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Asymmetric Andreev reflection induced electrical and thermal Hall-like effects
in metal/anisotropic superconductor junctions
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By investigating the nonequilibrium transport across a metal/superconductor junction in both nonrelativistic
and relativistic cases, we reveal that the asymmetric Andreev reflection with anisotropic superconductors is able
to induce electric and thermal Hall-like effects in the absence of a magnetic field. That is, a longitudinal electric
voltage or temperature bias can inducetransverse electric or thermal currents merely through the asymmetric
Andreev reflection, respectively. In particular, a transverse thermoelectric effect, i.e., the Ettingshausen-like
effect, is identified, although the conjugate Nernst effect is absent. The direction change of these electric and
thermal Hall-like currents is also discussed. The Hall-like effects uncovered here do not require the conventional
time-reversal symmetry breaking but, rather, originate from the mirror symmetry breaking with respect to the
interface normal due to the anisotropic paring symmetry of the superconductor.

DOI: 10.1103/PhysRevB.89.064512 PACS number(s): 74.45.+c, 72.15.Jf, 73.23.−b, 74.78.Na

I. INTRODUCTION

It was first noted by Alexander F. Andreev 50 years ago
that the interface between a metal and a superconductor can
retroreflect an incident electron as a positive charged hole,
while the missed charges enter the superconductor as a Cooper
pair, hereafter called Andreev reflection (AR) [1]. Since its
disclosure, the AR has never stopped surprising us with new
phenomena, such as a zero-bias conductance peak [2,3] in
d-wave superconductors, nonlocal crossed AR [4,5], specular
AR in Dirac materials [6,7], and Majorana fermions formed by
exotic Andreev bound states in topological superconductors
[8]. In this work, we report a new phenomenon related to
AR; that is, the asymmetric Andreev reflection (AAR) in
anisotropic superconductors is able to induce electric and
thermal Hall-like effects, in the absence of a magnetic field [9].

Conventionally, various classical and quantum Hall effects
arise in the presence of magnetic orders, like magnetization
and an external magnetic field. In other words, Hall effects
usually require broken time-reversal symmetry. One exception
is the various spin-related Hall effects with spin-orbital-like
interactions in the absence of magnetic fields [10,11] which
can occur with the time-reversal symmetry preserved because
the spin current is even under time-reversal operation. A recent
study also showed that with the application of space-time-
dependent potentials on a Dirac material, a Hall-like charge
current emerges [12]. In addition, the Hall-like thermoelectric
transport is also proposed as a new and promising direction
for microscale and cryogenic Peltier cooling [13], wherein a
longitudinal electric current generates a transverse heat current
without a magnetic field.

The AAR that we uncover here provides a novel mechanism
for Hall-like transverse charge and heat transports, in spite of
the fact that the transverse momentum is conserved across the
junction. It has direct implications for transverse microscale
and cryogenic Peltier cooling. The AAR-induced Hall-like
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effects do not require broken time-reversal symmetry. They
result from the breaking mirror symmetry with respect to
the interface normal due to the anisotropic pairing of the
superconductor.

II. MODEL AND RESULTS

Let us consider a two-dimensional metal/superconductor
(N/S) junction, with the y-direction translational invariant
interface located at x = 0, which is assumed to be the only
boundary of the problem. Therefore, we analyze the bulk
transport, where the elementary (quasi-)particles with energy
E are described by the Bogoliubov–de Gennes equation [14],

Ĥ

(
f

g

)
= E

(
f

g

)
, (1)

with the total Hamiltonian

Ĥ =
(

Ĥ0(�k) + V (x) − EF �̂�(x)
�̂†�(x) EF − Ĥ ∗

0 (−�k) − V (x)

)
. (2)

f and g denote the electron-like and hole-like components
of the wave function, respectively. Ĥ0(�k) is the Hamiltonian
for electrons on the N side, while Ĥ ∗

0 (−�k) is the time-reversal
counterpart for holes. V (x) denotes the barrier potential at the
interface. The Fermi energies EF are assumed to be equal on
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FIG. 1. (Color online) Schematic of the Andreev reflection, nor-
mal reflection, and transmissions at the N/S interface. In the
nonrelativistic case, the N side is just the topologically trivial normal
metal. In the relativistic case, the N side can be graphene, the metallic
surface of topological insulators, or other Dirac-like materials. The S
side is the corresponding superconductor with d-wave symmetry.
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both the N and the S sides. Without loss of generality, the
step-like superconducting pair potential �̂�(x) is adapted so
that the region x < 0 denotes the N side while the region x > 0
represents the S side [15]. Note that in the weak-coupling limit,
the superconducting coherence length is much larger than the
Fermi wavelength [14], EF � |�|.

We consider the S side to have a d-wave pairing symmetry,
representative of anisotropic superconductors, and assume
electrons to be injected from the N side with incoming angle
θ and energy E > 0 measured from EF . As depicted in Fig. 1,
the reflection at the interface is either a normal specular
reflection with amplitude b(E,θ ) or an Andreev retroreflection,
converting electrons to holes, with amplitude a(E,θ ). The
transmitted electron- and hole-like quasiparticles experience
two different values of pair potential, �(θ ) = �0 cos(2α − 2θ )
and �(−θ ) = �0 cos(2α + 2θ ), with amplitudes c(E,θ ) and
d(E,θ ), respectively, where �0 is the maximum of the
angle-dependent superconducting gap and α denotes the
misoriented angle between the crystal axis of the dx2−y2 -wave
superconductor and the normal direction of the interface.

For both reflection and transmission processes, the trans-
verse (y-direction) momentum parallel to the interface is
conserved across the interface [1]. Therefore, for incident
electrons with vanishing y momentum on average over θ , one
would never expect that a nonvanishing transverse transport
emerges. Therefore, the conventional wisdom (as, indeed, is
the case in the literature and textbooks) has never considered
Hall transports in the absence of a magnetic field since
the disclosure of AR a half-century ago [1]. This situation
remained the same even after the discovery of anisotropic su-
perconductors. However, as we show below, |�(θ )| �= |�(−θ )|
as a peculiar feature of anisotropic superconductors gives
rise to the AAR amplitude (|a(θ )|2 �= |a(−θ )|2), which
subsequently induces the anomalous electric and thermal
Hall-like effects in the transverse direction. We exemplify
these AAR induced Hall-like effects in both a nonrelativis-
tic and a relativistic case, adapting the Andreev condition
EF � (|�|,E) without loss of generality.

A. Nonrelativistic asymmetric Andreev reflection

For the nonrelativistic case where the N side is a normal
metal and the S side a superconductor, we have (f,g) acting
on the basis (ψe,ψh) and Ĥ0(�k) = ��k2/(2m). The interface
barrier is modeled as a δ function, V (x) = U0δ(x), and
�̂ = �(θ ) = �0 cos(2α − 2θ ) denotes the angle-dependent
superconducting gap.

Since the electrons and holes are both the energy carriers,
but with opposite charge, we define the energy probability den-
sity ρQ = E(|f |2 + |g|2) and the charge probability density
ρe = e(|f |2 − |g|2). By substituting these definitions into the
Bogoliubov–de Gennes equation, we have two conservation
laws [16–18]:

∂ρQ

∂t
+ �∇ · �JQ = 0, (3a)

∂ρe

∂t
+ �∇ · �Je = 4e

�
Im[f †�̂g], (3b)

which determine the energy current density �JQ =
E�

m
Im[f † �∇f − g† �∇g] and the electric current density �Je =

e�

m
Im[f † �∇f + g† �∇g]. Since currents are conserved across the

junction interface, we can simply consider the wave functions
only on the N side [18],(
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]
eikyy, (4)

where kx = kF cos θ and ky = kF sin θ with kF = √
2mEF /�.

The first term on the right-hand side denotes the incoming wave
function, the second term denotes the AR converting electrons
to holes with amplitude a(E,θ ), and the last term is the normal
reflection with amplitude b(E,θ ). Substituting it into the
transverse current formulas J

y

Q = E�

m
Im(f †∂yf − g†∂yg) and

J
y
e = e�

m
Im(f †∂yf + g†∂yg), we then find the angle-resolved

y-direction energy and electric current densities:

J
y

Q = 2EvF sin θ (1 − |a|2 + |b|2 + 2Re[be−2ikxx]), (5)

J y
e = 2evF sin θ (1 + |a|2 + |b|2 + 2Re[be−2ikxx]), (6)

where vF = �kF /m and the prefactor 2 is restored for the
spin degrees of freedom. The opposite signs before |a|2 in J

y

Q

and J
y
e indicate that the AR blocks (retroreflects) the energy

transport but transmits the charge by generating a Copper
pair on the S side. The positive |b|2 implies that the specular
normal reflection transmits the y component of both energy
and electric currents. The last term, 2Re[be−2ikxx], results from
the interference between the incident wave and the normal
reflected one, which produces transverse currents that are
oscillatory dependent on the x position.

However, as we will see, after considering all the possibil-
ities of the incoming angle θ , all the terms containing b(E,θ )
will vanish and only the term containing AR a(E,θ ) will
survive. The normal reflection cannot provide the transverse
transport on average, but the AAR can. In fact, if we follow
Ref. [3] to solve a and b, we get

a(E,θ ) = cos2 θ
+e−iφ+

cos2 θ + Z2(1 − 
+
−e−i(φ+−φ−))
, (7)

b(E,θ ) = −Z(Z + i cos θ )(1 − 
+
−e−i(φ+−φ−))

cos2 θ + Z2(1 − 
+
−e−i(φ+−φ−))
, (8)

where Z = U0/(�vF ) is the dimensionless barrier
strength [19], eiφ± = �(±θ )/|�(±θ )|, and 
± =
v±/u±, with v± =

√
1
2 (1 −

√
1 − |�(±θ )|2/E2), u± =√

1
2 (1 +

√
1 − |�(±θ )|2/E2). From the expressions, we

know that b is an even function of θ , so that after integration
over the incident angle θ ,the contributions of |b|2 sin θ

and Re[be−2ikxx] sin θ to both current densities will vanish.
However, a is not an even function of θ because 
+ → 
−
under θ → −θ . Therefore, AAR plays a crucial role in the
Hall-like effect in anisotropic superconductors.

B. Relativistic asymmetric Andreev reflection

For the relativistic case, the N side is a Dirac material such
as graphene or the metallic surface of a topological insulator,
and the S side is the corresponding superconductor. Taking
the latter (the metallic surface of a topological insulator),
for example, we have (f,g) acting on the Nambu basis

064512-2



ASYMMETRIC ANDREEV REFLECTION INDUCED ELECTRICAL . . . PHYSICAL REVIEW B 89, 064512 (2014)

(ψe↑,ψe↓,ψh↑,ψh↓) and Ĥ0(�k) = �vF (kxσ̂y − kyσ̂x), where
vF is the Fermi velocity and σ̂x(y) denote Pauli matrices
[10,11]. Using graphene will make a small difference in
the mathematical representation, but the physics and final
results will not change. The interface barrier is described by
V (x) = U0

d
�(x)�(x − d), with d being the barrier thickness.

By taking the limit d → 0 [20], we obtain a dimensionless
barrier strength Z = U0/(�vF ). The angle-dependent super-
conducting pair potential now becomes �̂ = iσ̂y�(θ )�(x).

In this relativistic case, f = (ψe↑
ψe↓) and g = (ψh↑

ψh↓), and we still
have the same definitions of the energy and charge probability
density as well as the same conservation laws, Eqs. (3).
Because of the distinct Dirac nature of the Ĥ0(�k), now we have
different current density expressions [21], whose transverse
components read J

y

Q = −EvF (f †σxf + g†σxg) and J
y
e =

−evF (f †σxf − g†σxg). Considering the wave function on the
N side,

(
f

g

)
=

⎛
⎜⎜⎝

eikxx + be−ikxx

ieiθ eikxx − ibe−iθ e−ikxx

aieikxx

−ae−iθ eikxx

⎞
⎟⎟⎠ eikyy, (9)

where kx = kF cos θ and ky = kF sin θ , with kF = EF /(�vF ),
we then obtain the angle-resolved transverse energy and
electric current densities:

J
y

Q = 2EvF (sin θ (1 − |a|2 + |b|2) + 2Im[b∗ei(θ+2kxx)]), (10)

J y
e = 2evF (sin θ (1 + |a|2 + |b|2) + 2Im[b∗ei(θ+2kxx)]). (11)

The interference term Im[b∗ei(θ+2kxx)] is different from that in
the nonrelativistic case. Despite this difference, we will see
that all terms containing b will vanish after considering all
possible θ , and only AAR has the possibility of giving rise to
transverse transport, just the same as in the nonrelativistic case.
Following Ref. [21] to solve a(E,θ ) and b(E,θ ), we arrive at

a = − cos2 θ
+ei(θ−φ+)

cos2 θ + sin2 Z sin2 θ (1 − 
+
−ei(φ−−φ+))
, (12)

b = sin Z sin θ (cos Z cos θ − i sin Z)(1 − 
+
−ei(φ−−φ+))

−e−iθ [cos2 θ + sin2 Z sin2 θ (1 − 
+
−ei(φ−−φ+))]
,

(13)

where the barrier strength Z confined by trigonometric
functions is a manifestation of the relativistic Klein tunneling
[21–23]. Other parameters have the same meanings as in
the nonrelativistic case. Since |b(E,θ )|2 is symmetric (even
function) with respect to θ , the contribution of |b|2 sin θ

will be 0 after integration over θ . Moreover, Im[b∗ei(θ+2kxx)]
is antisymmetric (odd function) with respect to θ so that
after integration its contribution is 0 as well. However,
|a(E, − θ )| ∼ |
−| is not equal to |a(E,θ )| ∼ |
+| generally
so that |a|2 sin θ survives after angle averaging. Therefore, only
the AAR is able to contribute to the emergence of transverse
Hall-like currents.

C. Electric and Thermal Hall-like effects

From the above discussion, we know that normal reflection
does not play any role in the possible Hall-like effects. After

FIG. 2. (Color online) AAR and induced electric and thermal
Hall-like effects. (a) Schematic of the AAR. ARs with opposite
incident angles have asymmetric amplitudes. (b) The angle-resolved
AR amplitudes clearly show the asymmetry with respect to the normal
incidence θ = 0, for E = 0.9 (solid line), 1.0 (dashed line), and 1.1
(dash-dotted line). (c) Transverse thermal and electric currents as a
function of energy. (d) Thermal Hall conductance as a function of
temperature. Other parameters are α = π/8, �0 = 1, e = 1, vF = 1,
and kB = 1. We set Z = 0, so that both nonrelativistic and relativistic
cases have |a|2 = |
+|2 and behave the same. The constant NEF

is
normalized.

considering all possible incident angles, we then have the
expressions of the total transverse Hall-like current densities
for both nonrelativistic and relativistic cases:

J̄ y
e (E) =

∫ π/2

−π/2
dθJ y

e (E,θ ) = 2evF

∫ π/2

−π/2
dθ sin θ |a|2, (14)

J̄
y

Q(E) =
∫ π/2

−π/2
dθJ

y

Q(E,θ ) = −2EvF

∫ π/2

−π/2
dθ sin θ |a|2.

(15)

To observe these transverse Hall-like transport properties, the
crystalline angle of the anisotropic superconductor should be
oriented to avoid the integral multiple of α = π/4 so that
the angle-dependent superconducting gap �0 cos(2α − 2θ ) as
well as the AR |a|2 is asymmetric with respect to the normal
incident angle θ = 0 [see Figs. 2(a) and 2(b)]. This actually
indicates that the mirror symmetry breaking with respect to
the interface normal is required for manifestation of the AAR-
induced Hall-like currents. The induced Hall-like effects are
illustrated in Fig. 2(c). With increasing energy, the electric and
thermal Hall-like effects decrease to 0 because the AR tends to
disappear when the quasiparticle energy is much beyond the
superconducting gap. The opposite sign between J̄

y

Q(E) and
J̄

y
e (E) is a consequence of the electron-hole converting nature

of AR, wherein the reflected holes carry energy and charge
currents in opposite directions. As we show below, these two
quantities are also the differential conductances at voltage bias
eV = E at low temperatures.
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The conventional BTK formula [3,6,18] concerning the
longitudinal electric current reads I x

e = NEF

∫
dEJ̄ x

e (fL −
fR), with J̄ x

e = 2evF

∫
dθ cos θ (1 + |a|2 − |b|2) being the

total longitudinal electric current density and NEF
the density

of states near the Fermi level, which can be pulled out of the
integral in the wide band approximation. Clearly, all incoming
currents from the N side have the Fermi distribution function
fL = [e(E−eV )/(kBTL) + 1]−1, while those coming in from the
S side are weighted by fR = [eE/(kBTR ) + 1]−1. Similarly, the
transverse current contributed by the left-to-right current will
be (partially) canceled by the opposite one, contributed by
the right-to-left current. Therefore, for the Hall-like electric
current, we have a similar expression:

I y
e = NEF

∫
dEJ̄ y

e (E)(fL − fR)

= 2evF NEF

∫
dE

∫
dθ sin θ |a|2(fL − fR). (16)

The longitudinal heat current has a similar BTK-type ex-
pression [21,24,25]: I x

Q = NEF

∫
dEJ̄ x

Q(fL − fR), with J̄ x
Q =

2EvF

∫
dθ cos θ (1 − |a|2 − |b|2) being the total longitudinal

energy current density. Accordingly, the transverse Hall-like
heat current reads similarly:

I
y

Q = NEF

∫
dEJ̄

y

Q(E)(fL − fR)

= −2vF NEF

∫
dE

∫
dθE sin θ |a|2(fL − fR). (17)

Equations (16) and (17) indicate that the electric and
thermal Hall-like effects are observable under the nonequi-
librium condition fL �= fR with either nonzero longitudinal
voltage bias eV or thermal bias TL �= TR . Let us first examine
the effect of voltage bias without thermal bias. In this
case, at low temperatures, we get the differential Hall con-
ductances G

xy
e := ∂I

y
e /∂eV = NEF

J̄
y
e (eV ) and G

xy

Q := ∂I
y

Q/

∂eV = NEF
J̄

y

Q(eV ), which are shown in Fig. 2(c). Strictly
speaking, the transverse heat current I

y

Q induced by the
longitudinal voltage bias under a magnetic field is called
the Ettingshausen effect. Here, it is evident that even in the
absence of a magnetic field, the AAR is able to induce the
Ettingshausen-like effect.

We then turn to examine the effect of thermal bias without
voltage bias. Because of the AAR induced Ettingshausen-like
effect discussed above, one may expect that the AAR can
also induce the reversed process, Nernst-like effect, which is
the transverse electric current I

y
e induced by the longitudinal

thermal bias. However, due to the electron-hole symmetry of
the AR, i.e., a(E) = a(−E), it is straightforward to prove
that Eq. (16) is always 0 with only thermal bias TL �= TR ,
because |a|2(fL − fR) is an odd function of E so that
its integral over E vanishes. Therefore, the AAR-induced
Nernst-like effect is absent [26]. Nevertheless, the thermal
Hall-like effect still survives; that is, the longitudinal thermal
bias is able to induce the transverse heat current I

y

Q. The
corresponding thermal Hall conductance κxy := ∂I

y

Q/∂δT =
NEF

∫
dE

EJ̄
y

Q

4kBT 2 cosh2[E/(2kBT )]
is displayed in Fig. 2(d). We here

ignore the temperature dependence of �0: the higher the
temperature, the smaller �0. Considering this temperature
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FIG. 3. (Color online) Barrier effect on AAR induced Hall-like
effects for both nonrelativistic (left) and relativistic (right) cases.
When calculating Gxy

e := ∂I y
e /∂eV and G

xy

Q := ∂I
y

Q/∂eV , the bias
eV = 1 is fixed. When calculating κxy := ∂I

y

Q/∂δT , T = 0.3 is fixed.
Other parameters are α = π/8, �0 = 1, e = 1, vF = 1, and kB = 1,
with NEF

normalized.

dependence, the decrease in κxy at high temperatures will be
more pronounced.

Finally, we find that tuning the interface barrier is able to
reverse the direction of Hall-like effects because the barrier
influences the weight of AR amplitude |a(θ )|2 at positive and
negative angles so that the angle integral of sin θ |a(θ )|2 may
change the sign. For the nonrelativistic case, when increasing
the barrier strength Z, the Hall-like effects first reverse their
directions and then vanish to 0 because at large barrier the
AR diminishes (left panel in Fig. 3). However, the direction
and magnitude of Hall-like effects in the relativistic case show
periodic oscillating behaviors via increasing Z (right panel
in Fig. 3). The oscillating behavior of the Hall-like effects
as a function of the barrier Z is a manifestation of Klein
tunneling in relativistic transport [21]. In addition, we note that
the direction and magnitude of these electric and thermal Hall-
like effects can also be tuned by changing either the crystal
axis angle α or, equivalently, the range of incident angles.

III. DISCUSSION AND CONCLUSIONS

In summary, we have revealed that the AAR in anisotropic
superconductors is able to induce electric and thermal Hall-like
effects, in the absence of a magnetic field. A longitudinal
electric voltage or temperature bias can induce transverse
electric or thermal currents merely through the AAR, respec-
tively. In particular, a transverse thermoelectric effect, i.e., the
Ettingshausen-like effect, has been identified, which has direct
implications in transverse cryogenic Peltier cooling [13]. The
direction change of these electric and thermal Hall-like cur-
rents has also been discussed. The Hall-like effects discussed
here do not require the conventional time-reversal symmetry
breaking, but result from the mirror symmetry breaking with
respect to the interface normal due to the anisotropic paring
symmetry of the superconductor. The spin-orbital interaction
in the relativistic case is not crucial for the Hall-like effects,
since the nonrelativistic case without spin-orbital interaction
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behaves similarly, except for the relativistic Klein tunneling
effect.

The AAR-induced Hall effects are observable under the
condition that the crystal axis of the anisotropic superconduc-
tor is mirror symmetry broken, once the AR is significant. In
fact, the d-wave AR has been widely observed in various exper-
iments at metal/high-Tc superconductor junctions [27], even
with imperfect, rough interfaces. Moreover, for the relativistic
case (such as graphene or the metallic surface of topological
insulators), the imperfect interface will generally become
transparent without severely affecting transport, thanks to the
Klein tunneling (see Fig. 3). We thus believe that AAR induced
Hall-like effects can be readily observed once researchers turn
their attention to the y-direction transport induced by AR.
Although we focus only on the N/S junction here, it would be
interesting to explore the similar Hall-like Josephson supercur-
rent at S/N/S junctions with unconventional superconducting
pairing symmetry [28,29]. In fact, a recent experiment [30]
measured the quantum Hall effect in nano-sized graphene with
superconducting electrodes under a strong magnetic field. In
such experiments without an applied magnetic field, when one
of the S parts is replaced with an anisotropic superconductor,
we expect to observe an AAR induced Hall-like supercurrent,
if the Hall bar measurement setup is added.

We caution that the present work is limited to the ballistic
transport regime, since we have applied the scattering-wave
approach in the noninteracting single-particle picture. As such,
the studies are applicable to a clean sample or a nano-sized
junction (see Ref. [30]) with weak impurities, where the
mean free paths of carriers are larger than the system size
so that the transport is effectively ballistic. The impacts
of impurities, disorders, and many-body interactions on the
y-directional transverse transport are still open questions and
the effect of the ballistic-diffusion crossover on the AAR
induced Hall-like effects is unclear; these topics deserve
further detailed investigations. Also, it would be interesting to
explore the possible quantization effect for transverse transport
by constraining the y direction within a finite small width. The
effect of the possible specular AR [6,7] on the Hall-like effects
deserves attention in a future study.
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