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Size effects in superconducting thin films coupled to a substrate
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Recent experimental advances in surface science have made it possible to track the evolution of superconduc-
tivity in films as the thickness enters the nanoscale region where it is expected that the substrate plays an important
role. Here, we put forward a mean-field, analytically tractable, model that describes size effects in ultrathin films
coupled to the substrate. We restrict our study to one-band, crystalline, weakly coupled superconductors with no
impurities. The thin-film substrate/vacuum interfaces are described by a simple asymmetric potential well and a
finite quasiparticle lifetime. Boundary conditions are chosen to comply with the charge neutrality condition. This
model provides a fair description of experimental results in ultrathin lead films: on average, the superconducting
gap decreases with thickness and it is always below the bulk value. Clear oscillations, remnants of the shape
resonances, are still observed for intermediate thicknesses. For materials with a weaker electron-phonon coupling
and negligible disorder, a modest enhancement of superconductivity seems to be feasible. The relaxation of the
charge neutrality condition, which is in principle justified in complex oxide heterostructures and other materials,
would lead to a much stronger enhancement of superconductivity by size effects.

DOI: 10.1103/PhysRevB.89.064508 PACS number(s): 74.20.Fg, 74.78.Na

I. INTRODUCTION

Research on superconducting thin films has a long tradition
in condensed matter physics. In the early 1960s, theoretical
mean-field models [1] predicted oscillations of the supercon-
ducting gap and the critical temperature for nanosize film
thickness with peaks that greatly exceeded the bulk limit.
This nonmonotonic size dependence, usually referred to as
shape resonances, has a simple origin. As thickness increases
from the two-dimensional limit, new states become eventually
available with the quantum numbers of an infinite well of size
the thickness of the film. This additional subband enhances
superconductivity as the spectral density is proportional to the
dimensionless electron-phonon coupling constant. After the
first peak, for larger thicknesses, the spectral density decreases
until a new subband becomes available and a new peak occurs
in the critical temperature.

Initial experimental results in granular thin films of Al [2]
and other materials [3] also reported a substantial enhancement
of the critical temperature with respect to the bulk limit.
However, granular materials are intrinsically disordered and
impurities suppress shape resonances so a direct relation
between theoretical and experimental results was hard to
establish.

It was later realized [4,5] that no enhancement is observed in
more realistic theoretical models that impose charge neutrality
at the interfaces. More refined experiments with smoother films
and a better experimental control [6] observed no enhancement
of superconductivity but rather a transition at a temperature
lower than the bulk mean-field theory prediction.

Recent progresses in nanotechnology and surface science,
in particular epitaxial deposition and scanning tunneling
microscopy/spectroscopy (STM), have dramatically improved
the experimental control in low dimensions, which has led
to many exciting results [7–10]. For instance, experiments
on ultrathin Pb films with thicknesses ranging from a single
to a few atomic monolayers [7,8,11] found that supercon-
ductivity is still present although weaker than in the bulk

limit. Oscillations of the superconducting gap and the critical
temperature, below the bulk value, for intermediate thickness,
were also reported. Theoretical models proposed to described
these results [12,13] had free parameters and did not include
important features such as the role of the substrate, the
finite lifetime of quasiparticles, or an adequate description
of the interface. As the thickness decreases, we expect that
these features become increasingly important. More detailed
first-principles calculations [14] of the interface in the ultrathin
limit do not address superconductivity explicitly. Strikingly,
experimental results in oxide interfaces [15], and even single-
layered iron-based superconductors [16], exhibit, in some
cases, an enhancement of the critical temperature with respect
to the bulk limit. The theoretical reasons of this behavior are
not yet well understood.

Motivated by these challenges, we put forward a minimal
model for ultrathin superconducting films coupled to the
substrate which is analytically tractable but that we expect to
capture most of the relevant physics without free parameters,
except the quasiparticle lifetime. However, we have found
that its role is relatively minor at least in STM experiments.
A refined model of the film/substrate interface, based on
experimental data, would probably account for this parameter,
however, this is beyond the scope of the paper.

In order to avoid the intricacies of the Kosterlitz-Thouless
transition, we restrict ourselves to the low-temperature limit
of weakly coupled one-band superconductor where a mean-
field approach is still accurate. The film and the substrate
are described by an asymmetric potential well plus a finite
quasiparticle lifetime. Charge neutrality is included, although
in some cases, such as in complex oxide heterostructures
[17], it is unclear whether it applies. We note that in
these materials, charge spreading across the interface alters
boundary conditions at the interfaces leading to an electrostatic
binding between the layers that can prevent the charge
neutrality condition to hold. Disorder is not considered as the
experiments can be carried out in the limit where the effect of
impurities is negligible.
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ROMERO-BERMÚDEZ AND GARCÍA-GARCÍA PHYSICAL REVIEW B 89, 064508 (2014)

We report results for the superconducting gap (�) at zero
temperature as a function of the film thickness for a broad range
of the parameters that define the substrate and also for different
electron-phonon coupling constants. The dependence of the
results on the validity of the charge neutrality condition [5]
is also investigated in detail. On average, the superconducting
gap decreases with thickness. However, remnants of the shape
resonances are still observed in some range of parameters.
For a weak coupling to the substrate, and a weak electron-
phonon coupling, a modest enhancement of superconductivity
is observed for certain thicknesses even if the charge neutrality
condition holds. Much larger enhancement is expected for
material in which the charge neutrality condition does not
hold. Finally, we show that this theoretical model provides a
fair qualitative description of the Pb ultrathin-film experiments
mentioned above.

The paper is organized as follows. In the next section, we
introduce the microscopic model that describes superconduc-
tivity and the asymmetric potential well that, together with the
finite lifetime, models the substrate. The model is then solved
in Sec. III by a combination of mean-field and semiclassical
techniques. Then, we present results of the superconducting
gap as a function of the thickness for different values of the
parameters. Based on this information, we discuss the range of
realistic experimental settings for which it is feasible to observe
shape resonance and/or an enhancement of superconductivity
and discuss the relevance of these results for recent Pb
ultrathin-film experiments.

II. MODEL

We put forward a model for a superconducting thin film
coupled to the substrate. Superconductivity is described by a
mean-field approach. The substrate is modeled by an asymmet-
ric finite well that depends on the difference between the bulk
chemical potential of the materials in the film and the substrate.
This confinement leads to the quantization of the momentum
component perpendicular to the film plane. We also introduce
a finite quasiparticle finite lifetime to describe tunneling into
the substrate and any other source of decoherence. Charge
neutrality is also taken into account to model the interface,
but we also present present results without it as we believe
that in some materials it might not fully apply. We start with
a description of the theoretical model employed to describe
superconductivity.

A. Mean-field approach to superconductivity in thin films

In a finite-size system, the BCS Hamiltonian in terms of a
set of good quantum numbers is given by

H =
∑
n,σ

ξnc
†
nσ cnσ − ρV δ̃

∑
n,n′

c
†
n↑c

†
n↓Ṽn,n′cn′↓cn′↑, (1)

where ρ is the dimensionless coupling constant,V is the system
volume, δ̃ is the mean level spacing [inverse of the spectral
density of states at the Fermi energy (EF )], σ is the spin
index, ξn = εn − μ, cnσ and c

†
nσ are the usual quasiparticle

annihilation and creation operators. The interaction matrix
elements are Ṽn,n′ = ∫

V |�n(�r)|2|�n′(�r)|2d3�r where �n(�r) ∝
ei(kyy+kzz)ψn(x) are the three-dimensional quasiparticle

eigenfunctions with ψn(x) the eigenstates of the one-
dimensional problem in the direction perpendicular to the film.

A mean-field approach to the Hamiltonian above leads to
the following Bardeen-Cooper-Schrieber (BCS) gap equation
at zero temperature

�n = ρV δ̃
∑
n′

�n′ Ṽn,n′

2
√

(En′ − μ)2 + �2
n′

. (2)

The sum is restricted to those states such that En′ is inside
the Debye window: |En′ − μ| < �ωD where ωD is the Debye
frequency.

We consider a thin film of lateral size much larger than its
thickness. Therefore, the sum in Eq. (2) can be substituted by
an integral in the in-plane momentum components, where we
imposed periodic boundary conditions, and a finite sum in the
perpendicular dimension.

With the previous considerations, Eq. (2) leads to the
following system of equations for �kn

, n ∈ N:

�kn
= ρV δ̃

g2D

L2

ν∑
n′=1

�kn′ Vkn,kn′ asinh

(
�ωD

�kn′

)
, (3)

where L2 → ∞ is the thin-film area, and Vkn,kn′ =∫ a

0 dx|ψkn
(x)|2|ψkn′ (x)|2 (a is the film thickness) is obtained

after having performed the y and z integrals in Ṽkn,kn′ . g2D =
myzL

2/(π�
2) is the two-dimensional density of states and myz

the in-plane effective mass. The factor asinh(�ωD/�kn′ ) comes
from the integration in the in-plane momentum components.

Since Vkn,kn′ depends on kn, Eq. (3) is a system of nonlinear
equations which leads to a momentum-dependent order pa-
rameter �kn

. Assuming that the mean level spacing is much
smaller than the bulk gap, we define the superconducting gap
as [18] the minimum energy needed to excite quasiparticles,
namely, minn �kn

. This observable, which is measured by STM
and other spectroscopic techniques, is the one that we use
to characterize superconductivity in the system. In order to
eliminate the momentum dependence of the gap, and further
simplify the calculation, we replace kn by kν , the highest
occupied state. In this way, an approximate solution of Eq. (3)
is simply

� = �ωD

sinh
[
K/

∑ν
n=1 Vkν,kn

] , K = π�
2

myzρV δ̃
. (4)

In Figs. 3 and 4, we show explicitly that, especially for larger
values of the electron-phonon coupling constant, this is a good
approximation, namely, � ≈ minn �kn

. Another reason to use
this additional approximation is that the corrections of the
superconducting gap induced by a finite quasiparticle lifetime,
studied in Sec. II B 3, can easily be computed from Eq. (4),
while a calculation from Eq. (3) is technically very demanding.

B. Model of the thin-film coupling to the substrate

The model of the coupling between the thin film and the
substrate/vacuum has three ingredients: the effective potential
felt by the quasiparticles due to the substrate, the finite
quasiparticle lifetime, and the charge neutrality condition.
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Substrate Film Vacuum

0 a 

FIG. 1. Asymmetric finite well. The values of Vs and V0 are
discussed in Sec. III A.

1. Effective potential: An asymmetric finite well

The model of an asymmetric finite well has been previously
implemented [19] to study the energy spectrum and size
effects in nonsuperconducting thin films. We employ the
same effective potential felt by the quasiparticles in the thin
film as a consequence of the substrate. As is sketched in
Fig. 1, the potential has three parameters: the height Vs of
the film/substrate interface, the height V0 of the film/vacuum
interface, and the film thickness a.

For V0, we take the sum of the ionization level plus the
(bulk) Fermi energy of the film material. For Vs , we choose the
mismatch between EF and the Fermi energy of the substrate,
or conduction band edge (CBE), plus an extra contribution
due to the height of a Schottky barrier at the interface. In
principle, a more complicated potential above the CBE might
give better quantitative results. However, we stick to a simpler
more general approach as a truly realistic potential could result
in a time-dependent problem [20]. Moreover, the exact details
of the potential are expected to be sensitive to the substrate
material.

Before turning our attention to the solution of the
Schrödinger equation in this potential, we briefly comment
on the dispersion relation and the boundary condition that we
have employed.

Dispersion relation. Following previous works [1], we use
a quadratic dispersion relation but with three parameters

E(k) = a0 + �
2

2mx

(k + kL)2, (5)

where a0 and kL determine the position of the band and
the effective mass mx controls the curvature. The moti-
vation for introducing kL is that it allows us to describe
a back-folded conduction band (see Fig. 2) in sp met-
als such as Pb and Al commonly employed in thin-film
experiments [7,8,11,21,22].

For comparison with experimental results we take that
quantization in the momentum-space direction L, where 

and L are the crystallographic points corresponding to zero
momentum and k ∝ (1,1,1). This fixes kL = π/d where d

is the distance between atomic planes in the [111] direction.
For a face-centered-cubic cell, d =

√
3

3 ×(lattice constant). We
do not consider the decrease in the lattice constant at low
temperatures. On the other hand, k

[111]
F [the maximum value

of k in Eq. (5)] corresponds to the momentum at which the
band reaches the Fermi energy. It is such that the Fermi

FIG. 2. (Color online) Pb band diagram in the [111] direction [23].

momentum obtained from de Haas–van Alphen experiments
equals k

[111]
F + kL.

BenDaniel-Duke boundary conditions. As usual, we impose
continuity of the wave function in both interfaces. For the
continuity of the first derivative we consider the effective
masses in the film and substrate. These are known as the
BenDaniel-Duke boundary conditions, commonly used in
heterostructures [24],

1

mx

∂ψ

∂x

∣∣∣∣
x=0

= 1

ms

∂ψ

∂x

∣∣∣∣
x=0

,
1

mx

∂ψ

∂x

∣∣∣∣
x=a

= 1

me

∂ψ

∂x

∣∣∣∣
x=a

.

(6)

We have placed the film/substrate interface at x = 0 and the
film/vacuum interface at x = a. We have defined mx and ms

as the effective masses in the film and substrate, respectively.
In the vacuum region, we have taken the free-electron
mass me.

With the previous considerations, the quantization condi-
tion for k (the component perpendicular to the film) is

(kn + kL)a = nπ + atan

(
κ̃0

kn + kL

)
+ atan

(
κ̃s

kn + kL

)

(7)

with n ∈ N, κ0 =
√

2me

�2 [V0 − E(kn)], κs =√
2me

�2 [Vs − E(kn)], κ̃s = mx

ms
κs , and κ̃0 = mx

me
κ0. The total

thin-film eigenstates are then given by

��k(�r) ∝ ei(kyy+kzz)

L2
ψkn

(x),

ψkn
(x) = A(kn) sin (knx + θ ) , θ = atan

kn + kL

κ̃s

,

(8)

A(kn) =
[

2kna + sin(2θ ) − sin(2kna + 2θ )

4kn

+ sin2 θ

2κs

+ sin2(kna + θ )

2κ0

]− 1
2

,

where L2 → ∞ and kz and ky , the in-plane momentum
components, are subject to periodic boundary conditions.
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2. Charge neutrality

As was mentioned earlier, Dirichlet/rigid boundary condi-
tions at the interfaces, a key ingredient for the observation of
large shape resonances, are not consistent [4] with the principle
of charge neutrality in film surfaces. Despite the fact that our
boundary conditions allow the eigenstates to extend beyond
the interface, with a typical size controlled by the step heights
V0 and Vs , charge neutrality is not yet satisfied.

In order to comply with this condition, it was proposed [25]
to extend the potential a distance b which is chosen so that
surface charge neutrality holds. This shift b induces a phase
shift kb, which together with θ (k), the phase shift induced by
the potential must satisfy

∫ kF

0
[θ (k) + kb] k dk = πk2

F

8
. (9)

The length b is obtained by using Eq. (8) and taking into
account that the quantized component of the momentum is
kL + kn:

π (kL + kF )3

8

=
∫ kF

0
dk(k + kL)

[
(k + kL)b + atan

(
k + kL

κ̃s

)]
. (10)

As was shown elsewhere [5], the larger b the stronger the
average suppression of superconductivity. Once b is known,
the quantized energy levels and eigenstates are computed for a
well of thickness ã = a + 2b where a is the geometrical film
thickness. We shall see that the charge neutrality condition also
modifies the chemical potential, the matrix elements Vkn,kn′ ,
and therefore the superconducting energy gap.

Effectively, a finite b caused by charge neutrality amounts
to a modification of the boundary conditions. Therefore, it
should not change the electron density or the phonon-mediated
interaction. We also stress that this approximate method to
satisfy charge neutrality is only valid as long as k−1

F � a [26].
Such condition might not be satisfied for films of only a few
monolayers (ML) thick. Furthermore, in the film/substrate
interface, there is a transition layer (wetting layer) [27] in
which the film atoms are bonded to both the substrate and
other atoms of the film. Thus, it is not clear to what extent
charge neutrality is applicable in this interface. Moreover, as
was mentioned previously, in complex oxide heterostructures
[17] and other materials, net electric fields in the surface could
severely suppress charge neutrality.

3. Finite lifetime

In this section, we introduce the last ingredient of our model
for the coupling of the thin film to the substrate: a finite
quasiparticle lifetime. The introduction of a finite quasiparticle
lifetime is motivated by the existence of a nonzero probability
of tunneling into the substrate. It is also an effective way
to account for the realistic potential at the interface and
other sources of quasiparticle decoherence, such as inelastic
scattering. We shall see that it also plays an important role in
the calculation of the superconducting gap and the chemical
potential. We start with a theoretical description of the level
broadening caused by a finite quasiparticle lifetime τ .

Smoothing of the spectral density. From the quantization
condition (7), n can be expressed as a function of the energy
n = n(E). After using the Poisson summation formula, the
density of states of one-dimensional quantum well is expressed
as [28]

g(E) = dn(E)

dE

[
1 + 2

∞∑
l=1

κ(l) cos[2lπn(E)]

]
+ 1

2
δ(E − E1),

(11)

where E1 is the lowest-energy state. For no level broadening
(τ → ∞), κ(l) = 1 which results in a set of Dirac delta
functions. However, as mentioned above, tunneling into the
substrate or any decoherence mechanism induces a broad-
ening of the energy levels which effectively is described by
introducing the cutoff function κ(l). The precise form of κ(l)
depends to some extent of the physical mechanism that induces
the broadening but, in most cases, liml→∞ κ(l) = 0 at least
exponentially fast. Here, following the results of Sec. 5.5 in
Ref. [28] for the case of tunneling, we employ a Gaussian
cutoff

κ(l) ≈ e−(lt/τ )2
, (12)

where t = 2mxa

�(k+kL) , mx is the effective mass in the direction
perpendicular to the film, and τ is the lifetime. Once the energy
spectrum is smoothed by a finite lifetime, it is straightforward
to calculate the chemical potential and the superconducting
order parameter. However, before doing so, we have to evaluate
the modification of the matrix elements which also enter in the
gap equation.

Matrix elements for states with a finite lifetime. In order
to calculate how the matrix elements are modified for a finite
quasiparticle lifetime, we use the approach put forward by Dijk
and Nogami [20] based on the calculation of the probability of
an initial state to stay inside the well.

The study of unstable or unbound eigenstates in a quantum
system is an intrinsically time-dependent problem. Even
though we are not interested in a time-evolution analysis, this
framework allows us to obtain the superposition between the
initial wave function and the bound states. This superposition
is given by the probability to stay in the film

P (t) =
∫ L

0
|ψ(x,t)|2dx, (13)

where ψ(x,t) is the initial wave function expressed as a
linear combination of the bound and quasibound eigenstates.
The latter can be casted as Moshinsky functions [20] which
eventually escape from the potential. Therefore, for large
times, P (t) is given by the product of the amplitude of the
bound states inside the potential

∫ L

0 dx|ψb(x)|2, multiplied by
the superposition of the initial state and the bound eigenstate,
namely |cb|2, where cb = ∫ ∞

−∞ ψb(x)ψ(x,0)dx, i.e.,

P (t → ∞) → |cb|2
∫ L

0
dx|ψb(x)|2, (14)

where ψb(x) is a bound state of the potential well. For large
times, it is expected that ψ(x,0) → cbψb(x). Therefore, the
probability of finding the particle confined in the well will be
very small provided that cb is small. It is then natural to express
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the matrix elements that enter in the gap equation as

Vkn,kn′ =
∫ a

0
dx

∣∣cb(kn)ψkn
(x)

∣∣2∣∣cb(kn′)ψkn′ (x)
∣∣2

. (15)

We now rewrite the eigenstates in Eq. (8) as

ψb
kn

(x) =

⎧⎪⎨
⎪⎩

C4e
κsx, x < 0

C2e
i(kn+kL)x + C3e

−i(kn+kL)x, 0 < x < a

C1e
−κ0(x−a), x > a

(16)

where κ0, κs were defined previously and C2 =
C4
2

[
1 + κ̃s

i(kn+kL)

]
, C3 = C4

2

[
1 − κ̃s

i(kn+kL)

]
, C1 = C2e

i(kn+kL)a +
C3e

−i(kn+kL)a and, from the normalization condition,

|C4|−2 = 1

2κs

+ |C1|2
2κ0|C4|2 + 1

|C4|2
∫ a

0
dx

∣∣ψb
n (x)

∣∣2
.

We also assume that the “initial” unstable state has an energy
E = En + i/2 = En + i�/(2τ ), where En is the quantized
energy given by Eqs. (5) and (7). The initial state is given
by the same type of wave function as Eq. (16) but with the
following modifications:

(1) We replace κ0 and κs (see Sec. II B 1)
by κ0 = Re[

√
2me

�2 (V0 − En − i �

2τ
)] and κs =

Re[
√

2me

�2 (Vs − En − i �

2τ
)]. A complex part in κs or κ0

leads to divergent terms in the matrix elements.
(2) For 0 < x < a, we substitute the quantized momen-

tum kn ∈ R by a complex valued λn. We let λr = Re(λn)
and λi = Im(λn) and substitute λn = λr + iλi in the dis-
persion relation of Eq. (5), with A = 2mx

�2 (En − a0) and
B = 2mx

�2
�

2τ
. Moreover, C2, C3, and C1 above are replaced

by D2 = C4
2 [1 + κ̃s

i(λn+kL) ], D3 = C4
2 [1 − κ̃s

i(λn+kL) ], and D1 =
D2e

i(λn+kL)a + D3e
−i(λn+kL)a . That results in the following

expression for the energy levels:

En + i
�

2τ
= a0 + �

2

2mx

(λr + iλi + kL)2

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λr = −kL + 1√
2

√
A + √

A2 + B2,

λi = √
2 A√

B

√
A + √

A2 + B2

− 1√
2B

(
√

A + √
A2 + B2)3.

(17)

We have now all the necessary information to compute
the initial state ψλn

(x,0) and then the weighting factor
cb(kn) = ∫ ∞

−∞ ψb
kn

(x)ψλn
(x,0)dx. We find it more convenient

to express cb(kn) as a function of energy E since the BCS
gap equation will be expressed also in terms of this variable.
To that end, we substitute kn′ in Eq. (15) by k(E) = −kL +√

(E − a0)2mx/�2. The resulting final expression for the
matrix elements is therefore

V (Ẽ,E) =
∫ a

0
dx

∣∣cb(Ẽ)ψb

k(Ẽ)(x)
∣∣2∣∣cb(E)ψb

k(E)(x)
∣∣2

,

(18)

cb(E) =
∫ ∞

−∞
ψb

k(E)(x)ψλ(E)(x,0)dx.

4. Superconductivity in thin films in the presence of a substrate
and a finite quasiparticle lifetime

Having obtained explicit expressions for the matrix ele-
ments (18) and the spectral density (11), it is straightforward
to find the chemical potential μ and the superconducting gap
�. For instance, for μ,

N =
∫ μ

0
dEx

ν∑
n′=1

δ(Ex − En)
∫ μ−Ex

0
dEyzg2D

→ N

V

π�
2a

myz

=
ν∑

n′=1

(μ − En) = νμ −
ν∑

n′=1

En, (19)

where N/V is the electron density, Ex and Eyz are the energies
corresponding to the out-of-plane and in-plane momentum
components, respectively. The former is quantized, Ex = En,
and ν is the number of occupied states. The smoothed spectrum
is taken into account by replacing the sum in n′ by an integral
in energy

ν∑
n=1

(μ − En) →
∫ μ

E1

dE(μ − E)g(E) = N

V

π�
2a

myz

(20)

valid for E1 < μ < Vs . Similarly, for the energy-dependent
order parameter [Eq. (3)],

�(Ẽ) = 1

K

∫ μ

E1

dE g(E)�(E)asinh

(
�ωD

�(E)

)
V (Ẽ,E), (21)

where V (Ẽ,E) is given in Eq. (18) and K = π�
2

myzρV δ̃
. This is

a nonlinear Fredholm integral equation of the second kind
with a nondegenerate kernel. A more tractable expression is
obtained by substituting Ẽ by Eν in the previous equation. In
other words, the gap is approximated by the order parameter
evaluated at the energy of the highest occupied state �(Eν)
and, for consistency, the interaction V (Ẽ,E) is replaced
with V (Eν,E). These approximations, that neglect the energy
dependence of the order parameter, result in the following
algebraic expression for the energy gap:

� = �ωD

sinh
[
K/

∫ μ

E1
dE V (Eν,E)g(E)

] , K = π�
2

myzρV δ̃
.

(22)

Numerical results, depicted in Figs. 3 and 4, show that the
substitution Ẽ by Eν or equivalently kn by kν in Eq. (3) is
in general a good approximation for the spectroscopic gap
minn �(kn), namely, � ≈ minn �(kn). In the rest of the paper,
unless it is explicitly stated otherwise, we use Eq. (22) to
compute the superconducting gap.

III. RESULTS

In this section, we study the superconducting order parame-
ter � [Eq. (22)] for a one-band thin film coupled to a substrate
as a function of film thickness and the parameters that define
the substrate and the superconducting material. Our calculation
includes the charge neutrality condition which should hold in
Pb and other metallic superconductors except maybe in the
limit of a few ML thickness. We also present results without
imposing the charge neutrality condition as it is believed that in

064508-5



ROMERO-BERMÚDEZ AND GARCÍA-GARCÍA PHYSICAL REVIEW B 89, 064508 (2014)

4 6 8 10 12 14 16 18 20 22 24

Thickness ML

b=0

0=1.35 meV

0.9
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FIG. 3. Superconducting order parameter � for a Pb thin film
coupled to a Si substrate. �0 is the bulk Pb gap. The film/interface
coupling is modeled by an asymmetric well potential with Vs = EF +
1.70 eV, V0 = EF + 4.25 eV. Level broadening is assumed to be
negligible. The dimensionless coupling constant is ρ = 0.385 and
the Debye energy �ωD = 9.048 meV. The band-structure parameters
are given in Eq. (23). The upper plot does not satisfy the charge
neutrality condition, while the lower plot does it with b obtained
from Eq. (10). Lines show the evolution of the order parameter as a
function of the thickness. Dots correspond to the estimate positions of
Pb monolayers. The continuous and dashed lines show the difference
between the k-dependent gap with � = minn �(kn) from Eq. (3)
and the k-independent � from Eq. (4), respectively. We note that
the pattern of shape resonances is more intricate than in Ref. [1] as
a consequence of the interplay between the finite number of states
in the asymmetric well potential and the more realistic dispersion
relation.

some materials, such as complex oxide heterostructures [17],
might not hold. We have two main motivations for this study:
to provide a qualitative description of recent experiments
involving Pb ultrathin [8,11] films and also to clarify whether,
in some range of parameters, size effects in thin films can
enhance the critical temperature with respect to the bulk limit.

As was mentioned previously, the coupling to the substrate
is modeled by the asymmetric finite well depicted in Fig. 1.
The height in the film/vacuum interface Vs is taken to be the
bulk Fermi energy of the film plus the work function of the
corresponding material. The height V0 in the film/substrate
interface is chosen to be the mismatch of the Fermi energies
of the thin film and substrate materials plus the height of
the Schottky barrier. We assign a finite quasiparticle lifetime
τ to all states, including those under the barrier. This is
necessary as the exact details of the potential at the interface are
not well understood. Moreover, inelastic scattering and other
processes will induce level broadening even when tunneling
is not relevant. Based on recent experiments in Pb films [21],
we assume a linear dependence of τ = β + γ a. The first term
on the right-hand side, with a the film thickness, describes

b=0.0632 nm
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0
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1.6
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1.8

b=0

0=1.35 meV

FIG. 4. Superconducting order parameter � for a Pb film coupled
to a Si substrate with no level broadening. Vs = EF + 0.9 eV, V0 =
EF + 4.25 eV. �0 is the bulk Pb gap. The parameters correspond to
those of Fig. 3 except for the smaller step Vs and b obtained from
Eq. (10). The continuous line corresponds to the k-dependent gap with
� = minn �(kn) from Eq. (3) and the dashed line corresponds to the
k-independent � from Eq. (4). The k-independent approximation
becomes less accurate as the step height decreases. As was expected,
reducing the height of the film/substrate interface increases the
leaking of probability out of the film which, reduces both the
superconducting gap � and the effect of the charge neutrality
condition measured by b. Moreover, the pattern of shape resonances
is richer as the number of bound states is smaller in this case.

tunneling into the substrate. The constant β accounts for other
size-independent mechanisms of level broadening.

A. Parameters: Pb films grown over a Si substrate

In this section, we introduce the range of parameters that
we use in the calculation of the superconducting gap. First,
we focus in one of the best studied settings [11]: Pb thin films
grown over a Si substrate.

As discussed in Sec. II B 1, the dispersion relation is
described in terms of three parameters kL, a0, and mx , the
effective mass in the direction perpendicular to the film. The
first is fixed by the interatomic plane distance kL = π/d while
the other two are set in order to describe the bulk Pb Fermi
level and the minimum of the Pb band in the crystallographic
L point. Other relevant parameters in the calculation of the
chemical potential and the energy gap are the in-plane effective
mass and the electron density N

V
. The exact value of the

in-plane effective mass myz and its dependence with the film
thickness are still a subject of discussion [29,30]. We are not
interested to study this effect at the moment and fix it to a
constant value. We also impose that for a very large thickness,
Eq.(19) leads to a chemical potential equal to the Fermi energy.
With these considerations in mind we now state the values of
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the parameters we employ:

mx = 1.180me, a0 = 1.57 eV,

kL = π

d
= 10.99 nm−1, k

[111]
F = 0.450

π

d
= 4.95 nm−1,

myz = 1.380me,
N

V
= 20.69 nm−3, EF = 9.77 eV.

(23)

mx is close to the value reported in the literature mx = 1.14me

[31], while k
[111]
F is taken from Refs. [7,32]. d =

√
3

3 0.4951 =
0.2858 nm is the distance between (111) planes. With these
parameters, the energy of the band that we study (see Fig. 2)
ranges from 5.47 eV at the L point to the Fermi energy 9.77 eV
[23]. Finally, for the substrate effective mass in the direction
perpendicular to the interface, we take ms = 0.28me [33].

The next step to model the thin film is to the impose the
charge neutrality condition. From Eq. (10) and by using the
parameters above, we have found that, in order to comply with
this condition, the thin-film thickness a must be effectively
extended to a → a + 2b with

b = 0.0686 nm. (24)

This is less than half the distance between (111) atomic
planes approximately. This correction is smaller than for a
free-standing film [5] since the potential from Fig. 1, in
contrast to an infinite potential well, allows already leaking
of probability out of the film.

The parameters of the asymmetric potential that charac-
terize the substrate are chosen as follows: for the height in
the film/vacuum interface, we take the work function above
the Fermi energy WF = 4.25 eV. The height of potential at
the substrate–thin-film interface is the mismatch between the
CBE of the substrate and the bulk Fermi energy of the film
plus the height of the Schottky barrier. For Pb/Si films, the Si
CBE is 0.8 eV above the Pb Fermi energy [21], while we use
0.9 eV for the height of the Schottky barrier corresponding
to the (

√
3 × √

3)R30◦ orientation [34]. The asymmetric well
potential is therefore characterized by

Vs = EF + 0.80 eV + 0.90 eV = 11.47 eV,
(25)

V0 = 14.02 eV.

Pb is not a weakly coupled superconductor so in principle
the Eliashberg theory of superconductivity is more suitable
to describe its properties. However, the BCS prediction for
the temperature dependence of the superconducting order
parameter describes the experimental data reasonably well
[7,35], even for a single Pb atomic monolayer [8]. For that
reason, and taking into account that our main interest is the
superconducting gap, we have decided to use the simpler BCS
introduced previously to describe size effect in this material.
We employ the following values of the Debye energy and the
dimensionless coupling constant [36]

�ωD = 9.048 meV, ρ = 0.385 → �0 = 1.35 meV. (26)

The last element in our model is the quasipartcle lifetime
τ . For sufficiently small τ = τ0, we expect suppression of
all size effects. This scale corresponds to a level broadening
comparable to the one-dimensional mean level spacing 0

2 ∼

δ1D = 1
g1D(EF ) = 2

a

EF −a0
kF

, where a0 is defined in Eq. (5). The
lifetime related to this energy is

τ0 = 2�

0
∼ �kF

2(EF − a0)
a, (27)

which for Pb is τ0 = 0.18(N − 1) fs, where N is the number
of monolayers. Therefore, for τ � τ0, decoherence effects are
small but for τ ∼ τ0 size effects related to quantum coherence
will be strongly suppressed.

We employ a simple linear model for the lifetime

τ = β + γ a (28)

with β,γ > 0 and a the thickness. As was explained above,
if tunneling into the substrate is relevant, τ is expected to be
proportional to the thickness a. This a good approximation
provided the tunneling probability is constant for every
thickness considered. In other words, we assume the interface
potential does not change as the film thickness changes.
Additionally, we include a constant term β which accounts
for other decoherence effects. In principle, it is tempting to
relate β to level broadening by electron-electron scattering.
The scattering rate can be estimated from Fermi liquid theory:
e-e = α(E − EF )2 by substituting E − EF by δ1D, the one-
dimensional mean level spacing. This yields a scattering rate
e-e � 0.02

a2 eV, with a in nm, which is more than two orders
of magnitude smaller than the critical broadening 0 ∝ 1/τ0.
Therefore, it seems that it does not play a significant role in
our system. We take β ∼ τ0 so that, by tuning γ , we can study
the full range of corrections induced by a finite lifetime. In
that way, we can determine, for a given set of parameters, the
range of τ ’s for which corrections due to a finite lifetime are
relevant. Finally, we also assume that the smoothing of the
spectral density is well described by Eq. (11).

B. Size effects in the superconducting energy gap

In this section, we first investigate the superconducting
order parameter for Pb thin films coupled to a Si substrate in the
absence of tunneling. We study the role of the coupling to the
substrate in the shape resonances as well the effect of charge
neutrality in suppressing superconductivity. We then discuss
the smoothing of size effects by a finite lifetime τ . Finally, we
move from Pb in order to investigate size effects in a weakly
coupled superconducting thin film by simply modifying the
Debye energy and dimensionless coupling constant while
leaving the rest of the parameters unchanged.

1. Infinite lifetime

In this section, we consider the limit of no level broadening
(τ → ∞) with the substrate described by the asymmetric
well (Fig. 1). The momentum-dependent order parameter is
obtained from Eq. (3) where, as was mentioned in Sec. II A, the
superconducting gap is the minimum of the order parameter.
We also approximate the solution of Eq. (3) by assuming a
k-independent order parameter (4). In Figs. 3 and 4, we analyze
the differences between the two predictions for different values
of the asymmetric potential.

The pattern of shape resonances is qualitatively similar
in both cases. It is clear, however, that the approximate
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solution (4) is always below the actual gap (3). This difference
is more evident in Fig. 4 where the potential is shallower and
the coupling to the substrate is therefore stronger. Given that
the system of equations (3) can easily be solved without any
approximation, in principle there is no substantial advantage
in using the approximate solution. However, once a finite
lifetime is considered, the approximate solution to the order
parameter is still easily obtained from Eq. (22), while the
momentum-dependent order parameter ought to be calculated
from the integral equation (21) is much more difficult to
solve. For that reason, and because the results are qualitatively
similar, we stick to Eq. (22) to compute the superconducting
gap in the rest of the paper.

We are now ready to study the role of the substrate in our
results. In Fig. 3, we compute the superconducting gap with the
parameters defined in Eq. (23). For the film/substrate height,
we take Vs = EF + 1.7 eV which accounts for the Fermi level
mismatch with the substrate plus the height of the Schottky
barrier. In Fig. 4, we remove the Schottky barrier contribution
leaving Vs = EF + 0.8 eV where 0.8 eV corresponds to the
Fermi level mismatch with the substrate. As was expected from
the model used to couple the film to the substrate, introduced in
Sec. II B 1, and the expressions of the BCS interaction matrix
elements, introduced in Sec. II A, we observe that a decrease of
the potential height is accompanied by an average suppression
of superconductivity. This is a simple consequence of two
facts: the states are more extended into the substrate and the
potential has less bound states.

Moreover, as a consequence of the coupling to the substrate,
the pattern of shape resonances differs from that of an infinite
well [1] where � decreases monotonically with the thickness
until another state is occupied. Our results, depicted in Figs. 3
and 4, show as the potential height decreases, the momentum
dependence of the order parameter becomes more relevant
yielding an additional nonmonotonic behavior with additional
features. These extra features are originated by the combined
effect of the momentum-dependent interaction, the finite
number of states in the asymmetric well, and the off-centered
dispersion relation (5). The maxima and minima do not
necessarily correspond to a different number of occupied states
in the considered band (6p band in Fig. 2).

As the thickness increases, the occupied states are lowered
in the potential well (more bounded) which yields the moder-
ate, smooth increase observed in the above plots between two
prominent peaks. For some thickness, the lower state in the
upper band reaches the minimum at the L point and thereupon
this electron occupies a state in the lower 6s band. At the same
time, another available state in the 6p band is occupied and
thus, even though the number of occupied states in the 6p band
is the same, these are higher in energy (less bounded) yielding
a sudden decrease. Finally, for a larger thickness, the number
of occupied states in the 6p band increases and a large increase
is observed.

The previous figures show the effect of charge neutrality
is qualitatively similar to that in an infinite potential well [5],
the average � decreases the thinner the film is. Furthermore,
as Vs decreases, the charge neutrality correction, measured
by b, is smaller. In other words, both charge neutrality and
a reduction of the potential height have a similar effect: to

suppress superconductivity so that for all thicknesses the gap
is below the bulk limit.

As was mentioned in Sec. II B 2, the method used to impose
charge neutrality is only valid in the limit k−1

F � a. For Pb
films in the range of thickness studied k−1

F � 15×thickness,
however, the validity of the method is less clear as the
thickness decreases. Furthermore, it is still under discussion as
to whether, or to what extent, this condition realizes in realistic
nanostructures [37].

2. Finite lifetime

We now study the role of a finite lifetime τ that describes
tunneling out of the film and other sources of decoherence.
Following results of previous sections, we use the smoother
density of states (11) to compute first the chemical poten-
tial (20) and finally the superconducting energy gap (22).

We assume a linear dependence of τ with the thickness.
Shape resonances in the superconducting gap at zero temper-
ature, depicted in Fig. 5, are suppressed for τ comparable
to τ0 [Eq. (27)], the time scale related to the mean level
spacing in the asymmetric well potential. More precisely, for
Pb/Si films of less than 10 ML the suppression is considerable
when τ � 10τ0 (see the blue data). This suppression is clearer
if one considers the experimentally accessible thicknesses
(integer numbers of monolayers): the red and blue dots in the
previous figure show that it is indeed expected to measure small
oscillations in � of a Pb thin film. For smaller τ , the effect
of level broadening completely smears size effects, however,
in this range of lifetime the leading effect is to suppress
superconductivity, � → 0, due to the modification introduced
in the interaction matrix elements [Eq. (18)].

It is also clear that, especially for small thicknesses, charge
neutrality is the dominant mechanism for suppression of
superconductivity. It reduces substantially the value of the
gap � so that it is under the bulk value in the full range of
parameters investigated.

4 5 6 7 8 9 10 11 12
Thickness (ML)

/
0

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 5. (Color online) Superconducting order parameter � at
T = 0 for Pb films on a Si substrate for different quasiparticle
lifetimes. �0 is the bulk Pb gap, ρ = 0.385, and �ωD = 9.048 meV.
Results include the charge neutrality condition. The gray line
corresponds to the limit of no level broadening (τ → ∞) [Eq. (4)]
(green) τ (fs) = τ0 + 3N , (red) τ (fs) = τ0 + 1.5N , and (blue) τ (fs) =
τ0 + 0.7N where N is the number of ML. These values are chosen in
order to estimate the range in which finite-τ corrections are relevant.
For less than 10 ML this occurs for τ � 10τ0, with τ0 given by
Eq. (27). Dots correspond to the exact position of the Pb monolayers.

064508-8



SIZE EFFECTS IN SUPERCONDUCTING THIN FILMS . . . PHYSICAL REVIEW B 89, 064508 (2014)

3. Comparison with experiments

Recent STM experiments on a single monolayer of Pb
deposited on Si [8] indicate sharp peaks in the tunneling
data which correspond, approximately, to τ , two orders of
magnitude larger than the one used here. This suggests that in
this setting, tunneling into the substrate is negligible even for
one atomic monolayer.

In this limit (see results depicted in Figs. 3 and 4), we have
observed that, in agreement with the experimental results, size
effects in the presence of the substrate, and including the charge
neutrality condition, lead to a superconducting gap which is
below the bulk limit. As the film thickness approaches the
1-ML limit, the exponential tails of the thin-film eigenstates
into the substrate become longer and therefore we expect a
strong suppression of the gap. Strictly speaking, this limit
can not be studied quantitatively within our model since
we neglect other effects that might become relevant in this
situation, such as surface phonons or the enhancement of
Coulomb interactions. However, our model still predicts a
strong suppression superconductivity.

The results presented in Fig. 5, which include a finite
lifetime, provide a good description of the superconducting
gap in thin Pb/Si films obtained by transport measurements
[11]. Our model reproduces correctly the small oscillations
of the critical temperature observed experimentally in the
region ∼20 ML, the gradual suppression of the average gap as
thickness is reduced and the smoothing of shape resonance for
�15 ML.

We note that the main difference between the two experi-
ments is the presence of a capped layer in Ref. [11] needed to
carry out transport measurements. Even if tunneling into the
substrate is negligible, as the STM results of Ref. [8] suggest,
the film coupling to the overlayer still causes important
decoherence effects which in our model correspond to a
much smaller choice of τ than in the description of the STM
experiment.

In summary, by tuning τ we are able to describe qual-
itatively the experimental results of Refs. [8,11]. We note
in the particular case of Pb/Si films the Si band gap in the
crystallographic direction perpendicular to the interface yields
a strong state confinement in the Pb film and thus tunneling
into the substrate is suppressed. However, for other cases,
such as Al films, the confinement is not caused [38] by a
band gap and thus tunneling can be a relevant source of
decoherence that can be included with the model presented
in Sec. II B 3. Nonetheless, in this case it is likely that
more sophisticated theoretical models of the interface are
necessary for a quantitative description of the experimental
results.

4. Weakly coupled superconductors

From the results of the previous section it seems rather
unrealistic, at least in Pb, to enhance superconductivity by
size effects. Lead is a strong coupled superconductor so
it would be interesting to explore whether size effects are
stronger in materials characterized by a weaker coupling
constant ρ. Indeed, from Eq. (4) it is straightforward to show
that the first-order correction to � is inversely proportional
to the coupling constant ρ. Therefore, the smaller ρ, the larger

b=0.0686 nm
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FIG. 6. Superconducting gap � in units of the bulk gap �0 for
τ → ∞. All parameters are equal to those of Fig. 3 except the
dimensionless coupling constant ρ = 0.180 and the Debye energy
�ω = 33.882 meV. Results in the upper plot do not satisfy the charge
neutrality condition, while the lower plot does include it with b

obtained from Eq. (10). The gap � = minn �(kn) (continuous line)
shows a moderate enhancement of superconductivity, even when
charge neutrality is imposed. By contrast, no enhancement is observed
(dashed line) in the approximate solution (4).

the finite-size correction. Even if charge neutrality applies, the
oscillations of the superconducting gap are expected to show
higher maxima, with respect to the bulk limit, for smaller ρ

which might lead to an enhancement of superconductivity. In
this section, the dimensionless coupling constant is decreased
to ρ = 0.180 and the Debye energy is set to �ω = 33.882 meV.
We analyze the case of τ → ∞ and maintain the same
parameters for the band structure and the asymmetric potential
[Eqs. (23)–(25)], as here our goal is to explore the dependence
on the coupling constant ρ rather than to model a specific
material.

The results, depicted in Fig. 6, show a considerable
enhancement of superconductivity when charge neutrality is
not imposed. If it is included, a moderate enhancement is still
observed for a few values of the thickness. As for Pb (see
Figs. 3 and 4), the exact solution � = minn �(kn) (continuous
line) [Eq. (3)] predicts a larger gap than the approximation
[Eq. (4)] (dashed line). Indeed, we observe a net enhancement
only in the case � = minn �(kn). This is a strong suggestion
that an enhancement of superconductivity might occur for a
finite lifetime provided that the gap is computed directly from
Eq. (21). We note that the approximate solution (blue) shows
no enhancement of � with respect to the bulk limit even for
τ → ∞, so finite-τ corrections [Eq. (22)] would induce a
further suppression of the energy gap.

In summary, weakly coupled superconducting materials
are more promising candidates to observe an enhancement
of superconductivity in thin films and nanostructures provided
the quasiparticle lifetime is much larger than τ0 [Eq. (27)].
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IV. CONCLUSIONS

We have investigated analytically the effect of the substrate
on superconducting thin films. We aim to provide a description
of recent Pb thin-film experiments and also to identify a region
of parameters in which size effects could enhance super-
conductivity. Superconductivity is modeled by a mean-field
formalism. The model of the coupling of the thin film to the
substrate has three ingredients: an asymmetric quantum well,
a finite quasiparticle lifetime (that describes tunneling into the
substrate and other decoherence mechanisms), and the charge
neutrality condition on the interfaces. For Pb on a Si substrate,
we observe small oscillations, remnants of shape resonances,
of the energy gap as thickness is decreased but always below
the bulk limit for realistic values of the quasiparticle lifetime
and the interface potential. This is fully consistent with the
transport measurements of Ref. [11] in which a capped layer
induces additional level broadening for sufficiently thin films.
In the limit of negligible broadening, our results are also con-

sistent with the in situ STM experiments of Ref. [8] in which
a capped layer is not present. For materials with a smaller
electron-phonon coupling constant, size effects are stronger.
We identify a range of parameters τ > 20 fs, thicknesses
�10 ML, for which a modest enhancement of superconduc-
tivity is feasible even if charge neutrality holds. A stronger
enhancement is expected provided that charge neutrality does
not apply. This seems to be the case in complex oxide
heterostructures.
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