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In this paper we introduce the concept of metasurfaces which are fully transparent when looking from one
of the two sides of the sheet and have controllable functionalities for waves hitting the opposite side (one-way
transparent sheets). We address the question on what functionalities are allowed, considering limitations due to
reciprocity and passivity. In particular, we have found that it is possible to realize one-way transparent sheets
which have the properties of a twist polarizer in transmission when illuminated from the other side. Also,
active one-way transparent sheets with controllable copolarized reflection and transmission from the opposite
side are feasible. We show that particular nonreciprocal magnetoelectric coupling inside the sheet is necessary to
realize lossless nonactive transparent sheets. Furthermore, we derive the required polarizabilities of constituent
dipole particles such that the layers composed of them form one-way transparent sheets. We conclude with design
and simulations of an example of a nonreciprocal one-way transparent sheet functioning as an isolating twist

polarizer.
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I. INTRODUCTION

Many novel and elegant device designs in antenna engi-
neering and optics will become possible if we become able
to realize electrically (optically) thin layers which have the
application-required reflection and transmission coefficients.
This need is addressed by inventing various metasurfaces
(see reviews in Refs. [1,2]). Metasurfaces, usually realized
as electrically and/or magnetically polarizable composite
layers, can shape reflected and transmitted wave fronts for
required functionalities. Sheets with angle-stable reflection
and transmission [3], absorbing sheets [4—6], high-impedance
surfaces, including artificial magnetic conductors [7], and
various polarization-transforming devices [8—11] are examples
of metasurfaces. Recently, thin functional sheets have attracted
considerable attention also in optics, since the possibilities to
control optical transmission, reflection, and refraction using
nonuniform sheets have been understood [2,12-14]. In the
majority of studies, the main focus has been on tailoring the
transmitted wave while the reflection is kept as low as possible.

Here we study sheets that are totally transparent from one
of the two sides (one-way transparent sheets) for normally
incident plane waves. The main goal of this study is to find
out what functionalities are possible if one-way transparency
is required. Can we make the layer fully reflecting or act as a
twist polarizer or a phase shifter for plane waves coming from
the opposite, nontransparent side? The second related question
regards what kind of physical properties the constituents
of these sheets must have in order to ensure the desired
functionalities. Finally, we present a practical design example
of a one-way transparent sheet. Clearly, one-way transparent
sheets can have multiple applications due to their “invisibility”
for excitations from one side.

Metasurfaces are microscopically structured layers (usually
periodic), where the (average) distance between inclusions
is smaller than the wavelength in the surrounding media,
ensuring that the surfaces do not generate diffraction lobes. For
an observer in the far zone the response is that of effectively
homogeneous current sheets. Thus, for layers of electrically
negligible thickness (metasurfaces) illuminated by normally
incident plane waves, the reflected and transmitted waves
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are plane waves created by the surface-averaged electric and
magnetic current sheets with the surface current densities J,
and J,,. In composite sheets, the layer has a complicated
microstructure, usually containing some electrically small but
resonant inclusions (such as complex-shape patches or split
rings or small helices). The surface-averaged current densities
can be related to the electric and magnetic dipole moments
p. m induced in each unmit cell as J. = L3P, J, = {57,
Here S is the unit-cell area, and we use the time-harmonic
convention exp(jwt). The higher-order multipoles induced in
the inclusions do not contribute to the radiated plane-wave
fields of the infinite array and we do not need to consider
them explicitly. For realizing a one-way transparent sheet
we will need to find such structures, where the induced
surface-averaged current densities equal zero for illumination
from one of the sheet sides but have nontrivial and controllable
values if the incidence direction is reversed. In the next section
we introduce the model for polarizations induced in the unit
cells of metasurfaces which we will study here.

II. TRANSPARENT ARRAYS OF BIANISOTROPIC
UNIT CELLS

A. Effective polarizability dyadics of particles in periodic arrays

In order to reveal the most general possible functionalities
of one-way transparent sheets, we assume the most general
linear relations between the induced polarizations and the
fields, the bianisotropic relations. It is convenient to write these
relations as the linear relations between the dipole moments
of the unit cells and the incident electromagnetic fields, which
is equivalent to relating the induced surface current densities

to the incident fields:
[p] — |:zee emj| . |:fllnc:| . (1)
m Xme mm n¢
In this paper we deal with two sets of polarizabilities:
individual and effective. Individual polarizabilities, denoted

as a;; (without hat), define the response of a single particle in
free space to the incident electromagnetic fields. Effective (or
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TABLE I. Types of magnetoelectric coupling effects.

Omega Chiral

Fem = Gme = j QU Fem = —me = Ji 1,
Moving Tellegen

Tem = —8me = VI, Tem = Tme = X1«

collective) polarizabilities, denoted as @; ; (marked by hat), are
the polarizabilities of a particle which is located in an infinite
array of particles. Even though the effective polarizabilities
show the response of the particle to the incident wave, because
the particles are located in an array these polarizabilities also
include the effects of lattice interactions. Dual bars denote
tensorial (dyadic) quantities. Here we study isotropic (in the
plane) thin sheets. The uniaxial symmetry ensures the isotropic
response of the metasurfaces for normally incident plane waves
of arbitrary polarizations. The orientation of the layer in space
is defined by the unit vector zy orthogonal to its plane. The
uniaxial symmetry allows only isotropic response and rotation
around the axis zy. Thus, we can write all the polarizabilities
in Eq. (1) in the forms

a\ee = &ggit + &\géjts g\mm = a\fr?mft + arcnrmjta

(@)

N

“~CO T “Cr = = “~CO - “Cr =
Uem = aem1t+aem.]t, Ome =Otmelt+ame.]t,
where indices co and cr refer to the symmetric and antisymmet-

ric parts of the corresponding dyadics, respectively. Here I; =

T — 7oz is the two-dimensional unit dyadic, and Jo=129 x 1,
is the vector-product operator. In the last set of relations it is
convenient to separate the coupling coefficients responsible
for reciprocal and nonreciprocal coupling processes [15]:

il

em = (X — JOL + (V4 j)T,

S

3

N

[

me = (X + JOL 4 (=V + jQ)T..

There are two reciprocal classes (chiral % and omega ﬁ) and
two nonreciprocal classes (“moving” V and Tellegen ¥). Note
also that for reciprocal particles the electric and magnetic
polarizabilities are always symmetric dyadics. The four main
types of magnetoelectric coupling are summarized in Table 1.
The imaginary units in these notations are introduced in order
to ensure that all the polarizability components are purely real
for lossless particles.

B. Reflection and transmission of plane waves
from uniaxial bianisotropic arrays

We consider array properties for normally incident plane
waves. In the following theory of one-way transparent layers,
we need to distinguish between illuminations of the sheet from
two opposite sides. In the rest of the paper, we use double
signs for these two cases, where the top and bottom signs
correspond to the incident plane wave propagating in the —z,
and z, directions, respectively. In the incident plane wave, the
electric and magnetic fields satisfy

1 1=
Hinc =F—2) X Einc = :F_Jt : Einm (4)
No No
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where 19 = +/[Lo/€0 is the wave impedance in the isotropic
background medium (possibly free space). In terms of the
effective polarizabilities, the dipole moments in Eq. (1) can be
written as

1= 7
ee:':%aem‘Jl

1= 7
_a .
N0 mm Jt

: Einc . (5)

| e—|
5 T
| I |
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I oy

Ome +

Knowing the dipole moments induced in each unit cell and
substituting the polarizabilities from (2), we can now write the
amplitudes of the reflected and transmitted plane waves as [11]

E = —%[TIOPZFZO x m]

' . = 1. 1=
=-£ {[noa;: +2Q - —a;fm} 1.
Mo

~ 1, 1=
+ |:77057§£ F2X — U_&\fnm] ]l} - Eine, (6)
0
jo
Et = Einc - E[ﬁop + Zo X m]

jCL) ~ 1 =
155 (wam w2p a1

. R
L2 s w2+ —a, | Tt B, (D)
25 7]0

in which § is the unit-cell area. Using these relations, we next
study transparent layers.

C. General conditions for totally transparent layers

By definition, a transparent layer must not change the
amplitude and phase of incident waves, that is,

Er =0, Et = Einc- (8)

From (6) and (7) we find the necessary conditions for a
transparent array of particles in the form

~ 1
Mo@e 282 = — -G = 0,

1
Nolee F 2X — —pmy = 0,

No

. &)
oGS £ 2V + —a%, =0,

No

1
no&g; :FZ]K + %arcx{m =0.

As above, the double signs correspond to the two opposite
incidence directions. Clearly, these conditions ensure that
the surface-averaged induced electric and magnetic current
densities equal zero [see Egs. (6) and (7)].

First, it is obvious that the conditions for two-way trans-
parency allow only trivial solution: In this case all the
polarizability components must equal zero. Indeed, if we
demand that conditions (9) are satisfied for both choices of the
= sign, so that the sheet looks transparent from both sides, then
all the magnetoelectric coefficients must be zero. Next, we see
immediately that in that case all the other polarizabilities must
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also vanish. We stress that this does not imply that the sheet
is simply absent: Zero dipole moments in each unit cell mean
only that the surface-averaged electric and magnetic current
densities are zero. For example, a low-loss frequency-selective
surface is transparent from both sides at the parallel resonance
of the unit cell, although strong currents are induced in the
structure. Itis quite a simple but interesting result. In particular,
it implies that sheets which are fully transparent only from one
side must exhibit electromagnetic coupling inside inclusions,
or the sheet will be transparent from both sides. Note
that this general conclusion holds also for nonreciprocal
sheets.

What will be the properties of an array which is transparent
from one side for waves coming from the other side? We expect
that using different particles (reciprocal and nonreciprocal) we
should be able to control the response seen from the other
side of the sheet. Suppose that a grid of particles is set to be
transparent for +zy-directed incident waves. Then, using (9),
we can express the electric and magnetic polarizabilities in
terms of the magnetoelectric parameters:

noRe — %af:m —2j8,
M00ee — %arcrfm = —2%,
(10)
Mo + %&ﬁfm 27,
100 + %agm = —2jk.

From (6) and (7), the reflected and transmitted fields for
the wave coming from the nontransparent side (—z-directed
wave) can be expressed in terms of the magnetoelectric
parameters only:

Now, we can study possible responses of reciprocal and
nonreciprocal one-way transparent sheets.

D. Reciprocal one-way transparent sheets

Let us first consider arrays of reciprocal unit cells (omega
and chiral bianisotropic coupling). For reciprocal particles, the
electric and magnetic polarizabilities are symmetric dyadics
(&gg =0, oS =0), and the parameters of the nonreciprocal
magnetoelectric coupling vanish (X = V = 0). The last rela-
tion in Eq. (10) tells that the chirality parameter « is also zero.
This ensures that the transmission coefficient from the other
side (12) equals unity, as it should be due to reciprocity.

From the other relations (10) we find that

: N 1 _
Nollee = jQ = ——dnn, 13)

1o
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and, using (11), the reflected field for the waves coming from
the other side can be written as

20 ~
E, = ?QEino (14)

If the array is passive, then the absolute value of this
reflection coefficient must equal zero, because the transmission
coefficient is unity from both sides (due to reciprocity). Thus,
the omega coupling coefficient in passive reciprocal one-way
transparent sheets must be zero for all nonzero frequencies, and
we end up with the trivial solution when all the polarizabilities
are zero. However, if the inclusions can be active, we see that
reciprocal layers can be transparent from one side, while the
copolarized reflection from the other side can be controlled
by the value of the omega coupling. Note that this is the
only possible functionality even for active inclusions: The
requirement of reciprocity is very limiting, because it sets
the transmission coefficient to be unity from both sides. In
particular, this does not allow chirality in the particles, and,
thus, no polarization transformation is possible in isotropic
reciprocal one-way transparent sheets.

E. Nonreciprocal one-way transparent sheets

From Egs. (11) and (12) it appears that the use of
nonreciprocal particles, in principle, allows full control over
co- and cross-polarized reflection and transmission coeffi-
cients of one-way transparent sheets (passivity limitations
are discussed below). To find out what polarizabilities
are required for any desired functionality, one can start from the
required reflection and transmission coefficients and find the
corresponding magnetoelectric parameters. For example, if we
would like to realize a one-way transparent twist polarizer in
transmission (E; = zy X Einc = J; - Einc), the required values
of the coupling parameters read

S RS SO
K=——, V=—j—, Q=%=0. (15)
20

The corresponding electric and magnetic polarizabilities fol-
low from (10):

1 ~ .S
e = gt =V =" (16)
“CI' 1Acr e~ . S
Nolee = %amm = —JKk= ]Z'

Note that the magnitudes of all the required normalized
polarizabilities are equal, and this provides one of the examples
of extreme response of balanced bianisotropic particles [16].
It is easy to check from (5) that in this case of zero reflection
the induced electric and magnetic dipoles of each unit cell
form Huygens pairs, radiating only in the forward direction,
as it should be for any nonreflecting sheet (see examples in
Refs. [11,13,14]).

Let us next discuss the limitations which follow from the
energy conservation. Considering ideally lossless structures,
it is easy to see that any lossless one-way transparent sheet
must have zero reflections from both sides. This is because
the total power of two waves (the reflected wave and the wave
transmitted from the transparent side) is not equal to the sum
of the powers of these two waves due to their interference.
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Thus, lossless one-way transparent sheets allow control only
over the transmission coefficients for waves coming from the
opposite direction (the polarization state and phase delays of
transmitted waves can be engineered with complete freedom).
If we want to control the back reflection in one-way transparent
sheets, the structure must be lossy or active. First, let us
suppose that the layer is passive and lossy. In this case from the
nontransparent side we can have partial reflection and partial
transmission, but still it is not possible to have full control
over the reflection and transmission properties. Because of
the interference between the two waves propagating away
from the structure at its nontransparent side, there is a limit
for the reflected power dictated by the energy conservation.
Full control over reflection can be achieved only with active
structures. Conceptually, it is possible to fully absorb the power
incident from the nontransparent side and produce secondary
(“reflected”) waves using active elements. As another example
of passivity limitations, let us assume that only the Tellegen
parameter ¥ is nonzero while all the other coupling coefficients
are zero. In this case we see that the transmission coefficient
from both sides equals unity and conclude that in this case it
is possible to control the cross-polarized reflection only if the
particles are active.

An interesting case is the case of a “moving” grid (V # 0).
We can set Q = ¥ = 0, so that the reflection coefficient is
zero and the induced current sheets form a Huygens’ pair.
Upon substitution of Q= ¥ = 01in Eq. (10), we see that the
electric and magnetic polarizabilities are balanced:

1 1
Y)()agg = %aﬁfmv 770&2; = %&rcrfm a7

We conclude that we can fully control the transmission
coefficient choosing the values of V and © [each of these
two parameters will uniquely define the values in Eq. (17)],
maintaining the property of zero reflection (Huygens’ layer).
The only limitation on the transmission coefficient values
comes from passivity: The total amplitude of the transmitted
field should not be larger than the amplitude of the incident
field. One of the interesting limiting cases is the case of
nonchiral moving arrays. Setting ¥ = 0, we find the required
effective polarizabilities as

~ ) i 1 _
Nollee = V = —0,  Nolee = — Oy = 0, (18)
0

and, using (11) and (12), the reflection and transmission
coefficients for the wave coming from the other side can be
written as

J2w ~
E, =0, E=(1- TV Eiyc. (19)

One can see that the sheet of moving particles can be designed
to work as a completely transparent layer from one side
and a partially transparent layer from the other side (with
controllable amplitude and phase of the transmitted field). In
the special case of a balanced and lossy layer the sheet is
transparent from one side and acts as a perfect absorber from
the other side [6].
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III. REQUIREMENTS FOR INDIVIDUAL
POLARIZABILITIES OF UNIT CELLS

The above theory gives the required conditions for effective
(collective) polarizabilities of unit cells forming one-way
transparent sheets. These parameters connect the induced
electric and magnetic dipole moments to the incident electric
and magnetic fields; see (1). Thus, the effective polarizabilities
depend not only on the individual particles but also on elec-
tromagnetic coupling between particles in the infinite array.
Here we use the known theory of reflection and transmission
in infinite dipole arrays (e.g., [17]) to find the corresponding
requirements on the polarizabilities of individual particles
in free space. This is necessary to approach the problem
of the particle design (finding the inclusion shape and sizes
which provide the desired response of the whole array). To
characterize individual particles, we consider their response to
the local electromagnetic fields, which exist at the position of
one reference particle:

p aee Eem Eloc
=|_ — . . (20)

m ame Omm HIOC
Since the grid is excited by plane-wave fields which are
uniform in the array plane (normal incidence), the induced
dipole moments are the same for all particles. The local fields
exciting the particles are the sums of the external incident
fields and the interaction fields caused by the induced dipole
moments in all other particles,
Eioc = Eine + ﬁe p, Hioe = Hine + ,Bm m, (21)
where B, and B, are the interaction constants that describe

the effect of the entire array on a single inclusion. These
dyadic coefficients are proportional to the two-dimensional

unit dyadic 7. Explicit analytical expression for the interaction
constants can be found in Ref. [15].

Because all of the dipoles are in the same plane, the induced
magnetic dipoles do not produce any electric interaction field
in the tangential plane, and vice versa (see [18]). Expressing
the incident fields in Eq. (1) in terms of the local fields and
the interaction constants (21) we can find the polarizabilities
of the individual unit cells in terms of the required collective
polarizabilities. In the general case of uniaxial polarizabilities
these expressions can be found in Ref. [11]. As an example, let
us study the case of a one-way transparent nonchiral “moving”
sheet [the required effective polarizabilities are given by (18)].
In this case the relations between the individual and collective
polarizabilities can be written as

— (o — V) =

;\CC 1 ’
o (acoﬁe _|_ ammﬂm) + ﬁeﬂm(aggotﬁ?m — Vz) t
= — Be(adagm, — V?) =
¥mm = co €Oy CO 2 Il’
(Ol ﬂe + ammﬂm) + BeBm (O‘eeamm -V )
CT 1 = (@B + 0 Bm) + ebm(eagy, — V)"
(22)
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The necessary conditions for the polarizabilities of the single
moving particle can be found substituting (22) in conditions
(18) as

1
Nootge =V = —ap, de=omp, =0. (23)

No

These conditions are the balance conditions for individual
particles. Interestingly, conditions (23) were obtained in
Ref. [19] as the conditions for zero total scattering from small
single uniaxial nonreciprocal particles.

Finally, we note that the required reciprocal magnetoelectric
coupling in particles can be realized using proper shaping
of metal or dielectric inclusions (helical shapes for chiral
particles and, for example, the shape of the letter 2 for
omega coupling). Nonreciprocal coupling requires the use of
nonreciprocal components, such as magnetized ferrite, plasma,
or active components, e.g., amplifiers. For details, we refer to
[15,20] and references therein.

IV. EXAMPLE OF A ONE-WAY TRANSPARENT SHEET
COMPOSED OF NONRECIPROCAL BIANISOTROPIC
PARTICLES

In this section, we present a realizable design of a one-way
transparent sheet acting as a twist polarizer in transmission for
the wave incident from the nontransparent side. As a nonrecip-
rocal particle, we use the particle possessing “chiral-moving”
coupling (bianisotropy parameters & = ¥ = 0) presented in
Ref. [21]. As it is shown in Fig. 1, the particle includes a
ferrite sphere magnetized by external bias field and coupled
to metal elements. Recently, polarizabilities of this particle
were extracted analytically and numerically [22]. Considering
the polarizabilities of this particle at the resonance frequency,
we note that its electric and magnetic polarizabilities become
purely imaginary while the chirality parameter is real (as
expected, because all the reactances are compensated and only
dissipative terms remain for the particle at resonance). This ap-
parently contradicts to the requirements of balanced effective
polarizabilities (16) for a one-way transparent twist polarizer.
However, we note that the resonant-particle polarizability can

z Spherical ferrite
inclusion with
X radius a

2r

Magnetic field bias

H, ®©

FIG. 1. (Color online) Geometry of a “chiral-moving” particle.
The external magnetic field bias is along the z, axis.
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satisfy the following similar conditions:

1 ~ S
nO&\g‘g = _arcr?m =V= _J%v 24)
1 R N
Nollee = — Oy = —jK = —5—. (25)
1o 2w

Conditions (24) and (25) are related to the case of a one-way
transparent sheet which acts as a twist polarizer with additional
90° phase shift for the wave incident from the nontransparent
side (E; = jjt - Einc), and we proceed with designing such
device.

We use the numerical method [23] (see also Ref. [22])
which allows us to extract polarizabilities of an arbitrary
polarizable particle. Deriving the individual polarizabilities
of a single particle utilizing this method and using (22) (which
relates the effective polarizabilities to the individual ones),
we can optimize the dimensions of the particle to realize
the required effective polarizabilities (16). The optimized
dimensions of the particle (the target frequency is about 2 GHz)
read ] = 18 mm, !’ =3 mm, a = 1.65 mm (S = & is cell
area), and the radius of the wire is ryp = 0.05 mm. Material
of the metal elements is copper and the ferrite material is
yttrium iron garnet. The properties of the ferrite material are
the relative permittivity €, = 15, the dielectric loss tangent
tand = 10~*, saturation magnetization Mg = 1780 G, and the
full resonance linewidth A H = 0.2 Oe (measured at 9.4 GHz).
The internal bias field is H, = 9626 A/m, corresponding to
the desired resonance frequency. Simulated individual and
effective polarizabilities (for a grid with § = 1482.25 mm?)
of the optimized particle are shown in Figs. 2 and 3,
respectively. These figures exhibit fairly balanced electric
and magnetic response in terms of individual and effective
polarizabilities.

We verify the operation of the sheet by full-wave
simulations using the Ansoft High Frequency Structure

x 10 x 10
P 2 ——real
. JE —— Imaginary
B Q" Te
-2 -2
1.962  1.964 1966  1.968 1.962  1.964 1966  1.968
Frequency [GHz] Frequency [GHz]
-13 -13
x 10 x 10
2 2

cr

00l
— (ylll m

0 5o
=&
) )

1.962 1964 1966  1.968 1.962 1964 1966  1.968
Frequency [GHz] Frequency [GHz]
13 13

x 10 x 10
2 2
= - —
-2 -2

1.962 1964 1966  1.968 1.962  1.964 1966  1.968
Frequency [GHz] Frequency [GHz]

FIG. 2. (Color online) Simulated polarizabilities of an individual

particle.
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x10 " x10"
sF— — —real

5
—\ R —— Imaginary

s \/ s s \_J
1.962 1.964 1.966 1.968 1.962 1.964  1.966 1.968

Frequency [GHz] Frequency [GHz]
-14 4

x 10 x 10
5 5

0/— <|B 04
5 -~..._‘.‘.....-_-—““—_‘__,-—-" s

1.962 1964  1.966  1.968 1.962 1964 1966  1.968
Frequency [GHz] Frequency [GHz]
-14 -14

ee
mm

~co

No0lge

—1

mim

e
100e

x 10 x 10
5 5
o Q = 0 b
-5 -5
1.962 1.964 1.966 1.968 1.962 1.964 1.966 1.968

Frequency [GHz] Frequency [GHz]

FIG. 3. (Color online) Simulated effective polarizabilities of the
grid.

Simulator. Periodic boundary conditions are used to calculate
the reflection and transmission coefficients of the sheet
made of these particles. Simulated co- and cross-polarized
reflection and transmission coefficients for the wave incident
from the transparent and nontransparent sides are shown in
Fig. 4.

! W
0.81 b
o
S
v
< 0.6f 7
5
& —— Co—polarized reflection
s 041 . .
5] = = = Cross—polarized reflection
& —— Co—polarized transmission
0.2 = = = Cross—polarized transmission/{|
0 i ==

1.95 1955 196 1965 197 1975 198 1985 1.99
Frequency [GHz]

S e e
b =) [

Non—transparent side

e
[}

~
-------

- --= il -

10.95 1955 1.9 1965 197 1975 198 1985 1.99
Frequency [GHz]

FIG. 4. (Color online) Simulated reflection and transmission (in
terms of intensity) for the sheet when the incident wave propagates
along the (a) +zy axis and (b) —z, axis.
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As is seen from Fig. 4, the designed composite sheet
transmits 87% of the incident wave power, propagating along
the transparent direction. At the same time, it transmits
75% of the wave power (in cross polarization) when the
layer is illuminated from the nontransparent side. Thus, the
sheet acts as a one-way transparent layer and as a twist
polarizer with a 90° phase shift from the nontransparent
side, as was theoretically predicted. Nonideal magnitude of
the cross-polarized transmitted wave can be explained by
inevitable absorption loss inside the ferrite sphere and copper
wires (about 13%). Also, some small reflection exists due to
parasitic weak omega and Tellegen coupling effects in the
particle (about 12%).

The designed sheet is a nonreciprocal analogy of the device
proposed in Ref. [11], which consists of reciprocal chiral
particles and acts as a twist polarizer for both directions
of incidence. Nonreciprocal electromagnetic coupling allows
us to obtain dramatically different response for the opposite
incident directions. The proposed composite sheet based on
chiral-moving particles exhibits the target electromagnetic
properties of a one-way transparent sheet and has realistic
parameters allowing practical realizations.

V. CONCLUSION

Although it is not possible to realize a fully transparent
sheet except the trivial case of zero averaged induced surface
currents, we have shown that it is possible to realize one-way
transparent sheets. In these structures, the polarizabilities of
unit cells are different from zero, but they are balanced in
such a way that the averaged induced currents are zero for
illumination from one of the two sides of the sheet. However,
the response to plane waves illuminating the opposite side of
the sheet is nontrivial and can be controlled by design of the
metasurface microstructure. Electromagnetic coupling (bian-
isotropy) inside unit cells of the metasurface is a necessary
condition for one-way transparent layers. If we are limited to
the case of lossless sheets with passive particles, then one-way
transparency necessarily requires nonreciprocal coupling and
is impossible with chiral and omega particles. It was shown
that presence of moving coupling is necessary to make a
lossless nonactive one-way transparent sheet. In particular,
it has been shown that nonreciprocal coupling effects make
it possible to realize a one-way transparent sheet which acts
as a twist polarizer in transmission when illuminated from
the nontransparent side. Another possible device is a one-way
transparent phase-shifting sheet. If active particles are allowed,
our possibilities to control electromagnetic response from
the opposite side of the sheet are extended: There is no
restriction on the amplitude of reflection and transmission
for the wave coming from the nontransparent side. Also,
omega coupling becomes allowed and makes it possible to
realize a one-way transparent sheet with controllable copo-
larized reflection from the opposite side. Required effective
and individual polarizabilities of bianisotropic particles as
components of a one-way transparent layer have been derived.
Finally, we have shown a realistic design of a nonreciprocal
one-way transparent sheet and simulated its performance
parameters.
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