |b′〉 = [b5,1,b1,1, . . . ,b5,Ny
,b1,Ny

]. From these relations,
the projected band structure can be computed numerically
for each value of w+ and w−. The resulting projected band
structure for the strip geometry with zigzag edges and w+ =
w− = 0 is shown in Fig. 3. We have also verified that similar
edge states are present for armchair edges.

Returning to Eqs. (B1)–(B3), we can derive the bulk
band structure, and hence the phase diagram. Setting Sα1 =
Sα2 = S0 for simplicity, we can use the phase-delay relations
between amplitudes on the honeycomb network to eliminate
a1,a3,a4,a5 and b2,b6. Then Eqs. (B1)–(B3) reduce to

rb1 + t ′b5e
ik·α2 = a6e

ik·α2 , (B17a)

tb1 + r ′b5e
ik·α2 = a2, (B17b)

rb3 + t ′b4e
ik·α1 = b5e

−iφeik·α1 , (B17c)

tb3 + r ′b4e
ik·α1 = b1e

−iφ, (B17d)

ra2e
iφ + t ′a6e

iφ = b4e
−iφ, (B17e)

ta2e
iφ + r ′a6e

iφ = b3e
−iφ. (B17f)

Here we have used Bloch’s theorem, e.g., b5,n+α2 = b5e
ik·α2

(discarding the index n). With Eqs. (B17e) and (B17f),we can
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eliminate b3 and b4:

rb1 + t ′b5e
ik·α2 = a6e

ik·α2 , (B18a)

tb1 + r ′b5e
ik·α2 = a2, (B18b)

r[ta2e
i2φ + r ′a6e

i2φ] + t ′eik·α1 [ra2e
i2φ + t ′a6e

i2φ] = b5e
−iφeik·α1 , (B18c)

t[ta2e
i2φ + r ′a6e

i2φ] + r ′eik·α1 [ra2e
i2φ + t ′a6e

i2φ] = b1e
−iφ. (B18d)

Finally, using Eqs. (B18a) and (B18b), we eliminate a2 and a6 to obtain

b1[rt2ei2φ + r2r ′e−ik·α2ei2φ + rtt ′eik·α1ei2φ + rt ′2eik·(a1−α2)ei2φ]

= b5[e−iφeik·α1 − rr ′teik·α2ei2φ − rr ′t ′ei2φ − rr ′t ′eik·(α1+α2)ei2φ − t ′3eik·α1ei2φ] (B19)

and

b5[r ′t2eik·α2ei2φ + r ′t t ′ei2φ + rr ′2eik·(α1+α2)ei2φ + r ′t ′2eik·α1ei2φ]

= b1[e−iφ − t3ei2φ − rr ′te−ik·α2ei2φ − rr ′teik·α1ei2φ − rr ′t ′eik·(α1−α2)ei2φ]. (B20)

After simplification, this yields

ei6φ(rr ′ − t t ′)3 + ei3φ{t3 + t ′3 + rr ′[teik·α1 + t ′e−ik·α1 + t ′eik·α2 + te−ik·α2 + t ′eik·(α1−α2) + teik·(α2−α1)]} − 1 = 0. (B21)

Using the parametrization of the S matrix given in Eq. (1) and the hexagonal lattice vectors α1 = 3
2 x +

√
3

2 y, α2 = 3
2 x −

√
3

2 y,
we obtain the band structure φ(kx,ky) as

ei6φei3ϕ + ei3φ cos3 θ

{
ei3ξ − ei3(ϕ−ξ ) + tan2 θeiϕ

[
2 cos

(
3kx

2

)
(eiξ ei(

√
3/2)ky − ei(ϕ−ξ )e−i(

√
3/2)ky )

− ei(ϕ−ξ )ei
√

3ky + eiξ e−i
√

3ky

]}
− 1 = 0. (B22)

Note that this expression does not depend on χ . Since Eq. (B22) is a quadratic polynomial in ei3φ , a band gap closing at some
point (k0

x,k
0
y) in the Brillouin zone corresponds to a vanishing value of its discriminant, i.e. (at least) two roots are degenerate.

The locations of such band gap closings in the (θ,ξ,ϕ,χ ) parameter space of the system define boundaries between different
insulator phases, which may have different topological order. Figure 2 shows a slice of the phase diagram of the honeycomb
network model for ϕ = χ = 0.

For ϕ = 0 (which corresponds to det[S] = 1), we can simplify Eq. (B22) to

ei6φ + ei3φ cos3 θ

{
2i sin(3ξ ) + tan2 θ

[
2 cos

(
3kx

2

)
2i sin

(√
3

2
ky + ξ

)
− 2i sin(

√
3ky − ξ )

]}
− 1 = 0, (B23)

and setting ξ = π/2 enables us to further simplify the band-structure equation to obtain

ei6φ + ei3φ cos3 θ

{
−2i + tan2 θ

[
4i cos

(
3

2
kx

)
cos

(√
3

2
ky

)
+ 2i cos(

√
3ky)

]}
− 1 = 0. (B24)

Defining f (k) as

f (k) ≡ 4 cos

(
3

2
kx

)
cos

(√
3

2
ky

)
+ 2 cos(

√
3ky), (B25)

we obtain

ei6φ + ei3φ cos3 θi[−2 + tan2 θf (k)] − 1 = 0. (B26)

In the tight-binding regime (θ ≈ 0), this gives

ei3φ± ≈ ±θ
√

3 + f (k) + i, (B27)

which yields

φ± ∝ ±θ

3

√
3 + f (k), (B28)

in agreement with the standard result for the tight-binding Hamiltonian of graphene when only the nearest-neighbor coupling is
taken into account [54]. The coefficient θ/3 plays the role of the nearest-neighbor hopping energy.
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