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S. A. Nikolaev1 and I. V. Solovyev1,2,*

1Department of Theoretical Physics and Applied Mathematics, Ural Federal University, Mira str. 19, 620002 Ekaterinburg, Russia
2Computational Materials Science Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

(Received 15 November 2013; published 28 February 2014)

Modern theory of the orbital magnetization is applied to the series of prototype insulating perovskite
transition metal oxides (orthorhombic YTiO3, LaMnO3, and YVO3, as well as monoclinic YVO3), carrying a net
ferromagnetic (FM) moment in the ground state. For these purposes, we use an effective Hubbard-type model,
derived from the first-principles electronic structure calculations and describing the behavior of magnetically
active states near the Fermi level. The solution of this model in the mean-field Hartree-Fock approximation with
the relativistic spin-orbit coupling typically gives us a distribution of the local orbital magnetic moments, which
are related to the site-diagonal part of the density matrix D̂ by the “classical” expression μ0 = −μBTr{L̂D̂}.
These moments are usually well quenched by the crystal field. In this work, we evaluate “itinerant” corrections
�M to the net FM moment, suggested by the modern theory. We show that these corrections are small and
in most cases can be neglected. Nevertheless, the most interesting aspect of our analysis is that, even for these
compounds, which are frequently regarded as prototype Mott insulators, the “itinerant” corrections reveal a strong
k dependence in the reciprocal space, following the behavior of Chern invariants. Therefore, the small value
of �M is the result of strong cancellation of relatively large contributions, coming from different parts of the
Brillouin zone. We discuss details as well as possible implications of this cancellation, which depends on the
crystal structure as well as the type of the magnetic ground state.
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I. INTRODUCTION

Orbital magnetism is one of the oldest and most fun-
damental phenomena. All our present understanding of
magnetism developed from the classical concept of orbital
motion, which is much older than the concept of spin. The
orbital magnetization can be probed by many experimental
techniques, including susceptibility measurement, electron
paramagnetic resonances, x-ray magnetic circular dichroism,
neutron diffraction, etc. [1–4].

At the same time, the orbital magnetism appears to be
one of the most difficult and challenging problems for the
theory, especially when it comes to the level of first-principles
electronic structure calculations. If the methods of spin
magnetism are relatively well elaborated today, the study of
orbital magnetism is sometimes regarded to be on a primitive
stage. There are two reasons for it.

The first one is that the spin magnetism, at least in
principle, allows for the description starting from the limit
of homogeneous electron gas, which is widely used as an
approximation for the exchange-correlation energy (the so-
called local spin density approximation or LSDA) in the
spin-density functional theory (SDFT). On the contrary, the
orbital magnetism always implies some inhomogeneities in
the medium, being associated with either the spin-orbit (SO)
interaction or the external vector potential, which are necessary
to induce the magnetization [5]. Therefore, for the correct
description of the orbital magnetization on the level of first-
principles electronic structure calculations, it is essential to
go beyond the homogeneous electron gas limit. Furthermore,
there may be even more fundamental problem, related to
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the fact that the Kohn-Sham SDFT (even the exact one)
does not necessary guarantee to yield correct orbital currents
and, therefore, the orbital magnetization, which is defined
in terms of these currents [6]. This means that the orbital
magnetization (or any related to it quantity) should be treated
as an independent variational degree of freedom in the density
functional theory (DFT) [7]. Historically, this problem in the
calculations of the orbital magnetization was noticed first, and
on earlier stages all the efforts were mainly concentrated on
the improvement of SDFT, by introducing different kinds of
semiempirical orbital functionals (Refs. [8–11]) or moving in
the direction of ab initio current SDFT (Ref. [12]). Most of
these theories emphasized the local character of the orbital
magnetization, implying that (i) it can be computed using the
standard expression

μ0 = −μBTr{L̂D̂} (1)

for the expectation value of the angular momentum operator L̂
in terms of the site-diagonal part of the density matrix D̂, where
μB = e�/2mc is the Bohr magneton, given by the electron
charge (−e), its mass (m), the Plank constant (�), and the
velocity of light (c); and (ii) the effect of exchange-correlation
interactions on μ0 can be also treated in the local form, by
considering only the contributions of some properly screened
Coulomb interactions on the magnetic sites, coupled to the
site-diagonal elements of the density matrix (Ref. [8–10]) or
the lattice Green function (Ref. [11]). Even today, the problem
of how to “decorate” DFT in order to describe properly the
effects of orbital magnetism in solids is largely unresolved
and continues to be one of the most important and interesting
issues.

Nevertheless, the new turn in the theory of orbital mag-
netism was not directly related to fundamentals of DFT.
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It was initiated by another fundamental question of how
the orbital magnetization should be computed for extended
periodic systems. This new direction, which we will refer
to as the “modern theory of orbital magnetization,” emerged
nearly one decade ago and is a logical continuation of the
similar theory of electric polarization [13,14]: as the position
operator r is not well defined in the Bloch representation, a
similar problem is anticipated for the orbital magnetization
operator (−e/2c)r × v, which is also expressed through r.
Then, the correct consideration of the thermodynamic limit
yielded a new and rather nontrivial expression for the orbital
magnetization, being another interesting manifestation of the
Berry-phase physics [14–19].

The modern theory of the orbital magnetization is basically
a one-electron theory. It does not say anything about the
form of exchange-correlation interactions. Therefore it would
not be right to think that applications of the modern theory
will automatically resolve all previous issues, related to the
form of the exchange-correlation functional and limitations of
LSDA.

Practical implementations of the modern theory of orbital
magnetization are still rather limited. Moreover, many of them
deal with rather exotic Haldane model Hamiltonian [20],
which is typically used in order to illustrate the basic ideas
(Refs. [16,17]) and to test computational schemes (Ref. [21]).
The first-principles calculations were performed only for
ferromagnetic metals Fe, Co, and Ni, where the modern
theory slightly improves the values of orbital magnetization
in comparison with the experimental data [19,22], and the
orbital magnetoelectric coupling in insulators [23].

At the same time, several important aspects of the modern
theory remain obscure. To begin with, even if the previous
treatment of the orbital magnetization was incomplete, it is
not immediately clear what was missing in the “standard”
expression (1) and whether it can still be used in practical
calculations for real materials. Then, what is the meaning of
the new corrections to Eq. (1), suggested by the modern theory?

In this work, we apply the modern theory of the orbital
magnetization to the series of representative distorted per-
ovskite transition-metal oxides with the net ferromagnetic
(FM) moment in the ground state. Particularly, we consider
orthorhombic canted spin ferromagnet YTiO3, and three weak
ferromagnets: the orthorhombic LaMnO3 and YVO3, as well
as the monoclinic YVO3. These compounds differ by the type
of the magnetic ground state as well as the microscopic origin
of the weak ferromagnetism: regular spin canting away from
the collinear A- and G-type antiferromagnetic (AFM) state,
caused by Dzyloshinskii-Moriya interactions (Ref. [24]) in the
orthorhombic LaMnO3 and YVO3, respectively [25], versus
incomplete compensation of magnetic moments between two
crystallographic sublattices in the monoclinic YVO3 [26]. The
magnetic structure of these materials depends on a subtle
interplay of the crystal distortion, relativistic SO coupling,
and electron correlations in the magnetically active bands.
Therefore, from the computational point of view, it is more
convenient to work with an effective Hubbard-type model,
derived from the first-principles electronic structure calcula-
tions, and focusing on the behavior of these magnetically active
bands [26]. The previous applications have showed that such
a strategy is very promising and the effective model provides

a reliable description for the magnetic ground-state properties
of YTiO3, YVO3, and LaMnO3 [26,29,30].

The rest of the paper is organized as follows. In Sec. II, we
briefly remind to the reader the main aspects of the modern
theory of the orbital magnetization in solids. In Sec. III, we
identify the main contributions to the net orbital magnetic
moment in the case of basis, when the Bloch wave function
is expanded over localized Wannier-type orbitals, centered at
the magnetic sites. Then, if the magnetic sites are located
in the centers of inversion (the case that we consider), the
net orbital magnetic moment will have two contributions: the
local one, which is given by the classical expression (1), and
an “itinerant” correction to it, suggested by the modern theory.
Thus one can trace some analogy with the electric polarization.
In the latter case, one can also distinguish a “local” contribution
due to static ionic charges, giving rise to classical electric
dipoles, and an “anomalous” one, which can be only captured
by the Berry phase of the wave functions. Particularly, the
behavior of the itinerant moment is closely related to that
of Chern invariant, which for the normal insulators can be
viewed as a “totally itinerant quantity”: the Chern invariant is
given by certain Brilloin zone (BZ) integral. The individual
contributions to this integral in each k can be finite. However,
the total integral, which can be regarded as a local on-site
component of some k-dependent property, is identically equal
to zero. Then, in Sec. IV, we will briefly explain details of
our calculations and in Sec. V, we will present numerical
results for YTiO3, YVO3, and LaMnO3. We will show that
the itinerant correction to the net orbital magnetic moment is
small. However, this small value is a result of cancellation of
relatively large contributions, coming from different parts of
the BZ. Finally, in Sec. VI, we will summarize our work.

II. GENERAL THEORY

According to the modern theory of the orbital magnetization
[16–18], the net orbital magnetic moment of a normal periodic
insulator satisfies the following expression:

M = e

2�c
Im

∑
n

∫
BZ

dk
�

〈∂kunk| × (Hk + Enk)|∂kunk〉,

(2)

where unk(r) = e−ikrψnk(r) is the cell-periodic eigenstate
of the Hamiltonian Hk = e−ikrHeikr, corresponding to the
eigenvalue Enk, the summation runs over occupied states, and
the integration goes over the first BZ with the volume �.
Equation (2) was derived using different theoretical frame-
works, including semiclassical dynamics of Bloch electrons
[15], the Wannier functions technique [16,17], and the pertur-
bation theory in an external magnetic field [18]. It is important
that all these methods yield the same expression for M.

In the modern theory, the behavior of M is closely related
to that of Chern invariants

C = − 1

2π
Im

∑
n

∫
BZ

dk 〈∂kunk| × |∂kunk〉, (3)

which was originally introduced to characterize the Hall
conductance [27]. For the normal insulators, C itself vanishes.
Nevertheless, the integrand of Eq. (3) (which is also related
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to the Berry curvature in the multiband case) can be finite,
depending on the symmetry of the crystal and the type of the
magnetic ground state. Thus the finite value of M in normal
insulators can be viewed as a result of additional modulation
of the Berry curvature by the k-dependent quantities Hk and
Enk.

Furthermore, it is understood that all electron-electron
interactions are treated in the spirit of Kohn-Sham DFT,
that results in the self-consistent determination of the single-
particle Hamiltonian H with the SO interaction. It is important
that the orbital magnetization (or related to it orbital current)
should participate as an independent variable of the energy
functional, so that M can be found through the expectation
value of the angular momentum operator in the basis of
occupied Kohn-Sham orbitals ψnk(r) of the Hamiltonian
H [7]. Nevertheless, as was explained in the Introduction,
the form of this functional is largely unknown. Therefore,
in practical calculations, we have to rely on additional
approximations. In the present work, we use H obtained
in the mean-field Hartree-Fock (HF) approximation for the
effective Hubbard-type model, which was derived from the
first-principles electronic structure calculations and is aimed
to capture the behavior of the magnetically active states near
the Fermi level [26]. The total energy of this HF scheme can
be viewed as a functional of the site-diagonal density matrix
in the basis of localized Wannier orbitals (which also serve as
the basis of the effective model). Thus the basic strategy of the
present work is the following. (i) The HF method is expected to
reproduce the local part of the orbital moment, which is related
to the site-diagonal density matrix by Eq. (1) [10], (ii) We hope
that it can also serve as a good starting point for the analysis of
other contributions to M. Another possibility is to use current
DFT, supplemented with some additional approximations for
the exchange-correlation energy [12].

The first term in Eq. (2), which is called the “local
circulation” MLC , is the lattice periodic contribution from the
bulk Wannier orbitals, while the second term (the “itinerant
circulation”, MIC) arises from the surface of the sample
and remains finite in the thermodynamic limit [16,17]. In the
case of normal insulators, both M and C can be efficiently
computed by replacing |∂kunk〉 in Eqs. (2) and (3) by the
covariant derivatives:

|∂̃kunk〉 = (1 − Pk)|∂kunk〉, (4)

following the strategy proposed in Ref. [17], where Pk =∑
n |unk〉〈unk| is the ground-state projector. The total moment

M = MLC + MIC is not affected by the substitution
|∂kunk〉 → |∂̃kunk〉. Moreover, the use of covariant derivatives
has two major advantages, which allow us to discuss the k
dependence of the net orbital magnetic moments [17]: (i) each
contribution, MLC and MIC , becomes gauge invariant and,
therefore, can be measured separately [28], and (ii) not only
the BZ integrals, but also the integrands of Eqs. (2) and (3)
become gauge invariant in each point of the BZ.

III. ORBITAL MAGNETIZATION AND BASIS

In this section, we will consider how the main expression
for M [Eq. (2)] can be reformulated in the presence of basis.
For these purposes, let us expand |ψnk〉 over some basis of

localized orbitals |φα(r − R)〉, centered at atomic sites R:

|ψnk〉 = 1√
N

∑
αR

cα
nke

ikR|φα(r − R)〉, (5)

where N is the number of primitive cells, α is a combination
of spin and orbital indices (and, if necessary, the site indices in
the primitive cell). The basis itself satisfies the orthonormality
condition:

〈φα′ (r − R′)|φα(r − R)〉 = δα′αδR′R. (6)

In our case, φα(r − R) are the Wannier functions, used for the
construction of the effective low-energy model [26]. However,
“the basis” can be viewed in a more general sense: for example,
as the basis of nearly orthogonal linear muffin-tin orbitals of
the LMTO method [31], or any orthonormal atomiclike basis.

The use of the basis set is the general practice in numerical
calculations. However, apart from the computational issues,
the goal of this section is to understand what kind of new
contributions is provided by the modern theory [Eq. (2)]
in comparison with the standard calculations, which are
frequently formulated in the atomiclike basis and use the
simplified expression (1) for the orbital magnetization [8–10].
For these purposes, we take the wave functions in the form (5)
and substitute them in Eq. (2). Then, the k-space gradient of
|unk〉 will have two contributions:

|∂kunk〉 = − i√
N

∑
αR

(r − R)e−ik(r−R)cα
nk|φα(r − R)〉

+ 1√
N

∑
αR

e−ik(r−R)∂kc
α
nk|φα(r − R)〉

= |∂kunk〉I + |∂kunk〉II, (7)

and we have to consider four possible contribu-
tions to Eq. (2): 〈∂kunk|I . . . |∂kunk〉I, 〈∂kunk|I . . . |∂kunk〉II,
〈∂kunk|II . . . |∂kunk〉I, and 〈∂kunk|II . . . |∂kunk〉II. Moreover, we
assume that all transition-metal sites are located in the
inversion centers—the situation, which is indeed realized in
the transition-metal perovskites with the Pbnm and P 21/a

structure. Then, the Wannier functions {φα(r − R)} will be
either even or odd with respect to this inversion centers, and
we will have the following property:

〈φα′ (r − R′)|r|φα(r − R)〉 = Rδα′αδR′R. (8)

In this case, after some tedious but rather straightforward
algebra, which is explained in Ref. [32], one can obtain the
following expressions:

MLC = M0 + �MLC

≡ −μB

∑
n

∑
αα′

∫
BZ

dk
�

cα′∗
nk Lα′α

k cα
nk

+ e

2�c
Im

∑
n

∑
αα′

∫
BZ

dk
�

∂kc
α′∗
nk × Hα′α

k ∂kc
α
nk (9)

and

MIC = e

2�c
Im

∑
n

∑
α

∫
BZ

dk
�

Enk ∂kc
α∗
nk × ∂kc

α
nk (10)

064428-3



S. A. NIKOLAEV AND I. V. SOLOVYEV PHYSICAL REVIEW B 89, 064428 (2014)

for the local and itinerant circulation, respectively, where

Hα′α
k = 1

N

∑
RR′

〈φα′(r − R′)|H |φα(r − R)〉 eik(R−R′) (11)

and

Lα′α
k = 1

N

∑
RR′

〈φα′(r − R′)|(r − R′) × p|φα(r − R)〉eik(R−R′)

(12)

are the Wannier matrix elements of Hamiltonian and periodic
part of the angular momentum operator (divided by �),
respectively. Moreover, Eq. (12) implies that the momentum
operator p is related to the velocity v = (i/�)[H,r] in a
“nonrelativistic fashion”: p = mv.

Thus, the local circulation has two terms. The first one
(M0) is the standard contribution, that is given by periodic
part of the angular momentum operator in the Wannier basis.
Due to orthonormality condition (6), the main contribution to
Eq. (12) comes from the site-diagonal elements with R = R′.
It can be best seen in the LMTO formulation [31], where the
tail of the basis function φα(r − R) near the atomic site R′
is expanded over energy derivatives of {φα(r − R′)}. Then,
since the function is orthogonal to its energy derivative, all
contributions with R 	= R′ in Eq. (12) will vanish after the
radial integration. Therefore Lα′α

k does not depend on k (Lα′α
k ≡

Lα′α), and M0 is given by the standard expression, M0 =
−μBTrα{L̂D̂} in terms of the density matrix D̂ = [Dαα′

],

Dαα′ =
∑

n

∫
BZ

dk
�

cα
nkc

α′∗
nk ,

where L̂ ≡ [Lα′α] is the site-diagonal matrix and Trα is the
trace over α. Thus, the remaining term �M = �MLC +
MIC can be viewed as a correction to M0, suggested by the
modern theory. �M has the same structure as Eq. (2), and
can be obtained after replacing |∂kunk〉 by the column vector
|∂kcnk〉 ≡ [∂kc

α
nk] and Hk by the matrix Ĥk ≡ [Hα′α

k ] in the
Wannier basis. The same holds for the Chern invariants (3),
where |∂kunk〉 should be also replaced by |∂kcnk〉.

In the following, we will also call M0 the net local
magnetic moment and �M the itinerant correction to M0.
This is because, for normal insulators, the Chern invariant itself
can be regarded as a totally itinerant quantity. It is proportional
to the BZ integral of the Berry curvature. The Berry curvature
itself is k-dependent. However, the local component of it,
that is given by the BZ integration, is identically equal to
zero. Therefore it is logical to view �M, whose form is
similar to C, also as an itinerant contribution to the net orbital
magnetic moment. Moreover, for the fully localized states, Ĥk
and Enk will not depend on k. Therefore, in this case, �M
will vanish, similar to C. This is another reason why �M
can be associated with the itinerant contribution to the orbital
magnetic moment. One can also paraphrase this discussion in
the following way: the Berry curvature in the BZ integrals (9)
and (10) acts as a “filter,” which separates the local part of the
orbital magnetization from the itinerant one.

IV. TECHNICAL DETAILS

All numerical calculations, reported in this work, have
been performed for the effective low-energy Hubbard-type
model, derived from the first-principles electronic structure
calculations. Such a model is regarded as a bridge between
first-principles electronic structure calculations and the model
Hamiltonian approach. Moreover, the model allows us to
treat the problem of electron correlations beyond conventional
approximations employed in the first-principles calculations.
Below, we will outline the main ideas of this approach.
All details, including the behavior of model parameters, can
be found in the review paper (Ref. [26]) and in previous
publications (Refs. [29,30]).

The multiorbital Hubbard Hamiltonian,

Ĥ =
∑
RR′

∑
αα′

tαα′
RR′ ĉ

†
RαĉR′α′

+ 1

2

∑
R

∑
{α}

UR
αα′α′′α′′′ ĉ

†
Rαĉ

†
Rα′′ ĉRα′ ĉRα′′′ , (13)

is constructed in the basis of Wannier functions {φα(r − R)}
for the magnetically active bands near the Fermi level,
starting from the local-density approximation (LDA). For the
considered compounds, these are the t2g bands in the case of
YTiO3 and YVO3, and all 3d bands in the case of LaMnO3.

The first step is the construction of complete basis of
Wannier orbitals for these low-energy bands. In our case, the
Wannier function were generated using the projector-operator
method (Refs. [26,33,34]) and orthonormal basis orbitals of
the LMTO method (Ref. [31]) as the trial wave functions. As
the LMTO basis functions are already well localized, typically
such procedure allows us to generate well localized Wannier
functions. Then, the one-electron part of the model is identified
with the matrix elements of LDA Hamiltonian (HLDA) in the
Wannier basis: tαα′

RR′ = 〈φα(r − R)|HLDA|φα′(r − R′)〉. Since
the Wannier basis is complete in the low-energy part of the
spectrum, the construction is exact in a sense that the band
structure, obtained from tαα′

RR′ , coincides with the one of LDA.
Matrix elements of screened Coulomb interactions at some

atomic site R can be also calculated in the Wannier basis,
by employing the constrained random-phase approximation
(RPA) technique [35]. Since the constrained RPA technique
is very time consuming (and still not affordable for consid-
ered low-symmetry compounds, containing 20 atoms in the
primitive cell), we apply additional approximations, which
were discussed in Ref. [26]. Namely, first we evaluate the
screened Coulomb and exchange interactions between atomic
3d orbitals, using fast and more suitable for these purposes
constrained LDA technique. This step includes the screening
by outer (non-3d) electrons and due to the relaxation of the
atomic 3d wave functions. After that, we consider additional
channel of screening caused by the 3d → 3d transitions
in the polarization function (the so-called “self-screening”),
involving these atomic basis orbitals, in the framework of
constrained RPA technique. The so-obtained parameters of
Coulomb interactions are in good agreement with results
of full-scale constrained RPA calculations [36].

After the construction, the model was solved using unre-
stricted HF approach. The main point here is that the static
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lattice distortion lifts the orbital degeneracy and substan-
tially suppress the quantum fluctuations in all considered
compounds. Thus, the ground state of these systems can be
described reasonably well by a single Slater determinant, that
justifies the use of the HF approach. For instance, using model
parameters, derived from the first-principles calculations, and
solving the obtained model in the HF approximation, one can
successfully reproduce the experimental FM, A-type AFM,
G-type AFM, and C-type AFM ground state in YTiO3, LaTiO3,
orthorhombic YVO3, and monoclinic YVO3, respectively. If
necessary, the HF approximation can be additionally improved
by considering the regular perturbation theory expansion for
electron correlations near the magnetic ground state. The
validity of this strategy was demonstrated in Refs. [26,29,30].

The HF approximation for the low-energy model, derived
from the first-principles calculations, has many similarities
with the LDA+U approach [10,37]. As was demonstrated in
Ref. [29], both techniques provide very similar description
for the considered distorted perovskite oxides. The main
difference is that the model is formulated in the restricted
basis of states close to the Fermi level, while LDA+U is
formally an “all-electron” approach. However, the latter ad-
vantage of LDA+U is typically eliminated by additional (and,
sometimes, rather artificial) approximations for the double-
counting terms and the division of all states into “localized”
and “delocalized” ones. Another good point of the effective
Hamiltonian approach is that it can be relatively easy used
for the analysis of complex noncollinear magnetic structures,
resulting from the competition of many magnetic interactions
in the system, that is very important for understanding the
origin of multiferroic effect [38–40].

Finally, we discuss some specific points, related to calcu-
lations of the orbital magnetization. Strictly speaking, if the
model Hamiltonian H includes the SO interaction term,

HSO = �

4m2c2
σ × ∇V · p, (14)

which originates from Pauli equations and is valid in the second
order of 1/c, the velocity operator v = (i/�)[H,r] will consists
of two contributions:

v = p
m

+ �

4m2c2
σ × ∇V. (15)

The theory of orbital magnetization implies that the second
term in Eq. (15) can be neglected, that results in the
nonrelativistic expression p = mv. This can be done because
the contribution of the second term of Eq. (15) to the orbital
magnetic moment (2) is of the order of 1/c3, which is formally
beyond the accuracy of Pauli equations.

In order to calculate ∂̃kcnk along the direction i of the BZ,
we have used the discretized covariant derivative technique,
which is well suited for insulators [17,19]:

∂̃icnk = 1

2|q| (c̃nk+q − c̃nk−q), (16)

where q is the vector that connects k with the nearby point in
the direction i and c̃nk+q is the “dual” state, defined in terms
of the overlap matrix (Sk,k+q)nn′ = 〈cnk|cn′k+q〉 as

c̃nk+q =
∑
n′

(
S−1

k,k+q

)
n′ncn′k. (17)

As for the k-space integration, we have used the grid of
about 70×70×50 points in the first BZ, which guarantees an
excellent convergence for �M depending on the number of
k points [32].

V. RESULTS

A. YTiO3

YTiO3 crystallizes in the orthorhombic Pbnm structure
(in our calculations, we used the experimental structure
parameters, measured at 2 K) [41]. Below TC ≈ 29 K, it
forms the canted FM structure, where the net FM moment
is parallel to the orthorhombic c axis. Two other components
of the magnetic moments, parallel to the orthorhombic a and
b axes, are ordered antiferromagnetically. The type of this
ordering is G and A, respectively. Such magnetic structure can
be abbreviated as Ga-Ab-Fc. It was successfully reproduced
by our mean-field HF calculations for the low-energy model.
The details of these calculations can be found in Ref. [29]
and the obtained magnetic structure is summarized in Fig. 1.
In this case, the vector of the spin magnetic moment at the
site 1 is (−0.021,−0.127, 0.986) μB and the vector μ0 of
orbital magnetic moment is (−0.033,−0.001,−0.018) μB.
Therefore the net local orbital magnetic moment M0

c (per
one primitive cell of YTiO3, containing four Ti atoms) is
−0.072 μB (Table I). As was explained above, it is parallel
to the c axis.

Then, we evaluate the itinerant correction �M, resulting
from the local and itinerant circulation terms. These results
are summarized in Table I. Because of the symmetry, the
projections of �M onto the orthorhombic a and b axes are
identically equal to zero [42]. The c projection (�Mc) is finite.
However, it is more than two orders of magnitude smaller
than M0

c and, therefore, can be safely neglected. In principle,
this result is anticipated for the considered transition-metal
oxides, which are frequently regarded as Mott insulators and
in which the magnetically active 3d states are relatively well
localized.

FIG. 1. (Color online) Distribution of spin (a) and orbital
(b) magnetic moments as obtained in the mean-field Hartree-Fock
calculations for the low-energy model of YTiO3 [29]. The titanium
atoms are indicated by the big red (dark) spheres and the oxygen
atoms are indicated by the small green (grey) spheres. For the sake
of clarity, the arrows for the orbital magnetic moments were scaled
in order to have the same length as for the spin magnetic moments.
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TABLE I. Different contributions to the net orbital magnetic moment, as obtained in the mean-field Hartree-Fock calculations for the
low-energy model: the local moment M0, given by periodic part of the orbital momentum operator in the Wannier basis, and two itinerant
contributions, due to the local and itinerant circulation (�MLC and MIC , respectively). All values are in μB per one primitive cell, containing
four transition-metal sites.

Compound Direction M0 �MLC MIC �MLC + MIC

YTiO3 (Pbnm) ||c −0.072 −1.22 × 10−5 2.63 × 10−4 2.50 × 10−4

LaMnO3 (Pbnm) ||c −0.032 1.05 × 10−4 −2.28 × 10−4 −1.23 × 10−4

YVO3 (Pbnm) ||a −0.004 −6.75 × 10−4 −1.30 × 10−4 −8.05 × 10−4

YVO3 (P 21/a) ||b −0.020 3.30 × 10−6 −2.29 × 10−5 −1.96 × 10−5

Nevertheless, it is interesting to gain some insight by
investigating the origin of such a small value. For these
purposes, we analyze the integrand

�M(k) = e

2�c
Im

∑
n

〈∂kcnk| × (Ĥk + Enk)|∂kcnk〉

of

�M =
∫

BZ

dk
�

�M(k)

and plot it along high-symmetry directions of the BZ (see
Fig. 2). Notations of the high-symmetry points of the BZ
were taken from the book of Bradley and Cracknell [43].
We obtained that two components, �Ma(k) and �Mb(k),
are identically equal to zero in each k point, while �Mc(k)
can be finite and, moreover, strongly depend on k. This
behavior is consistent with the Ga-Ab-Fc symmetry of the
magnetic ground state [42]. �Mc(k) reaches its maximal
value of 0.088 μB in the point Y = (0, 1

2 ,0) of the BZ (in
units of reciprocal lattice translations), which is comparable
with M0

c . Thus the individual contributions �Mc(k) can be
large. However, there is also a large cancelation between
positive and negative contributions to �Mc around the Y
and X = ( 1

2 ,0,0) points, respectively. Similar situation occurs
at the BZ boundary kc = 1

2 , where again the large positive
contribution around T = (0, 1

2 , 1
2 ) is nearly canceled by the

FIG. 2. (Color online) Behavior of itinerant contributions to the
net orbital magnetic moment in YTiO3 (left axis) and corresponding
Chern invariant (CI, right axis) in the reciprocal space, along high-
symmetry directions of the Brillouin zone. Two partial contributions
to the net orbital moment, associated with the local (�MLC) and
itinerant (MIC) circulation, are denoted as LC and IC, respectively,
and the sum of these two contributions is denoted as “total”.

negative contribution around U = ( 1
2 ,0, 1

2 ). This result is
summarized in Fig. 3, where we plot �Mc(ka,kb,kc) for
kc = 0 and 1

2 , as well as its planar average over ka and kb:

�Mc(kc) = |a||b|
4π2

∫ π/a

−π/a

dka

∫ π/b

−π/b

dkb �Mc(ka,kb,kc).

One can clearly see that �Mc(ka,kb,kc) only weakly depends
on kc. For each kc, there is a strong cancellation of the
positive and negative contributions to �Mc(ka,kb,kc), arising
from k = (0, 1

2 ,kc) and ( 1
2 ,0,kc), respectively. This cancellation

readily explains the small value of �Mc(kc). Finally, the
integration of �Mc(kc) over kc yields the total value of �Mc,
reported in Table I. Thus the small value of �Mc is the
result of strong cancellation of relatively large contributions
�Mc(k), coming from different parts of the BZ. Moreover,
the strong k-dependence of �M implies that, after the
Fourier transformation to the real space, in addition to the
small site-diagonal component, this quantity will have a large
nonlocal (or off-diagonal with respect to the atomic sites) part.
Since the k dependence is smooth, this Fourier series should
converge, that justifies the use of the real-space analysis.

In the rest of this section, we will show that the cancellation
of different contributions to �M in the reciprocal space is a
generic result, which can be expected for other Mott insulators,

FIG. 3. (Color online) (Left) Three-dimensional plot of
�Mc(k) ≡ �Mc(ka,kb,kc) for kc = 0 and 1

2 in the case of YTiO3.
(Right) The kc dependence of �Mc(kc), obtained after the integration
of �Mc(k) over ka and kb, and its partial contributions associated
with local and itinerant circulation terms (LC and IC, respectively).
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carrying a net FM moment in the ground state. The intuitive
reason is the following. As was already pointed out in Sec. II,
the behavior of �M is closely related to that of the Chern
invariants. For our purposes, it is convenient to rewrite C in
the following form:

C = 1

�

∫
BZ

dk C(k),

where

C(k) = − �

2π
Im

∑
n

〈∂kcnk| × |∂kcnk〉.

For the normal insulators, C is zero, and this property is
perfectly reproduced by our calculations. However, due to
the specific symmetry of the Ga-Ab-Fc ground state of YTiO3

[42], the integrand Cc(k) can be finite in the individual k points,
while two other projections of C(k) onto the orthorhombic a
and b axes are identically equal to zero. Furthermore, the
k dependence of Cc(k) is very close to that of �Mc(k)
(see Fig. 2). Thus, in the case of Chern invariant Cc(k), the
contributions from different parts of the BZ exactly cancel
each other. However, in the expression for �Mc, the k
dependence of Cc(k) for each band is additionally modulated
with k-dependent Ĥk and Enk, that leads to a small but finite
value of �Mc (see Table I). It also explains why �MLC

c (k)
and MIC

c (k) reveal very similar k dependence: in both cases,
it is dictated by the k dependence of Cc(k), which appears to be
more fundamental quantity. Below, we will show that similar
properties hold for other compounds, exhibiting different types
of the lattice distortion and, therefore, the magnetic ground
state.

B. LaMnO3

LaMnO3 is another compound, crystallizing in the or-
thorhombic Pbnm structure [44]. It has the same Ga-Ab-
Fc type of the magnetic ground state, which is realized
below TN ≈ 140 K [45]. This magnetic ground state was
successfully reproduced in our mean-field HF calculations for
the low-energy model. The basic difference from YTiO3 is
that the spin magnetic structure is nearly A-type AFM and
the FM canting of spins in the c direction is really small.
In this sense, LaMnO3 can be viewed as a canonical weak
ferromagnet. Nevertheless, the orbital magnetic structure is
strongly deformed: in comparison with the spin one, there is a
large deviation from the collinear A-type AFM alignment and
an appreciable canting of the orbital magnetic moments in the
a and c directions, which can be seen even visually in Fig. 4.

The vector of spin magnetic moment at the site 1 is
( 0.354, 3.952, 0.111) μB and the one of orbital magnetic
moment μ0 is (−0.030,−0.057,−0.008) μB. Thus the net
orbital magnetic moment M0 is −0.032 μB (Table I).

The behavior of �M(k) is qualitatively the same as in
YTiO3: it has similar structure and similar type of cancellation
between different parts of the BZ (see Fig. 5). Taking into
account that YTiO3 and LaMnO3 have the same type of the
orthorhombic structure and the magnetic ground state, such
similarity is not surprising. The main difference is in the
magnitude of the effect, which is much more pronounced in
LaMnO3: the values of �Mc(k) in the Y and T points are

FIG. 4. (Color online) Distribution of spin (a) and orbital
(b) magnetic moments as obtained in the mean-field Hartree-Fock
calculations for the low-energy model of LaMnO3. The manganese
atoms are indicated by the big red (dark) spheres and the oxygen
atoms are indicated by the small green (grey) spheres. For the sake
of clarity, the arrows for the orbital magnetic moments were scaled
in order to have the same length as for the spin magnetic moments.

0.154 μB and 0.159 μB, respectively, which exceed M0
c by

factor five. However, there is again a strong cancellation with
the negative contributions around the X and U points of the BZ,
which, after the integration, leads to the small value of �Mc.
Moreover, in LaMnO3 there is an appreciable cancellation
between LC and IC contributions to �Mc (see Table I).

Like in YTiO3, the k dependence of �Mc(k) in LaMnO3

follows the form of Cc(k) (Fig. 5). Nevertheless, one interesting
aspect is that the amplitude of Cc(k) in LaMnO3 is smaller than
in YTiO3 (see Fig. 2), while for �Mc(k) the situation is exactly
the opposite. This difference may be related to the number of
occupied bands (16 in the case of LaMnO3 versus 4 in the case
of YTiO3). Thus, the amplitude of �Mc(k) may be larger
in LaMnO3 because the number of occupied bands is larger.
Moreover, YTiO3 is a t2g system, while the net orbital moment
in LaMnO3 contains a contribution of much less localized eg

FIG. 5. (Color online) Behavior of itinerant contributions to the
net orbital magnetic moment in LaMnO3 (left axis) and corresponding
Chern invariant (CI, right axis) in the reciprocal space, along high-
symmetry directions of the Brillouin zone. Two partial contributions
to the net orbital moment, associated with the local (�MLC) and
itinerant (MIC) circulation, are denoted as LC and IC, respectively,
and the sum of these two contributions is denoted as “total”.
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electrons. Therefore it is reasonable to expect that the itinerant
moment �Mc(k) will be larger in LaMnO3.

C. YVO3

YVO3 has two crystallographic modifications: orthorhom-
bic Pbnm, which is realized below 77 K, and monoclinic
P 21/a above 77 K (in our calculations, we use the experi-
mental structure parameters at 65 and 100 K, respectively)
[46].

The magnetic structure, realized in the orthorhombic Pbnm

phase is Fa-Cb-Gc (see Fig. 6). According to the mean-field HF
calculations for the low-energy model, the vector of spin mag-
netic moment at the site 1 is (−0.016, 0, 1.969) μB and the vec-
tor of orbital magnetic moment is (−0.001, 0.001,−0.186) μB.
Thus, the c projection clearly dominates, while two other
projections are substantially smaller. The net orbital magnetic
moment M0

a is only −0.004 μB, which is parallel to the
orthorhombic a axis.

The monoclinic phase of YVO3 has two inequivalent pairs
of V sites, which are denoted in Fig. 6 as (1,2) and (3,4). Within
each pair, the a and c projections of the magnetic moments
are coupled antiferromagnetically, while the b projections are
ferromagnetic. According to the mean-field HF calculations
for the low-energy model, the vectors of spin magnetic

FIG. 6. (Color online) Distribution of spin [(a) and (c)] and
orbital [(b) and (d)] magnetic moments as obtained in the mean-field
Hartree-Fock calculations for the low-energy model of YVO3 in the
orthorhombic Pbnm [(a) and (b)] and monoclinic P 21/a [(c) and
(d)] phases. The vanadium atoms are indicated by the big red (dark)
spheres and the oxygen atoms are indicated by the small green (grey)
spheres. For the sake of clarity, the arrows for the orbital magnetic
moments in the sublattice (1,2) were scaled in order to have the
same length as for the spin magnetic moments. The orbital magnetic
moments in the sublattice (3,4) are additionally quenched by stronger
crystal field.

moments at the sites 1 and 3 are (−0.850, 0.077, 1.785) μB

and (−0.875,−0.032, 1.764) μB, respectively, and the vectors
of orbital magnetic moments are ( 0.074,−0.046,−0.173) μB

and ( 0.043, 0.036,−0.073) μB, respectively. The local orbital
magnetic moments in the sublattice (3,4) are substantially
smaller due to additional quenching by stronger crystal field
(see Ref. [29] for details). Thus there is a partial cancellation
of the FM magnetization between two sublattices. However,
due to the additional quenching in the sublattice (3,4), this
cancellation is not complete and the system remains weakly
ferromagnetic. The net orbital magnetic moment M0

b is
−0.02 μB, which is parallel to the monoclinic b axis. The di-
rections of the net magnetic moment and, therefore, the type of
the magnetic ground state in the orthorhombic and monoclinic
phases are well consistent with the experimental data [47].

The type of the magnetic ground state in the orthorhombic
YVO3 is different from the one in YTiO3 and LaMnO3.
As a result, the k dependence of C(k) and �M(k) is also
different. Since the net magnetic moment is parallel to the
orthorhombic a axis, only a projection of �M is finite,
while two other projections are identically equal to zero. Then,
�Ma(k) reaches the maximal value of 0.099 μB in the X point
of the BZ (see Fig. 7), which exceeds the net local magnetic
moment M0

a by more than one order of magnitude (Table I).
There are other positive contributions, originating from the X,
Z = (0,0, 1

2 ), and U points of the BZ. Nevertheless, they are
well compensated by the negative contributions, coming from
the T and R = ( 1

2 , 1
2 , 1

2 ) points of the BZ, that again results in
the small value of �Ma (Table I). This behavior is totally
consistent with the form of Ca(k).

A completely different type of cancellation occurs in the
monoclinic phase of YVO3. In this case, the net orbital moment
is parallel to the monoclinic b axis (Table I), and �Mb(k) has
the largest magnitude in the plane kc = 1

2 , where the region

of positive values around the point E = ( 1
2 , 1

2 , 1
2 ) is nearly

canceled by the region of negative values around the point

D = ( 1
2 ,0, 1

2 ) (see Fig. 8). This behavior is again consistent with

FIG. 7. (Color online) Behavior of itinerant contributions to the
net orbital magnetic moment in the orthorhombic Pbnm phase of
YVO3 (left axis) and corresponding Chern invariant (CI, right axis) in
the reciprocal space, along high-symmetry directions of the Brillouin
zone. Two partial contributions to the net orbital moment, associated
with the local (�MLC) and itinerant (MIC) circulation, are denoted
as LC and IC, respectively, and the sum of these two contributions is
denoted as “total”.

064428-8



ORBITAL MAGNETIZATION OF INSULATING . . . PHYSICAL REVIEW B 89, 064428 (2014)

FIG. 8. (Color online) Behavior of itinerant contributions to the
net orbital magnetic moment in the monoclinic P 21/a phase of YVO3

(left axis) and corresponding Chern invariant (CI, right axis) in the
reciprocal space, along high-symmetry directions of the Brillouin
zone. Two partial contributions to the net orbital moment, associated
with the local (�MLC) and itinerant (MIC) circulation, are denoted
as LC and IC, respectively, and the sum of these two contributions is
denoted as “total”.

the form of Cb(k) and explains the small value of integrated
�Mb in Table I.

VI. CONCLUSIONS

We have applied modern theory of the orbital magnetization
to the series of distorted perovskite transition-metal oxides
with a net FM moment in the ground state. Our applications
cover several typical examples, including canted (but yet
robust) ferromagnetism in orthorhombic YTiO3 as well as
the weak ferromagnetism, caused by either antisymmet-
ric Dzyalishinskii-Moriya interactions in the orthorhombic
LaMnO3 and YVO3 or imperfect cancellation of magnetization
between two crystallographic sublattices in the monoclinic
YVO3. Our numerical calculations suggest that, for all
considered compounds, the orbital magnetization can be
well described by the “standard” expression (1), which is
given by the site-diagonal part of the density matrix, while
the “itinerant” corrections, suggested by the modern theory,
are negligibly small. Nevertheless, the smallness of these
corrections is the result of rather nontrivial cancellation of
relatively large contributions coming from different parts of
the BZ.

There is a big difference in the behavior of orbital magneti-
zation and ferroelectric (FE) polarization in centrosymmetric
(or nearly centrosymmetric) crystals. In the latter case, the
only possibility to obtain a finite FE polarization is to break the
inversion symmetry by some complex magnetic order. Such
a situation is indeed realized in some multiferroic perovskite
manganites, including TbMnO3, HoMnO3, and YMnO3 [48].
Then, if the magnetic sites are located in the centers of
inversion (again, as in the perovskite compounds), Eq. (8)
yields 〈φα′ (r − R)|r − R|φα(r − R)〉 = 0, which means that
there is no “local polarization,” associated with the distribution
of the electron density around these magnetic sites. Therefore,
the FE polarization in this case will be totally anomalous,
which can be only captured by the Berry phase of the
wave functions [38,39,49]. Using similar model analysis, one
can show (Ref. [39]) that this anomalous contribution in

multiferroic perovskite manganites is proportional to transfer
integrals between different magnetic sites and, therefore, can
be regarded as an itinerant quantity, similar to �M [50].

The behavior of the orbital magnetization in the same
systems is different. In this case, there are finite local magnetic
moments, which are given by the site-diagonal elements of the
density matrix in the Wannier basis, and these local magnetic
moments provide the main contribution to the net FM moment
(if any). The itinerant corrections �M to the FM moment,
originating from the Berry phase effect, are considerably
smaller. Thus the orbital magnetic moment is mainly a local
quantity.

The form of �M(k) in the reciprocal space follows the
behavior of Chern invariants. Although the full integral over
the BZ is small (or identically equals to zero in the case of
Chern invariants), the integrand itself is finite and, moreover,
can be strongly k-dependent. By tracing this discussion back
to the real space by means of the Fourier transform, this would
mean that the considered quantities will have nonlocal (or
off-diagonal with respect to the atomic sites) contributions and,
for the normal insulators studied in this work, these nonlocal
contributions will be substantially larger than the local (or
site-diagonal) ones. This is one of the most interesting aspects
of the modern theory of the orbital magnetization, which
raises new questions. Particularly, can these large nonlocal
contributions be measured or can they contribute to other
properties? Such a possibility was, in fact, investigated in
Ref. [28], where it was argued that different (but yet gauge
invariant) parts of the integrated orbital magnetization can be
indeed separated experimentally by combining gyromagnetic
and magneto-optical measurements, supplemented with the
sum rules. Moreover, following discussions in Ref. [28], it
is clear that similar strategy can be applied also for the
analysis of the k-resolved quantities. Thus we believe that
general answer to the above question should be affirma-
tive. Nevertheless, such measurements cannot be done using
conventional experimental means, because there is no such
technique as “k-resolved magneto-optics”. In this respect,
one new and interesting development is the “valleytronics”,
which utilizes the properties of electrons, trapped in a specific
region of momentum space. For example, this technique
was recently proposed for the analysis of k-resolved optical
oscillator strength and orbital magnetization of graphene [51].
Nevertheless, today this direction remains to be very specific to
materials with the graphene-type electronic band structure and
it is not clear whether the same type of ideas can be employed
for the analysis of transition-metal oxides, including those
considered in the present work.

Another interesting issue, related to the first fundamental
problem outlined in the Introduction, is the direction for the
improvement of SDFT. Will this large and essentially nonlocal
part of itinerant magnetization contribute to the exchange-
correlation energy and, in this way, improve the description of
the orbital magnetization related properties? As was pointed
out in Introduction, the dominant point of view so far is that the
orbital magnetization is local and the main processes, which
are missing in conventional DFT calculations and which are
responsible for the agreement with the experimental data,
can be also formulated in the local form, by considering
the effect of properly screened Coulomb interactions on the
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magnetic sites [8–11]. The itinerant magnetization �M(k)
is not taken into account by this type of theories. However,
this �M(k), being defined in terms of surface currents [17],
could contribute to the exchange-correlation energy in the
framework of current SDFT [6,12,18]. Then, the fact that, even
in the considered transition-metal perovskite oxides, which
are frequently regarded as Mott insulators, the itinerant orbital
magnetization can be large in some regions of the reciprocal
space, will probably revive an interest to current SDFT.
However, it is still an open and largely unresolved question

whether, besides an elegant general formulation (Ref. [6]),
such theory can be widely used in practical calculations, which
require a robust (and so far unknown) approximation for the
exchange-correlation energy in terms of the current density.
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