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The Kondo cloud, represented by the correlations between the magnetic moment and the spin density in the
leads of a Kondo setup, has until now eluded observation. We exploit the unique coupling of spin and direction
of motion of the excitations in the recently discovered helical liquids in a setup with two leads to establish a
proportionality between the Kondo cloud and the time-resolved current cross correlations. This relation holds
around a specific choice of model parameters. Thereby, we propose a direct way to detect the Kondo cloud in a
least invasive manner since the current cross correlations are measurable far away from the magnetic moment.
We furthermore discuss how our predictions are modified if the model parameters are varied away from the
specific choice.
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I. INTRODUCTION

A magnetic moment coupled to a fermionic bath, a so-called
Kondo setup, is one of the most basic combinations of two
quantum mechanical systems with spin. Yet its description has
attracted the attention of theoretical as well as experimental
physicists already for many decades [1–3]. A general feature
of a Kondo setup is that at temperatures smaller than the
Kondo temperature, the excitations of the fermionic bath
orientate their spin to screen the magnetic moment. This
screening “cloud” of excitations has been termed the Kondo
cloud [4–7], and its extent is considerably long ranged. A
concrete observable quantifying the presence of the Kondo
cloud at a given position in the fermionic bath is the equal-time
correlator between the spatially dependent spin density in the
bath and the spin of the magnetic moment. In fact, we are
going to use this correlator as a synonym for the Kondo
cloud throughout this article. All attempts to measure the
Kondo cloud have failed so far. For instance, there appear
diverse technical and conceptual problems if it is attempted
to directly measure the Kondo cloud with two spin-sensitive
scanning tunneling microscopy (STM) tips [5]. Maybe the
most conceptually problematic aspect of that strategy is that
the coupling of a spin-sensitive STM tip to the magnetic
moment is likely to influence the Kondo effect and hence
the Kondo cloud itself. In this regard, a more promising
experiment to measure the Kondo cloud should employ an
indirect measurement that does not affect the close vicinity of
the magnetic moment [7]. Along these lines, recent suggestions
propose to first find an observable that alters its behavior
decisively upon reaching the Kondo length [8–10]. Notably,
the authors of Ref. [11] mention a visible signature of the
Kondo cloud in conductance fluctuations close to the magnetic
moment.

New light on the Kondo cloud can be shed by means of
the recently discovered quantum spin Hall insulator [12–14].
This quantum phase accommodates a metallic edge state, the
helical liquid, that is protected from inelastic backscattering
by time-reversal symmetry. The unique feature of the helical
liquid is the direct coupling between the direction of motion
and the spin of its excitations. Excitations with spin down
traverse the edges clockwise, while excitations with spin
up propagate conversely. In this way, the information about

interaction processes with a magnetic moment is carried away
from the scattering region in a spin-resolved fashion.

Systems where a magnetic moment is coupled to helical
liquid leads have already been analyzed [15–17]. However,
the focus never lay on the Kondo cloud. In Ref. [18], we
have discovered representative parameter configurations, the
Toulouse points [19,20], for which the corresponding Hamil-
tonian is mappable to a quadratic one. This mapping enabled
us to calculate the shape and nonequilibrium properties of the
Kondo cloud nonperturbatively.

In this article, we improve substantially upon existing
suggestions of measuring the Kondo cloud by establishing a
close relation of the Kondo cloud to time- and space-resolved
current cross correlations in the leads measured sufficiently
far away from the magnetic moment. The measuring distance
should be larger than the Kondo length and is, in theory,
not limited from above. In praxis, the purity of the sample,
temperature, etc., give an upper bound. Our suggestion is
based on a seup consisting of a magnetic moment of spin
�/2 coupled to two strongly interacting helical liquid leads
(see Fig. 1), with the Luttinger parameters gt and gb both
being 1/2 (see Sec. II). In this case, a two-channel Kondo
Hamiltonian is appropriate to describe our system [16]. By
propagating the density operator backwards in time, we relate
the current cross correlations to the Kondo cloud in an exact
manner for a broad range of the Kondo parameters. In first
order of the z couplings, this relation is a direct proportionality.
As a concrete example, we give the explicit analytical form
of both quantities for vanishing z couplings and emphasize
the necessity to measure the current cross correlations in the
time domain. The particular system of helical liquid leads
with gt = gb = 1

2 is mainly considered here because of the
direct and unperturbed appearance of the Kondo cloud in the
current cross correlations. We discuss, finally, the fact that by
departing from this particular value on the line gt + gb = 1,
the signature of the Kondo cloud remains in principle visible
in the current cross correlations.

The article is organized as follows. In Sec. II, we introduce
our model and transform the Hamiltonian to an interacting
resonant level model. Afterwards, in Sec. III we derive the
proportionality relation between the Kondo cloud and the
current cross correlations and present the Fourier transforms of
both quantities. In Sec. IV, we discuss how the proportionality
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FIG. 1. (Color online) Two helical liquids are coupled to a
magnetic moment τ of spin �/2. The blue (red) lines indicate edge
channels with spin down (up) moving clockwise (counterclockwise)
at the outer edge of the system. Contacts at x and y allow measurement
of the space- and time-resolved current cross correlations.

is affected by a change of the Luttinger parameters in the leads.
Finally, we conclude in Sec. V and address some technical
details in the Appendix.

II. MODEL

We consider a magnetic moment of spin �/2 that is coupled
to two helical liquids. In our setup shown in Fig. 1, we
assume that the magnetic moment can be realized by an antidot
[18,21]. The black arrows indicate that space is measured
along the path of the spin-down excitation separately at each
side. Contacts at the top (t) and the bottom (b) lead allow
us to measure the space- and time-resolved current cross
correlations 〈δIt(x)δIb(y,t)〉 between the positions x and y

with the time delay t . Here, δA = A − 〈A〉 and 〈· · · 〉 denotes
the thermodynamic expectation value. For reasons which will
becomes clear in Sec. III, x and y should be of the order
of or larger than the Kondo length scale λK and t of the
order of or larger than the Kondo time scale τK . Both scales
are canonically derived from the Kondo temperature T K by
λK = vτK = v�

kBT K ; v is the Luttinger parameter of the leads
that describes the velocity of their excitations. Additionally,
to resolve the structure of the Kondo cloud spatially, it is
essential that either the time delay t is freely tunable or one of
the contacts is movable.

The setup is modeled by a two-channel Kondo Hamiltonian,
as discussed in Refs. [16,18,22], with

H̃a =
∑

σ∈{↑,↓}

∫
dx

(
vF,a�̃

†
a,σ (x)(σ i∂x)�̃a,σ (x)

+ g4,a

2
ρ̃2

a,σ (x) + g2,aρ̃a,↓(x)ρ̃a,↑(x)

)
,

H̃K
a =

∑
λ∈{x,y,z}

J λS̃λ
a (0)τλ (1)

for each lead a ∈ {t,b}. Here, H̃a describes the helical liquid
of lead a with the fermionic fields �̃a,σ of spin σ . The real
constants are the Fermi velocity vF,a and g2/4,a , the interaction
strengths in the leads. It is convenient to introduce the
Luttinger parameters ga = √vJ,a/vN,a and va = √

vJ,avN,a

instead, where vN/J,a = vF,a + g4,a±g2,a

2π�
[23]. The interaction

of lead a with the magnetic moment τ is given by HK
a .

Further, S̃λ
a = �

2

∑
σ,σ ′ �̃

†
a,σ σ λ

σ,σ ′�̃a,σ ′ denotes the spatially
resolved spin density in lead a with σλ being the λth Pauli
matrix. We consider isotropic interactions in the x and y

directions, i.e., J x
a = J

y
a =: J⊥

a , and focus on the special case
of gt = gb = 1

2 and vt = vb := v. In this case, the Hamiltonian
is simplified by the application of bosonization and refermion-
ization. In fact, the entire line gt + gb = 1 can be treated by
performing an intermediate Emery-Kivelson rotation, which
we address in Sec. IV. Details of the procedure are discussed
in Refs. [18–20,22]. The refermionized Hamiltonian then
becomes an interacting resonant level model:

H0 =
∑

j∈{t,t̂,b,b̂}

∫
dx �v �†(x)j (−i∂x)�(x)j ,

H⊥
K = j⊥

t �
†
t (0)τ− + j⊥

b �
†
b(0)τ− + H.c.,

Hz
K = jz

t �
†
t (0)�t(0)τ z + jz

b �
†
b(0)�b(0)τ z. (2)

Notable simplifications compared to the physical Hamiltonian
are that two of the former four fermionic fields decouple
and the only two-particle term appears in Hz

K . In Eq. (2),
the fermionic fields � are nonlinear combinations of the
physical ones �̃, but the relation that is important for this
work is the linear dependence of the resulting densities ρa(x) =
1
4 (3,1,−1,−3)×(ρ̃a,↑(x),ρ̃a,↓(x),ρ̃a,↑(−x),ρ̃a,↓(−x))T on the

physical ones. The coupling constants are j⊥
t/b = J⊥

t/b�v

2
√

2πac
, where

ac is the cutoff length scale of the bosonization procedure,
and jz

t/b = �J z
t/b. For jz

t = jz
b = 0, the Hamiltonian reaches

a Toulouse point [18–20,22] where many observables can be
calculated analytically. It is interesting in this context that
the interacting resonant level model has recently attracted new
attention because of the development of exact methods at finite
temperature and out of equilibrium [24–27] to solve it. Applied
to our setup, these methods could extend the range of exactly
solvable parameter configurations considerably.

III. RESULTS

The Kondo cloud on side a is defined as the spatially
resolved correlation of the z spin density in lead a and the
z component of the magnetic moment. It takes the form

χz
a (x) = 〈δS̃z

a(x)δτ z
〉
. (3)

In the following, an additional argument of the operators
denotes the time in the Heisenberg picture. If no additional
argument is given, we imply that it is equal to zero. The space-
and time-resolved current cross correlations are then given by

χcc(x,y,t) = 〈δIt(x)δIb(y,t)〉 = (2ev)2
〈
δS̃z

t (x)δS̃z
b(y,t)

〉
.

(4)

It is here where the very special attribute of the helical liquid,
namely, that the spin density is proportional to the current,
initially connects the two quantities of Eqs. (3) and (4). Next,
we express them in the fields of the simplified Hamiltonian
in Eq. (2), and exploit its symmetry under simultaneous

075108-2



DIRECT PROPORTIONALITY BETWEEN THE KONDO . . . PHYSICAL REVIEW B 89, 075108 (2014)

time-reversal and space inversion.1 For the Kondo cloud, we
obtain

χz
a (x) = 〈δρa(−|x|)δτ z〉, (5)

and the current cross correlations become

χcc(x,y,t) = (ev)2
∑
σ=±

〈δρt(σ |x|,0)δρb(−σ |y|,t)〉. (6)

It is crucial for the derivation of Eq. (6) that 〈ρt(|x|)ρb(|y|,t)〉 =
〈ρt(−|x|)ρb(−|y|, − t)〉∗ = 0 for all times t . The physical
reason for the last equality is that excitations in different leads
are independent of each other before they can interact at the
site of the magnetic moment.2

To derive and physically motivate the close relation between
the quantities of Eqs. (5) and (6), we take the density operators
with positive spatial argument in the summands of the latter
equation and propagate them backwards in time before they
have interacted with the magnetic moment. This propagation
can be done exactly due to the property (τ z)2 = �

2

4 although the
Hamiltonian possesses two-particle terms. Details are given in
the Appendix. The result is

ρa(x, − x/v − ε)

= ρa(−ε,0) + (j⊥
a /v)2

�
[
1 + ( jz

a

4v

)2] [τ z(−ε) + �/2]

+
(

i
j⊥
a

�v

1 + i
jz
a

4v(
1 − i

jz
a

4v

)2 τ+(−ε)�a(−vε,0) + H.c.

)
, (7)

for any positive time ε. It is seen here that the density at
positive spatial values carries information about the magnetic
moment in the term proportional to τ z. This is the basic
reason that it is possible to measure the Kondo cloud by
looking at current cross correlations. Inserting Eq. (7) into
Eq. (6), we encounter three types of expectation values:
(i) density correlations of the form 〈δρt(−ε,0)δρb(−|y|,t −
|x| − ε)〉, which vanish as explained in the derivation of
Eq. (6), (ii) terms like 〈δτ z(−ε)δρb(−|y ′|,t − |x| − ε)〉 that
resemble the Kondo cloud, and (iii) correlators similar to
〈δ(τ+(−ε)�t(−ε,0))δρ−a(−|y|,t − |x| − ε)〉, which vanish in
first order in jz

t/b. Retaining only the first and zeroth orders in
jz

t/b, we therefore obtain

χcc(x,y,t) = e2

�
[(j⊥

t )2〈δρb(−|y|,t − |x|/v)δτ z〉∗

+ (j⊥
b )2〈δρt(−|x|, − t − |y|/v)δτ z〉]. (8)

This expression consists of two summands, each of which
already resembles the Kondo cloud defined in Eq. (3). The
aim is now to choose a time frame for which one of

1The exploited symmetry of the transformed Hamiltonian in Eq. (2)
originates from the symmetries of the physical Hamiltonian in
Eq. (1), namely, time-reversal symmetry and the symmetry under
simultaneous z spin flip and space inversion.

2The feature that the density correlations at negative spatial values
vanish can be rigorously proven on the basis of the relations between
the different correlation functions (retarded, advanced, and Keldysh)
in the Keldysh formalism known as RAK rules [28].

the summands becomes proportional to the Kondo cloud
and the other one is suppressed. To reveal the Kondo cloud
from the first summand, we constrain vt − |x| − |y| < 0 and
shift the time argument of the density operator into its spatial
argument. The same can be done for the second summand
in the case vt + |x| + |y| > 0. For suppressing the summand
that fails to be proportional to the Kondo cloud within one of
the respective time frames, we argue that there is an intrinsic
time scale τ c after which 〈δρa(−η,0)δτ z(t)〉 decays rapidly if
|t | > τc. Here, η is a finite but small position in space. This
assumption is physically motivated by the fact that a scattering
problem lacks periodicity and usually exhibits no infinite
length correlations. We consider the required time τ c to be of
the order of the Kondo time scale τK because it is the largest
time scale that is immediately connected to the Hamiltonian.
Nevertheless, the concrete choice of this time scale τ c is of
no significance in principle for the following results. This
argument leads us to two time frames fulfilling the demanded
conditions: (i) (|x| + |y|)/v > t > τK , where the current cross
correlations are greatly dominated by the first correlator in
Eq. (8) since | − t − (|x| + |y|)/v| is more than 2τK larger
than t + (|x| + |y|)/v. (ii) −τK > t > −(|x| + |y|)/v, where
the current cross correlations are dominated by the second cor-
relator in Eq. (8). We then find the central result of this article:

χcc(x,y,t) ≈ 2e2vkB

�3

{
T K

t χz
b (|x| + |y| − vt) (i),

T K
b χz

t (|x| + |y| + vt) (ii),
(9)

where T K
t/b = �(j⊥

t/b)2

2kbv
= �(J⊥

t/b)2

16πackBv
is the Kondo temperature of

one lead calculated as if the other one does not exist [22]. The
deviation of Eq. (9) from an identity is suppressed arbitrarily
by measuring further away from the magnetic moment,
i.e., increasing |x| + |y|, and therefore it vanishes for any
practical purpose. Rephrased, Eq. (9) states that, for certain
time frames, the Kondo clouds of both leads are mirrored
in the current cross correlations by a direct proportionality,
and the proportionality factors are determined by the Kondo
temperature of the respective opposite lead.

To give a descriptive example of a manifestation of this
relation, we derive the analytical formulas in the limit jz

t/b → 0
for both the Kondo cloud and the current cross correlations,
following the lines of Ref. [18], and compare them. For
convenience, we introduce

ζ (x) = 1

π
e−(π/�vβ)x�

(
e−(2π/�vβ)x,1,

1

2
+ βkBT K

2π

)
(10)

that depends implicitly on the inverse temperature β = 1/

(kBT ) and the Kondo temperature [22]

T K = T K
t + T K

b . (11)

Furthermore, �(z,s,a) is the Hurwitz-Lerch transcendent [29].
For the Kondo cloud, we obtain

χz
a (x) = −�kBT K

a

2v
ζ 2(|x|), (12)

and the space- and time-resolved current cross correlations are

χ cc(x,y,t) = −e2kBT K
t kBT K

b

�2
[ζ 2(|x| + |y| − vt)∗

+ ζ 2(vt + |x| + |y|)]. (13)
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Hence, the analytically derived formulas satisfy the propor-
tionality relation of Eq. (9) and the proportionality factor is
given by the corresponding Kondo temperature.

In experiments, it is common to measure frequency-
resolved current cross correlations. We want to point out that
the similarity in the time domain does not simply transfer to the
frequency domain. The reason is that the full range of t is taken
into account in a Fourier transform, and the proportionality
in the time domain is limited to certain time frames. To
show this explicitly, we present the Fourier transforms f̂ (k) =
P
∫

dx eikxf (x) of the Kondo cloud and the current cross
correlations of Eqs. (12) and (13) at zero temperature. Here,
we take the principal-value Fourier transform since the Kondo
cloud diverges at the site of the magnetic moment. The result
is

χ̂ z
a (k) = −2�

2

π2

T K
a

T K
Re

{
Li2
(
1 + i�vk

kBT K

)+ π2

12

2 + i�vk
kBT K

}
, (14)

where Li2 is the dilogarithm and

χ̂ cc(ω,|x| + |y|) = �(−ω)
8e2kB

π�

T K
t T K

b

T K

× Re

{
ie−i ω

v
(|x|+|y|) ln

(
1 + i�ω

kBT K

)
2 + i�ω

kBT K

}
(15)

with � being the Heaviside function. Instead of depicting
the Fourier transform of the Kondo cloud at zero temperature
of a single side, we concentrate on the more universal total
Kondo cloud χz = χz

t + χz
b . The functional form of its Fourier

transform at zero temperature is shown in Fig. 2(a). An
interesting feature is revealed by χ̂ z(0) = −�

2

4 , i.e., the spatial
integral over the total Kondo cloud in the ground state equals
the expected value for exact screening. The Fourier transform
of the current cross correlations at zero temperature in turn
is illustrated in Fig. 2(b). It is convenient to introduce the
envelope function

χ̂ cc
max = �(−ω)

8e2kB

π�

T K
t T K

b

T K

∣∣∣∣∣
ln
(
1 + i�ω

kBT K

)
2 + i�ω

kBT K

∣∣∣∣∣ . (16)

For generic values of |x| + |y|, χcc(ω,|x| + |y|) oscillates be-
tween ±χ̂ cc

max. Hence, for clarity, we choose two representative
values for |x| + |y| in Fig. 2(b). First, we set |x| + |y| twice
the Kondo length λK , which is a typical value for the setup
at hand in the sense that a broad range of the Kondo cloud
can be spatially resolved in the time domain. Second, we
look at |x| + |y| = 0. Evidently, there is no obvious similarity
between the Kondo cloud and the current cross correlations in
the frequency domain.

IV. DEPENDENCE OF CENTRAL RESULT
ON INTERACTION STRENGTHS

The experimental realization of the proposed setup is highly
challenging. Nevertheless, we have chosen to treat the system
at hand because it shows the clearest possible appearance of the
Kondo cloud in the current cross correlations. This feature can
be affected by altering the interaction strengths gt/b, which we

FIG. 2. (Color online) Fourier transforms of the total Kondo
cloud, top panel, and the current cross correlations, bottom panel, at
zero temperature. The current cross correlations are depicted for the
two representative values of |x| + |y| equals zero and |x| + |y| equals
twice the Kondo length λK . Furthermore, we involve the envelope
function χ̂ cc

max. Despite the analogy of the Kondo cloud and the current
cross correlations in the time domain (for certain time frames), they
show no apparent similarity in the frequency domain.

are going to discuss now. Allowing for an unrestricted choice
of gt/b would exceed the scope of this work, since, in general,
there exists no simplifying refermionization. Covered by the
method at hand, however, are the two lines gt + gb = 1 and
gt + gb = 2. In both cases, correlators of the form 〈�†τ−�†�〉
appear additionally in the current cross correlations, where the
fermionic fields � can be of different leads, space, and time.
Although these additional correlators are interesting objects
themselves, they hinder the direct measurement of the Kondo
cloud in principle.

As the second line gt + gb = 2 is based on a different effec-
tive Hamiltonian [18], we limit ourselves here to describing the
first line gt + gb = 1 in greater detail. If we leave gt = gb = 1

2
with the constraint gt + gb = 1, the Hamiltonian of Eq. (2)
slightly changes, so that all appearing fields �t are replaced
by �4 and all fields �b are replaced by �2 with the relations

(
ρ2

ρ4

)
= 1√

2

( √
gt − s

√
gb −s

√
gt − √

gb

−√
gt − s

√
gb −s

√
gt + √

gb

)(
ρt

ρb

)
,

(17)
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where s ∈ {−1, + 1}. The resulting transformed Hamiltonian
is

H⊥
K = ĵ⊥

t �
†
4(0)τ− + ĵ⊥

b �
†
2(0)τ− + H.c.,

(18)
Hz

K = ĵ z
t �

†
4(0)�4(0)τ z + ĵ z

b �
†
2(0)�2(0)τ z

with ĵ⊥
a = j⊥

a and ĵ z
a = jz√

2ga
− √

2πv(
√

ga + s
√

g¬a) where
¬t = b and ¬b = t. Note that the calculations done in first
order around jz

a = 0 in Sec. III now hold in first order around
ĵ z
a = 0, which corresponds to jz

a = 2πv(ga + s
√

gag¬a). We
want to put special emphasis on the fact that, for s = +1, the
couplings jz

t/b do not need to be small compared to j⊥
t/b, which

could be seen as unphysical considering that the respective
bare couplings should be of the same order. In fact, to assume
a small ratio jz

t/b/j
⊥
t/b is not unphysical as the renormalization

group (RG) analysis given in Ref. [30] shows. Since the terms
coupled to j⊥

t/b are relevant while the terms coupled to jz
t/b

are part of the free Hamiltonian in the RG calculations, j⊥
t/b

initially grows following the RG flow. Hence, starting with
small bare couplings of the same order, the RG flow generates
a situation with a small ratio jz

t/b/j
⊥
t/b. For the current cross

correlations, we obtain the additional contribution

χcc
AS =

∑
σ,σ ′∈{±}

s
e2

�

gb − gt

4
√

gtgb

×〈δρ4(σx)δρ4(σ ′y,t) − δρ2(σx)δρ2(σ ′y,t)〉. (19)

Terms of the form 〈�†τ−�†�〉 appear here by applying Eq. (7)
to the density operators with positive spatial argument.

The quantity χcc
AS is antisymmetric in both pairs of couplings

(gt,gb) and (ĵt,ĵb). The latter is seen by considering the
invariance exhibited by the Hamiltonian in Eq. (18) under
simultaneous exchange of the fields �4 ↔ �2 and exchange
of the couplings ĵt ↔ ĵb. In this regard, χcc

AS vanishes for an
equal coupling to the magnetic moment ĵt = ĵb, but, in general,
we encounter a perturbation of the proportionality between the
Kondo cloud and the current cross correlations.

However, χcc
AS can be eliminated under the assumption that

results of the crossed current correlations for several values
of the couplings ĵ are available A concrete example for an
elimination is to add up the current cross correlations of two
systems, where the second system differs from the first one
only by exchanged tunnel couplings ĵt ↔ ĵb. By the above-
mentioned invariance of the Hamiltonian, this exchange is
equivalent to the exchange of ρ4 ↔ ρ2. The proportionality
relation of Eq. (8) is then only slightly altered. Instead of the
Kondo cloud of one lead, a linear combination of the Kondo
clouds of both leads occurs. For instance, for (|x| + |y|)/v >

t > τK and first order in ĵ z we obtain

χcc(x,y,t) + χcc

ĵt↔ĵb
(x,y,t) = ctχ

z
t + cbχ

z
b (20)

with

ct = −2e2vkB

�3

(
s
√

gtgbT
K + gtT

K
M

)
, (21)

cb = −2e2vkB

�3

(
s
√

gtgbT
K − gbT

K
M

)
, (22)

where we introduced the auxiliary temperature T K
M =

T K
t − T K

b .

V. SUMMARY

We have argued for a generic connection between the
Kondo cloud and the space- and time-resolved current cross
correlations in a Kondo setup with helical liquid leads. The
relation relies on the equality of current and spin density in
the helical liquid. For the case of two helical liquid leads with
Luttinger parameters gt = gb = 1/2, the relation is a direct
proportionality up to first order in the z spin coupling if the
measurement is taking place sufficiently far away from the
magnetic moment. This requirement is a merit rather than
a restriction, because a distant manipulation of the system
is incapable of directly affecting the magnetic moment. With
respect to experimental realizations, we show that it is required
to be able to measure the current cross correlations in the time
domain. Furthermore, we discuss disturbances if the preferred
point of interactions, i.e., gt = gb = 1

2 , is left and give ideas
of how to restore the proportionality. As a consequence of
our results, probing the current cross correlations describes
a tool to directly detect the Kondo cloud and even resolve
it spatially. The associated measurements are conceptually
more promising than a direct measurement of the correlation
between the magnetic moment and the spin density in the
leads because the magnetic moment is in no manner directly
perturbed.
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APPENDIX

In this appendix, we calculate the time evolution of the
density operators of the Hamiltonian in Eq. (2):

H0 =
∑

j∈{t,t̂,b,b̂}

∫
dx �†(x)j (−i∂x)�(x)j ,

H⊥
K = j⊥

t �
†
t (0)τ− + j⊥

b �
†
b(0)τ− + H.c., (A1)

Hz
K = jz

t �
†
t (0)�t(0)τ z + jz

b �
†
b(0)�b(0)τ z,

setting � = v = 1. In particular, we focus on evolving ρ(x)
with x > 0 backwards in time to shortly before it has interacted
with the impurity. For this reason, we consider the operator

�(x, − x − ε) = e−iH(x+ε)�(x,t = 0)eiH(x+ε), (A2)

with ε ∈ R+, where we abandon the index of the lead as
the calculation is valid for either lead. To compute the time
evolution, we look at the time derivative of �. For spatial
arguments that are not equal to zero, the time evolution
just becomes the linear propagation because the interaction
with the magnetic moment is localized at x = 0. A technical
problem in this procedure appears directly at x = 0, where
we would have to evaluate the commutator [�(0,0),H ] which
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is not well defined. The reason for this “divergence” of the
derivative of the fermionic field is, physically speaking, the
vanishing size of the impurity. To avoid this type of divergence,
we introduce the smeared delta function δ

y

d (x) that is centered
at y ∈ R. The exact shape of this function is unimportant. Of
importance are the following properties that are going to be
used later:

lim
d→0

∫
I⊂R

dx δ
y

dP (x) =

⎧⎪⎨
⎪⎩

P (y) if y ∈ I̊ ⊂ R,
1
2P (y) if y ∈ ∂I ⊂ R,

0 else,

(A3)

for P a sum of products of the fields τ+, τ−, �, and �†

in the Heisenberg picture, where x can appear in the time
argument as well; I̊ denotes the interior of I and ∂I denotes
the boundary of I . Furthermore, the following identity has to
hold for multidimensional integrals:

lim
d→0

∫
dx1 · · · dxn δ

y1
d (x1) · · · δyn

d (xn)P (�x)

= lim
d1→0

· · · lim
dn→0

∫
dx1 · · · dxn δ

y1
d1

(x1) · · · δyn

dn
(xn)P (�x).

(A4)

A concrete example of the smeared δ function is the Lorentzian

δ
y

d (x) = d

π [d2 + (x − y)2]
, (A5)

so that the length scale d can be interpreted as the size of
the impurity. The interaction Hamiltonians with a broadened
impurity become

H⊥
K =

∑
a∈{t,b}

j⊥
a

∫
dx δ0

d (x)�†
a(x)τ− + H.c.,

(A6)

Hz
K =

∑
a∈{t,b}

jz
a

∫
dx δ0

d (x)�†
a(x)�a(x)τ z.

The time derivative of �(x) is then given by

∂t�(x,t)|t=0 = i [�(x,0),H]

= ∂x�(x) + ij⊥δx
d (0)�(x)τ+

+ ij zδx
d (0)�(x)τ z. (A7)

We now solve the time evolution for the operator � exactly
by cutting the time into infinitesimally small slices, solve the
evolution of a time slice exactly, and iterate. This technique
shows similarities to an approach taken in the derivation of the
path integral for quantum mechanics [31]. We define ε � d.
Then we obtain

e−iH2ε�(ε,0)eiH2ε = lim
N→∞

(1 − iHη)N�(ε,0)(1 + iHη)N

(A8)

with η = 2ε
N

, where the convergence of the right-hand side
towards the left-hand side is proven by comparing all orders
in ε. Denoting (1 − Hη)k�(ε,0)(1 + iHη)k =: �k(ε,0), we
look at the first time slice

�1(ε,0) = �(ε,0) − iη [H,�(ε,0)] + O(η2)
= �(ε,0) − η∂x�a(ε) − ij⊥

a δε
d (0)τ−(0)

− ij z
a δε

d (0)τ z(0)�(0,0) + O(η2)

= �(ε − η,0) − ij⊥
a δε

d (0)τ−(0)

− ij z
a δε

d (0)�a(0)τ z(0) + O(η2), (A9)

where we used [�,τz] = 0. Since we take η → 0 at the end
of our calculations, we henceforth neglect terms O(η2). This
is justified by the identity

lim
N→∞

(
1 + x

N
+ O(η2)

)N

= ex = lim
N→∞

(
1 + x

N

)N

.

(A10)

The general formula for an arbitrary number of time steps
is given by

�k = �(ε − ηk) +
∞∑

n=1

(−ij zη)n

∑n
i=1 li�k−n∑
(li )ni=1>0

δε
d (ηl1)

⎡
⎣ n∏

j=2

δ0
d (ηlj )

⎤
⎦
⎧⎨
⎩

n∏
j=1

τ z

[
η

(
n − k − j +

n−j∑
i=1

li

)]⎫⎬
⎭

×
(

j⊥

jz
τ−(ηκ) + τ z(ηκ)�(ηκ,0)

) ∣∣∣∣
κ=n−k+∑n

i=1 li

. (A11)

This can be proven by complete induction over k. Here, (li)ni=1 > 0 denotes all n-tuples of integers, each of which is larger than 0,

and the product assumes an ordering of its factors from the left to the right with increasing index, i.e.,
∏n

j=1 aj = a1 × · · · × an.
To obtain the continuum limit in time and hence the time evolution, we let N go to infinity, which is equivalent to η → 0. In
doing so, we replace ηN → 2ε and set all products of the form η × c to zero, with c being a fixed number. Furthermore, sums
of the form

∑N
l=1 ηf (ηl) become integrals for nondiverging functions and operators f . This procedure yields

�(ε, − 2ε) = �(−ε,0) +
∞∑

n=1

(−ij z
a

)n ∫ 2ε

0
dl1

∫ 2ε−l1

0
dl2 · · ·

∫ 2ε−(
∑n

i=1 li )

0
dlnδ

ε
d (l1)

⎡
⎣ n∏

j=2

δ0
d (lj )

⎤
⎦

×
⎡
⎣ n∏

j=1

τ z

(
−2ε +

n−j∑
i=1

li

)⎤⎦[j⊥

jz
τ−
(

−2ε +
n∑

i=1

li

)
+ τ z

(
−2ε +

n∑
i=1

li

)
�

(
−2ε +

n∑
i=1

li ,0

)]
. (A12)
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For a particular shape of the impurity (encoded in δd ), the
integrals in general do not simplify further. But by taking
the limit d → 0, belonging to the case that the size of the
impurity is considerably smaller than the resolution of the
possible measurements, we can exploit the properties of
the representation of the smeared δ function postulated in
Eq. (A3) and Eq. (A4) to obtain

�(ε, − 2ε) = �(−ε,0)
1 − ( jz

4

)2
1 + ( jz

4

)2 − τ−(−ε)
ij⊥

1 + i
jz

4

− τ z(−ε)�(−ε,0)
ij z

1 + ( jz

4

)2 . (A13)

In this derivation, the property (τ z)2 = 1
4 and the identity∑∞

n=0(i jz

4 )n = 1
1−i

jz

4

for |jz| < 4 have been exploited. Starting

from Eq. (A12), the evolution in time for the density operator
becomes

ρ(ε, − 2ε) = �†�(ε, − 2ε)

= ρ(−ε,0) + (j⊥)2

1 + ( jz

4

)2 [τ z(−ε) + 1/2]

+
(

ij⊥ 1 + i
jz

4(
1 − i

jz

4

)2 τ+(−ε)�(−ε,0) + H.c.

)
.

(A14)

Notably, the term containing the operators
�†(−ε,0)τ z(−ε)�(−ε,0) vanishes because its prefactor
is zero.
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