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and CFIF, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
(Received 16 December 2013; revised manuscript received 13 January 2014; published 26 February 2014)

Even in the absence of Coulomb interactions, phase fluctuations induced by quantum size effects become
increasingly important in superconducting nanostructures as the mean level spacing becomes comparable with the
bulk superconducting gap. Here we study the role of these fluctuations, termed “quantum capacitance,” in the phase
diagram of a one-dimensional ring of ultrasmall Josephson junctions at zero temperature by using path-integral
techniques. Our analysis also includes dissipation due to quasiparticle tunneling and Coulomb interactions
through a finite mutual and self-capacitance. The resulting phase diagram has several interesting features: A
finite quantum capacitance can stabilize superconductivity even in the limit of only a finite mutual-capacitance
energy, which classically leads to breaking of phase coherence. In the case of vanishing charging effects, relevant
in cold-atom settings where Coulomb interactions are absent, we show analytically that superfluidity is robust
to small quantum finite-size fluctuations and identify the minimum grain size for phase coherence to exist in the
array. We have also found that the renormalization group results are in some cases very sensitive to relatively
small changes of the instanton fugacity. For instance, a certain combination of capacitances could lead to a
nonmonotonic dependence of the superconductor-insulator transition on the Josephson coupling.
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The Josephson’s effect [1,2] reveals the central role played
by the phase of the order parameter in superconductivity. It
has been exploited in a broad spectrum of research problems
and applications: from the study of the pseudogap phase in
high-Tc materials [3], fluctuations above Tc [4], and cold-atom
physics [5] to spintronics [6] and quantum computing [7]. Of
special interest is the study of an array of superconducting
grains separated by thin tunnel junctions, usually referred
to as Josephson junctions (JJs). The physical properties of
JJ arrays are very sensitive to the grain dimensionality, the
presence of Coulomb interactions, and dissipation [8,9–12]
(see also the review [13]). Usually it is assumed that each
single grain is sufficiently large so that the amplitude of the
order parameter, the superconducting gap, is well described by
the bulk Bardeen-Cooper-Schriffer (BCS) theory. Moreover, it
is also commonly assumed that a simple capacitance model is
sufficient to account for Coulomb interactions. The phase of
each grain is therefore the only effective degree of freedom of
the JJ array.

Within this general theoretical framework a broad consen-
sus has emerged on the main features of JJ arrays: For long one-
dimensional (1D) arrays at zero temperature with negligible
dissipation, the existence of long-range order depends on the
nature of the capacitance interactions. For situations in which
only self-capacitance is important, superconductivity persists
for sufficiently small charging effects [8] provided that the
Josephson coupling is strong enough. Despite spatial global
long-range order a state of zero resistance will strictly occur
only in the case in which the supercurrent is induced by
threading a flux in a ring-shaped JJ array [14,15]. A current
in a long but finite linear JJ array will eventually induce a

resistance though for sufficiently strong Josephson coupling
it is hard to measure it as its typical time scale can be much
longer that the experimental observation time. At any finite
temperature the resistivity is always finite as a consequence of
the unbinding of phase antiphase slips.

In the opposite limit in which only mutual-capacitance
is considered, even small charging effects induce a
superconductor-insulator transition. The combined effect of
the two types of charging effects, considered in Ref. [16], can
also lead to global long-range order. On a single junction,
dissipation by quasiparticle tunneling only renormalizes [17]
the value of the capacitance. However, dissipation caused
by a Ohmic resistance [18] induces long-range correlations
between phase slips and antiphase slips that restore supercon-
ductivity provided that the normal resistance is smaller than
the quantum one. In order to illustrate the profound impact of
dissipation, it is worth noting that a state of zero resistance
in a 1D JJ array can in some cases coexist [9] with an order
parameter whose spatial correlation functions are short ranged.

The closely related problem of a quantum nanowire was
addressed in Refs. [14,19] by employing instanton techniques
to model phase tunneling and then mapping the resulting
effective model onto a 1 + 1D Coulomb gas where one of
the dimensions is imaginary time. For an infinite wire in the
zero-temperature limit a superconductor-insulator Berezinsky-
Kosterlitz-Thouless (BKT) transition occurs as a function of
the system parameters. The role of vortices in 1 + 1D is played
by phase slips which correspond to configurations for which
the amplitude of the order parameter vanishes and the phase
receives a 2π boost. By contrast at finite temperature—a
similar argument holds for finite length—the time dimension
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is compactified so, in the absence of dissipation, the Coulomb
gas analogy breaks down since, for long separations, phase and
antiphase slips become uncorrelated. As a consequence, phase
coherence is lost and the resistance is always finite [14,16,20].

As was mentioned previously, all these results assume that
the amplitude of the order parameter of each grain, which
enters in the definition of the Josephson coupling energy, is
not affected by any deviations from the bulk limit and that the
phase dynamics is induced only by classical charging effects.
Although these assumptions are in many cases sound, there
are situations in which corrections are expected.

In sufficiently small grains close to the critical tempera-
ture it is well documented that homogeneous path-integral
configurations different from the mean-field prediction, the
so-called static paths, contribute significantly to the specific
heat and other thermodynamical observables [21]. For single
nanograins at intermediate temperatures it has been shown
recently [22] that, even in the limit of vanishing Coulomb
interactions, deviations from mean-field predictions occur due
to the nontrivial interplay of thermal and quantum fluctuations
induced by finite-size effects. Experimentally, it is also well
established [23,24] that substantial deviations from mean-field
predictions occur in isolated nanograins. Indeed, it has recently
been reported [23,25] that quantum size effects enhance the
superconducting gap of single isolated Sn nanograins with
respect to the bulk limit.

It is therefore of interest to understand in more detail the
role of these finite-size effects in arrays of ultrasmall JJ where
the mean level energy spacing of single grains is smaller, but
comparable, to the superconducting gap. This paper is a step
in this direction. We study the stability of phase coherence in
arrays of 1D JJ at zero temperature. Our formalism includes the
above quantum fluctuations induced by size effects, charging
effects, and dissipation by quasiparticle tunneling. Starting
from a microscopic Hamiltonian for a 1D JJ ring-shaped array
of nanograins at zero temperature, we map the problem onto
a sine-Gordon Hamiltonian where we identify the region of
parameters in which long-range order persists in the presence
of phase fluctuations. In the limit of vanishing charging energy,
relevant for cold-atom experiments, we find the minimum size
for which the JJ array can be superfluid as a function of the
wire resistance in the normal state. We also show that quantum
fluctuations induced by finite-size effects can, in principle,
stabilize superconductivity in the limit of a negligible self-
capacitance energy but a finite mutual-capacitance energy.
We have also identified a region parameters in which a
nonmonotonic dependence of the superconductor-insulator
transition on the Josephson coupling is observed.

I. THE MODEL

We consider the system sketched in Fig. 1, consisting of
an array of L superconducting grains with periodic boundary
conditions and a total magnetic flux � passing through it,
which can be modeled by the Hamiltonian

H =
L∑

r=1

H BCS
r + H S

r + H M
r,r+1 + H T

r,r+1. (1)

Φ

CS

CM

Ic, CJ

FIG. 1. Sketch a closed ring of JJs pierced by a total flux �.

Each isolated superconducting grain is described by the BCS
term,

H BCS
r =

∑
α,σ

εα,r c†α,σ,rcα,σ,r

− grδr

(∑
α

c
†
α,1,r c

†
−α,−1,r

)(∑
α′

c−α′,−1,r cα′,1,r

)
,

(2)

accounting for the effective attractive electron-electron inter-
actions in the region where the grain size is much smaller
then the bulk superconducting coherence length. α, −α label
single-particle states related by time-reversal symmetry with
energies εα = ε−α , σ = ±1 is the spin label and δr and gr are,
respectively, the mean level spacing (inversely proportional to
the grain volume) and the dimensionless coupling constant of
grain r . We further assume the presence of self- and mutual
capacitive terms of the form

H S
r = 1

2CS
r

(
N̂r − NS

r

)2
, (3)

H M
r,r+1 = 1

2CM
r

(
N̂r − N̂r+1 − NM

r

)2
, (4)

accounting for the repulsive Coulomb interaction within each
grain and between electrons in neighboring grains. N̂r =∑

α,σ c
†
α,σ,rcα,σ,r is the total number of electrons, CS

r is the
self-capacitance the of grain r , and CM

r is the the mutual
capacitance between nearest-neighbor grains r and r + 1. The
constants NS

r and NM
r can be adjusted by applying suitable

gate voltages. Finally, the hopping of electrons between grains
is captured by the term

H T
r,r+1 =

∑
αα′σ

T
α,α′
r,r+1c

†
α,σ,t cα′,σ,r+1 + H.c., (5)

where the hybridization matrix T
α,α′
r,r+1 ∝ ∫

ψα,σ,r (x)
ψ̄α′,σ,r+1(x)dx is proportional to the overlap of the
single-particle wave functions of two neighboring grains. In
the regime of interest here—small grain sizes with respect to
the bulk coherence length—the simplifying assumption that
the hybridization is energy independent T

α,α′
r,r+1 = tr,r+1 can

safely be used, and thus H T
r,r+1 simplifies to

H T
r,r+1 = tr,r+1

∑
σ

(∑
α

c†α,σ,r

) (∑
α

cα,σ,r+1

)
+ H.c., (6)

with � = ∑
i arg tr,r+1 the total flux passing through the ring.
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II. FINITE-SIZE CORRECTIONS TO THE ACTION OF A
JOSEPHSON JUNCTION’S ARRAY

A. Partition function in the path-integral formalism

In this section we write the partition function Z = Tr[e−βH ]
in the path-integral form and identify the finite-size corrections
to the action. This is done by inserting L complex-valued
Hubbard-Stratonovich fields (HSFs) 
r to decouple the BCS
term in the superconducting channel, L real-valued HSF V S

r ,
conjugate to the number of particles on each grain, and L

real-valued HSF V M
r , conjugate to the difference of the number

of particles in neighboring grains. Using the notation � =
(cα,1,1,c

†
α,−1,1,cα,1,2,c

†
α,−1,2, . . .)

T , the partition function reads
Z = ∫

Dc D
DV e−S , with the action

S = −�†G−1� +
∫ β

0
dτ

∑
r

[
1

grδr


†
r
r + CS

r

2

(
V S

r

)2

+ iNS
r V S

r + CM
r

2

(
V M

r

)2 + iNM
r V M

r

]
, (7)

where the full Green’s function is given by

G−1 =

⎛
⎜⎜⎜⎝

G−1
1 T21

T
†

21 G−1
2

. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , (8)

and

G−1
r =

(−∂τ − ε̃α,r (τ ) 
r (τ )



†
r (τ ) −∂τ + ε̃α,r (τ )

)
, (9)

is the inverse of the electronic propagators restricted
to grain r . Here we defined ε̃α,r (τ ) = εα,r − iV S

r (τ ) −

iV M
r (τ ) + iV M

r−1(τ ) and the hybridization matrix Tr+1,r =
(
tr+1,r 0

0 −t̄r+1,r

).

Integrating out � yields the action

S = −Tr ln[−G−1] +
∫ β

0
dτ

∑
r

[
1

giδr


†
r
r + CS

r

2

(
V S

r

)2

+ iNS
r V S

r + CM
r

2

(
V M

r

)2 + iNM
r V M

r

]
(10)

solely in terms of the HSF.
We apply the unitary transformation

U = diag{ei 1
2 φ1(τ ),e−i 1

2 φ1(τ ),ei 1
2 φ2(τ ),e−i 1

2 φ2(τ ), . . .},
with φr (τ ) = φr (τ + β) + 2πnφr

(nφr
∈ Z) to the electronic

propagator G−1 in order to render real its off-diagonal anoma-
lous elements 
r (τ ) = sr (τ )eiφr (τ ), where sr (τ ),φr (τ ) ∈ R.
Note that for odd nφi

one has that Trf [G−1] = Trb[U †G−1U ],
where Trf denotes the trace over antiperiodic functions
(fermionic) and Trb the trace over periodic functions (bosonic).
For a generic nφr

we denote Trnφr
= Trf for nφr

even and
Trnφr

= Trb for nφr
odd. Whenever we have two such indices

we use Trnφ1 nφ2
for the time periodicity in indices 1 and 2.

Note, however, that this complication is only formal as we
are interested in the low-temperature properties of this action
where the distinction between even and odd nφ’s can be safely
ignored [26]. After this transformation we get

G̃−1 = U †G−1U =

⎛
⎜⎜⎜⎝

G̃−1
1 T̃21

T̃
†

21 G̃−1
2

. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , (11)

with

G̃−1
r = −1 ×

(
∂τ + ε̃α,r (τ ) + i 1

2∂τφr (τ ) −sr (τ )

−sr (τ ) ∂τ − ε̃α,r (τ ) − i 1
2∂τφr (τ )

)
, (12)

and

T̃r+1,r =
(

tr+1,r e
i 1

2 [φr+1(τ )−φr (τ )] 0

0 −t̄r+1,r e
−i 1

2 [φr+1(τ )−φr (τ )]

)
. (13)

Moreover, assuming the hopping amplitude to be small, we may develop the Tr ln[−G−1] term to second order in |tr+1,r | and
obtain the action

S[s,φ,V ] =
∑

r

{∫ β

0
dτ

[
1

giδr

s†r sr + CS
r

2

(
V S

r

)2 + iNS
r V S

r + CM
r

2

(
V M

r

)2 + iNM
r V M

r

]

− Trnφr
ln

[ −G̃−1
r

] + Trnφr nφr+1
[G̃r+1T̃r+1,iG̃r T̃

†
r,r+1]

}
. (14)

B. Leading behavior in δ

The action given by Eq. (14) is suitable for a saddle-point
expansion in both s and V fields since the action for each
grain is an extensive quantity in the number of electrons
within that grain 〈Nr〉 � ED/δr . Notice, however, that the
saddle-point equations cannot be explicitly evaluated as G̃−1

depends on φr (τ ). We proceed by noting that ∂τφr (τ ) is small,
as the phase varies smoothly as a function of τ for sufficiently
low temperatures. Formally, we set V S

r (τ ) = V S
r,0 + δV S

r (τ ),
V M

r (τ ) = V M
r,0 + δV M

r (τ ), and sr (τ ) = sr,0 + δsr (τ ), where the
subscript 0 denotes the static component (constant in τ ) of
the different quantities and the fluctuation around the static
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value, to be considered at quadratic order, are denoted by
δV S

r , δV M
r , and δsr . Physically, sr,0 is the amplitude of the

condensate on grain i and the terms iV S
r,0,iV

M
r,0 ∈ R lead to

a renormalization of the chemical potential: ε̃α,r = εα,r −
iV S

r,0 − iV M
r,0 + iV M

r−1,0.
For equally spaced levels and a particle-hole-symmetric

single-particle density of states, the tunneling term can be
simplified at low temperatures [27],

Tr[G̃r+1T̃r+1,r G̃r T̃
†
r,r+1]

�CJ
i

8

∫
dτ {∂τ [φr+1(τ ) − φr (τ )]}2

− I c
i

2

∫
dτ cos[φr+1(τ ) − φr (τ ) + φt

r ],

where φt
r is the phase of the hopping term tr+1,r = |tr+1,r |eiφt

r ,
CJ

r is the quasiparticle-induced capacitance, and I c
r is the

junction’s critical current between grains r and r + 1, given,
respectively, by [28]

CJ
i = 2

4|tr+1,r |2
δrδr+1

∫ ∞

sr,0

dν1

∫ ∞

sr+1,0

dν2

× ν1ν2

(ν2 + ν1)3
√(

ν2
1 − s2

r,0

)(
ν2

1 − s2
r+1,0

) (15)

and

I c
r = 8|tr+1,r |2

δrδr+1

∫ ∞

sr,0

dν1

∫ ∞

sr+1,0

dν2

× sr,0sr+1,0

(ν2 + ν1)
√(

ν2
1 − s2

r,0

)(
ν2

1 − s2
r+1,0

) . (16)

Note that for sr,0 = sr+1,0 = s0 these expressions simplify to
CJ

r = CJ = 3π
32

1
s0RN

and I c
r = Ic = π

2
s0
RN

with RN = ( 4|t |2π
δ2 )−1

the normal state resistance of the junction.
With these approximations the action reads

S[s,φ,V ] = S0 +
∫

dτ
∑

r

{
�rδs

2
r (τ )

+ CS
r

2
δV S

r (τ )2 + CM
r

2
δV M

r (τ )2 + 1

2
Cδ,rϕ

2
r (τ )

− i〈N0,r〉∂τφr (τ ) + CJ
r

8
{∂τ [φr+1(τ ) − φr (τ )]}2

− I c
r

2
cos

[
φr+1(τ ) − φr (τ ) + φt

r

]}
, (17)

where

S0 =
∑

i

{
Tr ln

[ −G̃−1
r,0

] + β

[
1

grδr

s2
r,0 + CS

r

2

(
V S

r,0

)2

+ iNS
r V S

r,0 + CM
r

2

(
V M

r,0

)2 + iNM
r V M

r,0

]}
(18)

only depend on the static saddle-point values, �r = 1
gr δr

−
1
2 (

∑
α

ε̃2
α,r

ξ 3
α,r

), ξα,r =
√

ε̃2
α,r + s2

0,r , 〈N0,r〉 = 1
2

∑
α(1 − ε̃α,r

ξα,r
),

G̃−1
r,0 (iωn) =

(
iωn − ε̃α,r sr,0

sr,0 iωn + ε̃α,r

)
, (19)

and where we also define

ϕr (τ ) = δV S
r (τ ) + δV M

r (τ ) − δV M
r−1(τ ) − 1

2∂τφr (τ ) (20)

and the finite-size induced self-capacitance Cδ,r = 2
δr

.
Equation (17) is now suitable to a static-path treatment [22]

once the fluctuations are integrated out. Here, as we are only
interested in the phase dynamics at low temperatures, we set
the static components to their mean-field values and integrate
out the gapped fluctuations in both the s and the V fields.
In the limit βs0 
 1 the final action in terms of the phase
degrees of freedom and assuming translational invariance in
the couplings CS

r = CS, CM
r = CM, Cδ,r = Cδ , is given by

S = 1

8

∫
dτ

∑
r,r ′

∂τφr (τ )[CR]r,r ′∂τφr ′(τ )

+ i
1

2

∑
r

〈N0,r〉
∫

dτ∂τφr (τ )

− I c

2

∑
r

∫
dτ cos

[
φr+1(τ ) − φr (τ ) + φt

r

]
, (21)

where CR = 1
C̃−1

S −C−1
M 
2

1
− CJ


2
1 is the capacitance matrix,

with 
1 the discrete derivative: (
1φ)r = φr − φr−1, φt
r =

arg tr,r+1 is the phase of the hopping term, 〈N0,r〉 = 1
2

∑
α(1 −

ε̃α,r

ξα,r
) is the average number of electrons in grain r , and

C̃S =
(

1

CS
+ δ

2

)−1

(22)

is the grain self-capacitance renormalized by quantum finite-
size effects. Note that on the lattice

∑
r (
1φ)r (
1φ

′)r =
−∑

r φr (
̄1
1φ
′)j , with (
̄1φ)r = φr+1 − φr ; for the sake

of simplicity we use the notation 
2
1 to denote the lattice

Laplacian 
̄1
1.
Equation (21) is the central result of this section, it contains

the effective low-energy theory for a junction at T � Tc,
including charging effects, quasiparticle dissipation, and for
the first time quantum fluctuations induced by finite-size
effects Cδ . The Berry phase term—second term of Eq. (21)—
ensures that, in the ground state (i.e., for T = 0), the average
number of electrons on each grain is even [26]. In the following
we assume that this condition is fulfilled and drop this term.

Note that for a set of isolated finite-size grains with I c =
CJ = C−1

M = 0 no superconducting phase ensues as the action
in Eq. (21) reduces to �

2

∫
dτ [∂τφr (τ )]2 with the phase stiffness

� = C̃S
4 controlling the exponential time decay of the order

parameter correlation function �̂r (τ ) = gδ
∑

α cr,α(τ )cr,ᾱ(τ ):

〈�r (τ )�†
r ′(τ ′)〉 ∝ δr,r ′ s2

0e
− |τ−τ ′ |

2� .
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III. SUPERCONDUCTING TRANSITION

A. Hamiltonian formulation

In this section we analyze the action given by Eq. (21),
without the Berry phase term

∫
dτ∂τφr (τ ) as we assume an

even number of electrons in each grain. The calculation is
carried out by first mapping this equation onto an equivalent
Coulomb gas model. The Coulomb gas is subsequently
transformed into a sine-Gordon action for which a perturbative
Renormalization Group (RG) treatment can be effectively
performed .

First we provide a description of the model in terms of
the effective low-energy Hamiltonian for the phase degrees
of freedom in order to make contact with previous works
where this effective description is taken as the starting point
of the calculation. The initial step is the discretization of the
imaginary time in Eq. (21): τ = 
τ τ̃ (with τ̃ = 1, . . . ,N and
N
τ = β). Using the identity

lim

τ→0

∑
n=n1,...,nN

e− 
τ
2 n·A−1·n+
τibn

=
(√

2π

det(A)
τ

)N

e− 
τ
2 b·A·b, (23)

the partition function can be rewritten as Z =∫
Dφ

∑
n e−iS[φ,n], with

S[φ,n] =
∑
τ̃ ,r,r ′

2
τ n(τ̃ ,r)
[
C−1

R

]
rr ′n(τ̃ ,r ′)

−
∑
τ̃ ,r

in(τ̃ ,r)[φ(τ̃ + 1,r) − φ(τ̃ ,r)]

− Ic

2

∑
τ̃ ,r


τ cos
[
φ(τ̃ ,r + 1) − φ(τ̃ ,r) + φt

r

]
.

(24)

In this form, Eq. (24) can readily be interpreted as the Trotter-
sliced action coming from the Hamiltonian

H =
∑
rr ′

2n̂r

[
C−1

R

]
rr ′ n̂r ′ − Ic

2

∑
r

cos
[
φ̂r+1 − φ̂r + φt

r

]
, (25)

where n̂r = (−i∂φr
), the variable conjugated to φ̂r , is the

number of Cooper pairs in grain r .

B. Partition function of the Coulomb gas

We follow the procedure of [29] to rewrite the action of a JJ
array in terms of the partition function of a classical Coulomb
gas. Using the Villain decomposition of the cosine term,

ez cos(θ) � I0(z)
∞∑

m=−∞
e− 1

2 μ(z)m2
eimθ , (26)

with I0(z) a modified Bessel function of the first kind, valid
for both large and small z, respectively, with

μ(z) =
{

−2 ln(z/2) for z � 1,

z−1 for z 
 1.
(27)

Equation (24) can be written as

S[φ,n] =
∑
τ̃ ,r,r ′

2
τn0(τ̃ ,r)
[
C−1

R

]
rr ′n0(τ̃ ,r ′)

+
∑
τ̃ ,r

{
1

2
μ

(
Ic
τ

2

)
n2

1(τ̃ ,r)−iφt
rn1(τ̃ ,r)−iφ(τ̃ ,r)

×[n1(τ̃ ,r−1)−n1(τ̃ ,r) + n0(τ̃ − 1,r) − n0(τ̃ ,r)]

}
,

(28)

where we relabel n → n0 in Eq. (24) and m → n1 in Eq. (26)
in order to interpret nμ(τ̃ ,r) as an integer field living on links
of a square lattice—an integer-valued 1 form on the square
lattice—with n0 corresponding to timelike links and n1 to
spacelike links.

Integrating out the φ field yields the divergence-free
constraint

∂n ≡ 
1n1 + 
0n0 = 0, (29)

where 
0f (τ̃ ,r) = f (τ̃ ,r) − f (τ̃ − 1,r) is the discrete
derivative along the time direction. Locally, such constraints
can be satisfied by writing n as the rotational of an integer-
valued field living on the centers of plaquettes—an integer-
valued lattice 2 form—n = ∂a or in components, n0 =
−
1a01, n1 = 
0a01, where the subscript of a denotes that
this field lives on spatiotemporal plaquettes. The operator ∂

can be seen as the lattice exterior coderivative. Globally, the
most generic solution of the constraint in Eq. (29) includes
a nontrivial divergence-free field that cannot be written
as a rotational. On a torus, such general solution can be
decomposed as n = ∂a + ∑

α cαbα . More explicitly,

n0(τ̃ ,r) = −
1a01(τ̃ ,r) +
∑

α=0,1

cαbα
0 (τ̃ ,r), (30)

n1(τ̃ ,r) = 
0a01(τ̃ ,r) +
∑

α=0,1

cαbα
1 (τ̃ ,r), (31)

where b0 and b1 (with ∂bα = 0) are integer-valued 1 forms
on the lattice that cannot be written as a rotational. They
are chosen, see Fig. 2, to have a minimum flux along
time and space directions, respectively:

∑
τ̃ ,r b0

μ(τ̃ ,r) = Nδμ0,∑
τ̃ ,r b1

μ(τ̃ ,r) = Lδμ1. cα=0,1 are integer-valued coefficients
labeling different topological sectors. Note that in the infinite-
volume limit, i.e., zero temperature and L → ∞, the b

terms can be dropped in the solution as the space becomes

τ̃

b1

b0

r

FIG. 2. (Color online) Sketch of two integer-valued 1 forms that
cannot be written as ∂a = {−
1a01,
0a01} with a a 2 form. b0

0(τ̃ ,r) =
1 and b1

1(τ̃ ,r) = 1 for (τ̃ ,r) in the yellow and blue lines, respectively,
otherwise b0

0(τ̃ ,r) = b1
1(τ̃ ,r) = b1

0(τ̃ ,r) = b0
1(τ̃ ,r) = 0 .

064513-5
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topologically trivial. Later we drop the b0 contribution as we
are interested in the zero-temperature limit.

In terms of the a field and the integers c0 and c1, the partition
function is given by the unconstrained sum Z = ∑

a,c e−S[a,c],
with

S[a,c] =
∑
τ̃ ,r,r ′

2
τ

[

1a(τ̃ ,r) −

∑
α

cαbα
0 (τ̃ ,r)

]

×[
C−1

R

]
rr ′

[

1a(τ̃ ,r ′) −

∑
α

cαbα
0 (τ̃ ,r ′)

]

− ic1�+1

2

∑
τ̃ ,r

μ

(
Ic
τ

2

)[

0a(τ̃ ,r)+cαbα

1 (τ̃ ,r)
]2

,

(32)

where the total flux � = ∑
r φt

r .
Using the Poisson summation formula

∑
a f (a) =∑

m

∫
dψ f (ψ)e2πimψ to improve the convergence of the sum

over Eq. (32) [29] and integrating over ψ yields

Z =
∑
m,c

δ∑
m=0e

−S[c,m]eic1�, (33)

where the sum over m is restricted such that the so-called
neutrality condition

∑
rτ̃ m(τ̃ ,r) = 0 is fulfilled [29] and

S[c,m] = (2π )2

2

∑
τ̃ τ̃ ′rr ′

m(τ̃ ,r)G(τ̃ − τ̃ ′,r − r ′)m(τ̃ ′,r ′)

− 2πi
∑

α

cα

∑
τ̃ ,r

m(τ̃ ,r)(∂−1bα)(τ̃ ,r), (34)

with (∂−1bα)01 = (
2
0 + 
2

1)−1(
1b
α
0 − 
0b

α
1 ) the inverse of

the ∂ operator defined in Eq. (29). The last term in Eq. (34) for
b1 can be simplified to∑

τ̃ ,r

m(τ̃ ,r)(∂−1b1)(τ̃ ,r) =
∑

j

[(

2

0 + 
2
1

)−1

̄0m

]
(0,r).

The Green’s function is given by

G−1 = −4
τC̃−1
S 
2

1

[
1{

1 − C−1
M C̃S


2
1

} − C̃−1
S CJ


2
1

]−1

−μ

(
Ic
τ

2

)

2

0. (35)

In summary, after integrating over the ψ field that represents
small phase fluctuations, the action in Eq. (34) is given solely
in terms of topological excitations, m, that can be interpreted as
an instanton field representing a phase slip. The corrections due
to nonvanishing values of C−1

S CJ and C−1
M C̃S do not change

the nature of the long-range interaction between the phase
slips, as they multiply higher powers of the discrete Laplacian.
Nonetheless, they appear in Eq. (34) in inequivalent ways;
further we see this translates to different contribution to the
monopole energy to create monopole pairs.

C. Flux quantization

To understand how the flux piercing the ring gets quantized
in the superconducting phase, where the density of instantons

(phase slips) vanishes, let us examine the partition function
given in Eq. (33). For simplicity, let us first take the zero-
temperature limit in order to ignore the b0 field. The flux �

is imposed to the system assuming that the magnetic field
far from the ring is constant and perpendicular to the z axes
in Fig. 1. A complete description of the system array + field
should include the dynamics of the electromagnetic field as
well. However, this is too involved and not really needed
here; the only thing that is required is to remember that
the spacial distribution of the electromagnetic field (and thus
the flux piercing the ring) is itself determined by an action
containing the electromagnetic contribution plus the coupling
of the electromagnetic field to the instanton configurations
given by the last term of Eq. (34).

Performing the summation over c1 in Eq. (33) one observes
that the partition function of a system with flux � can be
written as

Z =
∑
m,c1

δ∑
m=0 δ2π

(
� − �1

m

)

×e− (2π)2

2

∑
τ̃ r,τ̃ ′r′ m(τ̃ ,r)·G(τ̃−τ̃ ′,r−r ′)·m(τ̃ ′,r ′), (36)

where δ2π is the 2π -periodic δ function and �1
m =

2π
∑

r [ 
̄0


2
0+
2

1
m](0,r) ∈ R. To the action of the free elec-

tromagnetic action, one should thus add the monopole con-
tribution F [�] = − ln Z. Directly from Eq. (36) one can
observe that if the density of phase slips vanishes (i.e.,

〈 1
NL

√∑
τ̃ ,r m2(τ̃ ,r)〉 = 0), then �1

m = 0 and thus � has to

be quantized in multiples of 2π . When phase slips proliferate,
�1

m is a fraction of 2π , for a generic configuration of instantons
m, the summation over all m configurations allows for a
continuum value of �.

D. Superconducting-insulating transition

Having understood how the flux gets quantized once instan-
tons are suppressed, let us neglect the topological terms [i.e.,
set c0,1 = 0 in Eq. (33)] in order to study the superconducting-
insulating transition. A simple way of addressing this question
is to map the problem to the sine-Gordon model. The main
result we report in this section is that the superconducting-
insulating phase transition is Kosterlitz-Thouless-like, even in
the presence of a finite CM and CJ. This extends the results
of Ref. [16], where the case CM �= 0, CJ = 0 is considered.
Nonetheless, CM and CJ renormalize the instanton-core energy
in rather different ways. By studying how this energy gets
renormalized we obtain the behavior of the superconducting-
insulating transition line as a function of Ic, C̃S, CM, and CJ. We
note that C̃S also includes a term ∝1/δ coming from quantum
fluctuations induced by finite-size effects that so far had not
investigated in the literature.

The first step to get the sine-Gordon action is to regularize
the instanton interaction kernel at the origin G(τ̃ ,j ) →
G(τ̃ ,j ) − G(0,0) in Eq. (34) by making use of the neutrality
condition. After this procedure the asymptotic τ̃ ,j → ∞ form
of the instanton (anti-) instanton interaction is given by

(2π )2[G(τ̃ ,r) − G(0,0)] � G̃(τ̃ − τ̃ ′,r − r ′) − ν, (37)
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FIG. 3. (Color online) (a) Plot of the function κ as a function of C̃S/CM and CJ/C̃S computed numerically from the asymptotic form of
G(τ̃ ,r) − G(0,0) for τ,r → ∞ at λ = 1. (b) Phase diagram in the {

√
IcC̃S/8,C̃S/CM} plane for CJ = 0 for different values of the nonuniversal

constant A. Below the phase transition line the system is a superconductor and above it is an insulator. The horizontal dashed line corresponds to
the critical ratio C̃S/CM ≈ 0.375 above which the system is always in the insulating phase in the

√
IcC̃S/8 → ∞ limit. The vertical dotted line

at C̃S/CM = 2/π marks the lower bound obtained for A = 0. (c) Phase diagram in the {
√

IcC̃S/8,CJ/C̃S} plane for CM → ∞. (d) Complete
phase diagram in the {

√
IcC̃S/8,C̃S/CM,CJ/C̃S} space for different values of A.

where

G̃(τ̃ ,r) = −2π

√
IcC̃S/8 ln(

√
τ̃ 2/λ2 + r2) (38)

is the long-range instanton interaction potential and

ν =
√

IcC̃S/8 κ(λ,C̃S/CM,CJ/C̃S) (39)

is the instanton-core energy. Choosing the regulator 
τ ≈√
C̃S/2Ic such that Ic
τ/2 
 1 and 
τ � 1 [15,30], we

observe by Eq. (27) that μ( Ic
τ

2 ) � 2
Ic
τ

. The anisotropy

between time and space directions λ =
√

C̃S/2Ic(
τ )2 is thus
of order 1. κ depends on all ratios λ,C̃S/CM and CJ/C̃S;
however, it is mildly varying as a function of λ around λ = 1.
In the following we take the λ = 1 prescription [15,30] for our
numerical analysis.

The function κ can be computed numerically by subtracting
the asymptotic behavior G̃(τ̃ ,r) to the right-hand site of
Eq. (37) and numerically integrating the resulting expression.
After a careful analysis of the numerical data to ensure that the
asymptotic values are well reproduced, we obtained the results
of Fig. 3(a).

Using the neutrality condition once more, the action
acquires the Coulomb (lattice) gas form,

S[m] �
∑

rτ̃ �=r ′ τ̃ ′
m(τ̃ ,r)G̃(τ̃ − τ̃ ′,r − r ′)m(τ̃ ′,r ′)

+ ν
∑
rτ̃

[m(τ̃ ,r)]2. (40)

The (lattice) sine-Gordon model can be obtained by inserting
a HSF and using the identity given in Eq. (26):

Z =
∑
m

δ∑
m=0e

−S[m] ∝
∫

Dψ e− 1
2 ψG̃−1ψ+u

∑
x cos(ψx ), (41)

with μ(u) = ν given by Eq. (27). Note that in this mapping
the neutrality condition is assured by the fact that G̃−1(ω =
0,k = 0) = 0. The usual (continuum) sine-Gordon action, that
maintains the universal properties of the lattice model, is
obtained taking the continuum limit by formally introducing
a regularizing lattice constant a and taking the limit a → 0.
In the continuous form the inverse of the kernel G̃ can be

straightforwardly identified: 1
2π

( 1
λ
∂2
x1

+ λ∂2
x0

) ln(
√

x2
0

λ2 + x2
1 ) =

δ(x0)δ(x1). After a rescaling of the axes in the x0 direction, one
obtains the continuum sine-Gordon action

S = −1

2

∫
d2x[g(∇ψ)2 − λa−2u cos(ψ)], (42)

with g = 1
(2π)2

√
8

IcC̃S
. This model has a phase transition for g =

gc, which can be estimated by a perturbative renormalization
group procedure to first order in u [31],

gc = 1

8π
− y1λu + O(u2), (43)

where y1 � 1/8 [32] and μ(u) � −2 ln(u/2).
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Substituting these values in Eq. (43), one obtains the phase
transition condition√

8

IcC̃S
= π

2

[
1 − Ae

− 1
2

√
Ic C̃S

8 κ(λ,
C̃S
CM

,
CJ
C̃S

)]
, (44)

where A = 16πy1λ.
Equation (44) predicts the form of the Kosterlitz-Thouless

transition line as a function of C̃S/CM, CJ/C̃S, and the
nonuniversal constant A. We have now all the ingredients to
discuss the phase diagram of the 1D JJ array.

IV. DISCUSSION

The phase diagram as a function of C̃S/CM for CJ = 0 is
depicted in Fig. 3(b). As was expected, the stability of the
superconducting phase is reduced upon increasing the ratio
C̃S/CM, in agreement with Ref. [30] where a perturbative
analysis around C̃S/CM = 0 was performed. For C̃S/CM →
∞ it is well known that [8] the system is always in the
insulating phase independently of the value of

√
IcC̃S/8. The

expression Eq. (44) interpolates between these two regimes.
It predicts a critical value C̃S/CM ≈ 0.375, above which the
system is always in the insulating phase in the

√
IcC̃S/8 → ∞

limit. For this critical ratio, κ vanishes and becomes negative
(κ < 0) for larger values of C̃S/CM which, for sufficiently
large

√
IcC̃S/8, renders the system insulating due to the

proliferation of phase slips. The nonlinearity of the relation
Eq. (44) induces a striking feature in the transition line for
A smaller than unity: Superconductivity is predicted to have a
reentrant behavior. Here, upon increasing

√
IcC̃S/8, the system

passes from insulator to superconductor and again to insulator.
This is a rather contraintuitive behavior, as one would naively
expect that an increase of the Josephson energy (proportional to
Ic) always enhances superconductivity. It would be very inter-
esting to search for experimental signatures of this phenomena.
However, we must also note that A is a nonuniversal constant
that depends on various factors including the accuracy to which
the instanton fugacity is computed, the exact choice of 
τ ,
and the system parameters. At present we cannot rule out that in
the range of plausible parameters for realistic materials A � 1
and this nonmonotonicity is not observed. Another potential
limitation of our results is that, since Eq. (43) is only valid
for small values of u, the obtained transition lines are only
qualitatively correct.

As is observed in Fig. 3(c), the presence of a finite CJ, in the
limit CM → ∞, increases the stability of the superconducting
phase. Even away from this limit, a finite CJ makes more
robust the superconducting phase. In Fig. 3(d) the full phase
diagram is depicted as a function of

√
IcC̃S/8, C̃S/CM, and

CJ/C̃S for different values of the nonuniversal constant A.
Another striking feature of the phase diagram, besides the
reentrant behavior mentioned previously, is the fact that, even
for a relatively large ratio C̃S/CM, which brings the system
deep into the insulating phase, a fairly small value of CJ/C̃S

can restore superconductivity.
There are also intriguing features related to the interplay be-

tween quantum capacitance and charging effects. For instance,
in the limit in which the charging energy is only due to a finite
mutual capacitance there is no global superconductivity [8] as

phase fluctuations in each grain are independent. However, the
inclusion of “quantum” capacitance Cδ , induced by quantum
size effects not related to Coulomb interactions, changes
this picture qualitatively. From Eq. (44) it is clear that a
finite Cδ might stabilize superconductivity in a certain range
of parameters even if the self-capacitance energy is zero.
Therefore, a finite quantum capacitance, which occurs in all
systems no matter the nature of the interactions, can help
restore long-range order in some cases.

V. APPLICATION TO COLD-ATOM PHYSICS

In this section we investigate the fate of superconductivity in
an array in which Coulomb interactions are absent in the limit
in which the grain mean level spacing δ becomes comparable
to the bulk gap. For that purpose we study the interplay among
the Josephson coupling, the quantum capacitance Cδ ∼ 2/δ,
and the quasiparticle dissipation CJ . This question can be
easily addressed by solving Eq. (44) in the limit of negligible
charging energies. This is not of academic interest as it is
possible to study experimentally 1D JJ arrays in a cold-atom
setting [5] with no Coulomb interactions at all. Moreover, in
cold-atom physics many parameters such the tunneling rate,
directly related to RN, and the gap 
0 can be controlled with
great precision, so an experimental verification seems feasible.

For sufficiently small grains it is broadly expected that
superconductivity will not survive unless the grains are
strongly coupled so that the effective granularity of the array
is heavily suppressed. Likewise, we expect to have global
superconductivity for large grains where quantum fluctuations
are negligible. Therefore, for a given value of the normal
resistance RN , there must exist a minimum grain size for
which phase coherence can occur despite a finite quantum
capacitance Cδ . According to Eq. (44), the best-case scenario
for the array to stay superconducting corresponds to the limit
of infinite fugacity (or A = 0), which sets the following lower

bound on the grain mean level spacing δc ≈ πIc

32 = π2
0Rq

32RN

from which it is possible to estimate the minimum grain size.
For metallic superconductors the above estimation results in
a minimum grain size of order L ∼ 5 nm though important
variations are expected depending on the material. A finite
fugacity is expected to weaken the superfluid state and
therefore to decrease δc. The evolution of δc as a function
of Rq/RN for different values of CJ and the nonuniversal
parameter A, depicted in Fig. 4, agrees with this prediction.

0 1 2
0

0.25

0.5

R0 RN

Δ

A = 1.2
A = 1.0
A = 0.8
A = 0.0

Rq/RN

δ c
/
Δ

0 1 2
0

0.1

0.05

FIG. 4. (Color online) Phase diagram as a function of δc/
 and
Rq/RN plotted for different values of the nonuniversal constant A.
Below the curves the system is superconducting and above them it
behaves as an insulator.
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Note that no reentrant behavior is observed as there is no
charging energy related to a mutual capacitance. Finally, we
note that our calculation is only valid for δ/
0 � 1 so, from
the above expression for δc, it is clear that phase coherence
is attainable even in the region RN ∼ Rq , where the contact
among grains is weak and only induces a small smoothing of
the spectral density.

VI. SIZE DEPENDENCE OF CLASSICAL AND
“QUANTUM” CAPACITANCE

As the grain size decreases, both classical and quantum
capacitance play a more important role in the description of
the array. Naively, one might think that for sufficiently small
grains charging effects are, in general, less important than
quantum capacitance effects since the former Ec ∝ 1/L2 but
the latter is proportional to δ ∝ 1/L3. However, we note the
capacitance and the mean level spacing depends on completely
different parameters, the former on the dielectric constant
of the material and the details of the substrate while the
latter on the Fermi energy and the effective electronic mass.
As a result, it is plausible that, even if the area scaling
holds, both contributions might still be similar for grain
sizes L ∼ 10 nm. This is consistent with the experimental
results of [33] for Pb superconducting islands, where it
was possible to reproduce the expected classical scaling
of the capacitance with the area only for relatively large
grains. Indeed, in a Si(111) substrate the charging energy
and the mean level spacing of a L ∼ 7-nm grain with C ≈
40 aF can be comparable. Therefore, quantum fluctuations,
not related to charging effects, must be taken into account
in any quantitative theoretical model of superconducting
nanograins.

VII. CONCLUSIONS

We have investigated the robustness of superconductivity
in a 1D JJ array of nanograins at zero temperature. We go

beyond the standard theoretical treatment of this problem
by including quantum fluctuations, not related to Coulomb
interactions, induced by finite-size effects, referred to as
“quantum capacitance.” By using path-integral techniques
we have studied the phase diagram of this system including
also charging effects and quasiparticle dissipation. We have
treated the model analytically by mapping it onto a 1 + 1D
Coulomb gas and then to a sine-Gordon model which is known
to undergo a Kosterlitz-Thouless transition. For sufficiently
large grains, long-range order is always robust to small self-
capacitance charging effects. However, the combined effect
of a vanishing self-capacitance energy and a finite mutual-
capacitance energy leads to breaking of phase coherence.
We have shown that, even in this limit, superconductivity
is stabilized by a quantum capacitance. In systems with
vanishing charging effects, relevant in cold-atom experiments,
we have shown that long-range order persists up to normal
resistances comparable to the quantum one. We have also
identified the minimum grain size for global superconductivity
to occur in this limit. We have found that the phase diagram
resulting from the renormalization group analysis is to some
extent sensitive to specific details of the model embodied
in a nonuniversal prefactor of the fugacity. As an example,
for certain capacitance configurations, small changes in the
prefactor of the fugacity can lead to rather contraintuitive
results such as a transition from superconductor to insulator
by increasing the Josephson coupling.
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