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Proposal for direct measurement of random fields in the LiHoxY1−xF4 crystal
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The random-field Ising model (RFIM) is central to the study of disordered systems. Yet, for a long time it eluded
realization in ferromagnetic systems because of the difficulty to produce locally random magnetic fields. Recently,
it was shown that in anisotropic dipolar magnetic insulators, the archetype of which is the LiHoxY1−xF4 system,
the RFIM can be realized in both ferromagnetic and spin-glass phases. The interplay between an applied transverse
field and the off-diagonal terms of the dipolar interaction produce effective longitudinal fields, which are random
in sign and magnitude as a result of spatial dilution. In this paper, we use exact numerical diagonalization of the
full Hamiltonian of Ho pairs in LiHoxY1−xF4 to calculate the effective longitudinal field beyond the perturbative
regime. In particular, we find that nearby spins can experience an effective field larger than the intrinsic dipolar
broadening (of quantum states in zero field) which can therefore be evidenced in experiments. We then calculate
the magnetization and susceptibility under several experimental protocols, and show how these protocols can
produce direct measurement of the effective longitudinal field.
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I. INTRODUCTION

The random-field Ising model (RFIM) has been central
to the research of disordered systems ever since the seminal
work of Imry and Ma [1] who have shown that below a lower
critical dimension of two, the ferromagnetic (FM) phase is
unstable to an infinitesimal random field. Whereas the RFIM
provides a simple and adequate description for a plethora of
problems across scientific disciplines, its realization in FM
systems was hindered for a long time because of the difficulty
to produce magnetic fields which are random on short length
scales. Experimentally, effects of the random field on, e.g.,
the FM-paramagnetic (PM) phase transition, were thoroughly
studied using dilute antiferromagnets (DAFM) in a constant
field (see Ref. [2] and references therein), as these systems
were shown [3] to be equivalent to the RFIM near criticality.

Recently, it was shown that dilute anisotropic dipolar
insulators in an applied magnetic field transverse to the easy
(Ising) axis constitute a realization of the RFIM in both their
FM and spin-glass (SG) phases [4–6]. In such systems, the
archetype of which is LiHoxY1−xF4, the interplay between the
applied transverse field and the off-diagonal elements of the
dipolar interaction transforms spatial disorder into an effective
random field in the longitudinal (Ising axis) direction. The off-
diagonal dipolar terms can not be neglected despite the strong
Ising anisotropy because they break the Z2 symmetry of Sz →
−Sz. Note that in the absence of an applied magnetic field,
Z2 symmetry is protected by time reversal, i.e., S → −S, but
once the Z2 symmetry is no longer protected by time reversal,
random fields become generic as in nonmagnetic systems [7].

For the pure LiHoF4 system, the effective longitudinal field
at each spin site is zero because contributions from all other
spins cancel exactly. However, upon dilution cancellation is
not exact, and the net longitudinal field at each populated
site depends on the (random) position of the other spins.
We stress here that the phrase “effective longitudinal field”
is reserved in this paper for the term that appears explicitly in
the effective low-energy Hamiltonian [third term in Eq. (7)],
breaking time-reversal symmetry. This is to be differed from
the mean field effective fields exerted by the random interaction

itself [first term in Eq. (7)]. The typical magnitude of the
effective longitudinal fields depends on the concentration x;
it is linear in x for x � 1 [4] and proportional to 1 − x for
1 − x � 1 [6], deep in the FM phase.

The possibility to study the RFIM in FM systems has
advantages in comparison to its study in the DAFM, e.g., (i) a
uniform tunable parallel magnetic field can be applied, which
allows susceptibility measurements, and study of phenomena
such as Barkhausen noise [8,9]. This is in contrast to the
DAFM, where an effective field parallel to the staggered
magnetization can not be applied. (ii) The RFIM can be studied
away from criticality (DAFM in a field are equivalent to the
RFIM only near criticality).

Since the theoretical prediction of its realization in
anisotropic dipolar magnets, the RFIM was studied experi-
mentally in both the SG and FM phases of the LiHoxY1−xF4

system [10–13]. In particular, a peculiar dependence of the
critical temperature on the random field was observed at
x = 0.44. This behavior was recently shown to be a result
of the proximity to the SG phase and the novel disordering it
induces in the presence of a random field [14].

In this paper, we consider LiHoxY1−xF4 in the extremely
dilute regime x � 1. In this regime, except at ultralow temper-
atures, physics is dominated by single spins and by rare nearby
spin pairs which have intrapair interaction far larger than the
typical spin-spin interactions in the system. Contributions of
single-spin tunneling and pair cotunneling to the hysteresis
magnetization were reported in Refs. [15,16]. Considering
such nearby pairs, we calculate, using exact diagonliazation
of the full two-Ho system, the effective longitudinal field
for each pair given the relative position of the two spins.
Our calculations extend the perturbative results in Ref. [4]
to large fields. In addition, we calculate the contribution to
the magnetization and susceptibility of various Ho pairs, as
a function of an applied field in both the longitudinal and
transverse directions. Based on these calculations, we describe
experimental protocols that allow the measurement of the
effective longitudinal field for given pairs, as these effective
fields are manifested in shifted susceptibility resonances.
Such experiments will constitute a direct measurement of
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FIG. 1. (Color online) The unit cell for LiHoF4. a = 5.175 Å,
c = 10.75 Å. n.n. indicates nearest lattice neighbors. Illustration
adapted from Gingras and Henelius [17].

the microscopic random field, rather than its macroscopic
consequences.

The structure of the paper is as follows: In Sec. II, we
discuss the properties of the LiHoxY1−xF4 crystal. In Sec. III,
we present the numerical technique and the calculation of the
effective random fields. In Sec. IV, we present the calculations
of the magnetization and susceptibility and propose experi-
mental protocols for measuring the random fields. Our results
are summarized in Sec. V. Appendix A reviews the analytic
perturbative derivation of the random field and compares it
to our numerical results. In Appendix B, we describe the
numerical calculation in some detail.

II. LiHoxY1−xF4

The LiHoF4 crystal (see Fig. 1) is a realization of a
dipolar Ising magnet. Disorder is introduced through dilution
of the highly magnetic Ho sites (μHo = 10.6μB ) [18] by
the practically nonmagnetic yttrium ions (μY = 0.14μB ) to
produce LiHoxY1−xF4 with Ho concentration x. The “free”
trivalent Ho ion has the configuration 5I8. The crystal field
(CF) generated by the electrostatic potential of the crystal,
given by [19]

HCF = B0
2O0

2 + B0
4O0

4 + B0
6O0

6 + B4
4 (C)O4

4 (C)

+B4
6 (C)O4

6 (C) + B4
6 (S)O4

6 (S) (1)

partially breaks the 17-fold degeneracy
(J z = −8, − 7, . . . ,7,8) and translates to a large uniaxial
magnetic anisotropy along the z axis.

Here, the Ol
n are Stevens’ operator equivalents [20] and the

Bm
n coefficients are crystal-field parameters obtained through

fitting to spectroscopic and neutron scattering experiments
[21]. The O4

4 (C), O4
6 (C), and O4

6 (S) terms break the easy
z-axis symmetry and couple free-ion states with �Jz = ±4.
This produces a doubly degenerate ground Ising state |↑〉 and
|↓〉 with 〈J z〉 = ±5.5. The first excited state (�2) is well above
the ground states at �0 = 10.8 K.

The Ho ion has a nuclear spin of 7
2 and an untypically large

hyperfine (HF) interaction between the electronic and nuclear

FIG. 2. Splitting of the electronic Ising states into electronuclear
states due to the “longitudinal” part of the HF interaction (H ‖

HF).
Illustration taken from Schechter and Stamp [22].

angular moments. The HF interaction can be conveniently
separated into two parts:

HHF = AJ

∑
i

	Ii · 	Ji

= AJ

∑
i

I z
i · J z

i + AJ

2

∑
i

(I+
i · J−

i + I−
i · J+

i )

= H
‖
HF + H⊥

HF (2)

with I = 7
2 and AJ = 0.039 K [16]. The “longitudinal” part of

the interaction H
‖
HF splits each of the electronic ground dou-

blets into eight equidistant electronuclear levels �E � 215
mK each with its own I z (Fig. 2). These electronuclear states
can be grouped in degenerate time-reversal pairs, i.e., |↑ ,Iz〉,
|↓ −Iz〉, of which the lowest pair can be treated as the new Ising
states. The “transverse” part of the HF interaction combined
with a transverse magnetic field under 2 T can only couple
these time-reversal pair states weakly (see Fig. 4 in Ref. [22]).

An applied longitudinal magnetic field splits the degeneracy
between the electronuclear doublets linearly (Landé g factor
gL = 5

4 ):

�E = gLμBBz〈J z
↑〉 − gLμBBz〈J z

↓〉 = 2gLμBBz〈J z
↑〉. (3)

The interionic interaction between two Ho ions is composed
of both superexchange (AFM) and dipolar components. The
superexchange interaction is given by

Hsuperexchange =
∑
i �=j

U (	rij ) 	Ji
	Jj , (4)

where the value of U ( 	rij ) was found for the nearest lattice
neighbor (n.n.) pairs (Un.n. = 5.6 mK) and second n.n. pairs
(Usecond = 0.33 mK) through specific-heat measurements [23].
The dipolar interaction is given by

Hdipolar =
∑
i �=j

α,β=x,y,z

V
αβ

ij J α
i J

β

j =
∑

α,β=x,y,z

∑
j �=i

∑
i

1

2
g2

Lμ2
B

μ0

4π

× |rij |2δα,β − 3rα
ij r

β

ij

|rij |5 J α
i J

β

j (5)

and is FM or AFM depending on the spatial alignment of the
two interacting ions. The superexchange interaction is small
in comparison to the dipolar interaction even for n.n. pairs
[17,19,24,25] and lacks off-diagonal (e.g., xz) terms. Thus,
the effect of the superexchange interaction on the effective
longitudinal fields is small, and is neglected hereafter.
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Keeping only the dominating zz term of dipolar interactions
(all other terms of the dipolar interaction involve excited
single-Ho electronic states, and are thus effectively reduced),
the LiHoxY1−xF4 system becomes a realization of the Ising
model. The addition of an applied transverse magnetic field
Bx , which allows for quantum fluctuations between the low-
energy single-Ho Ising states, renders an effective transverse
field. Furthermore, upon dilution, the combined effect of the
transverse field and the off-diagonal terms of the dipolar
interactions results in an effective random field [4,6] (see
Appendix A for details and a definition of the constant η)

Bz
k,eff = 4η

�0

∑
i �=k

V zx
ki Bx. (6)

Thus, one can study in the LiHoxY1−xF4 the RFIM in the
presence of an effective transverse field � and a constant
longitudinal field Bz, all effective fields being tunable by the
choice of the applied longitudinal and transverse fields, and
Ho concentration [6]

H =
∑
ij

V eff
ij τ z

i τ z
j + �

∑
i

τ x
i + γ

∑
i

Bz
i,effτ

z
i

+ γBz
∑

i

τ z
i . (7)

Here, τ represents an effective spin half, γ = 2gLμB〈J z〉, and
Bz

i,eff is given by Eq. (6).
For small applied transverse fields, the effective random

field dominates over the effective transverse field �, as the
former is linear in Bx whereas the latter is higher order in the
field [6]. Furthermore, for low energies, where the relevant
Ising states are the electronuclear states |↑ ,Iz〉; |↓ −Iz〉,
the effective transverse field is significantly reduced as a
consequence of the need to also flip the nuclear state [22,26].
Thus, for small applied transverse fields the Hamiltonian in
Eq. (7) practically reduces to the classical RFIM. This holds
for any Ho concentration x < 1, and for x > 0.3 it yields a
FM RFIM.

III. RANDOM EFFECTIVE FIELDS FOR HO PAIRS

The random field has profound effects on the system, in both
its spin-glass and ferromagnetic phases [4–6,10,12,27,28].
However, its direct measurement requires special considera-
tion. This is because the energy change when flipping spins is a
sum of the random fields exerted on the flipped spins, and their
(random) interactions with the rest of the system. However, in
the very dilute regime, the situation is favorable since pairs
of spins separated by a distance significantly smaller than the
typical distance between spins interact predominantly within
the pair and only weakly with the rest of the system. We now
analyze the effective longitudinal fields of such pairs of spins.

Let us consider a pair of Ho ions with a relative location
dictating a FM dipolar interaction. Its two degenerate ground
states are then |↑ − 7

2 ↑ − 7
2 〉 and |↓ 7

2 ↓ 7
2 〉. Upon the applica-

tion of a transverse field, the effective (random) longitudinal
field given in Eq. (6) for any number of spins reduces to the
field exerted by each spin on the other. This longitudinal field
is identical for both spins, and its magnitude and sign depends

FIG. 3. (Color online) Some of the energy levels (lowest 32
eigenvalues) as a function of transverse field for n.n. pairs at relative
positions 	r = ( 1

2 a,0, 1
4 c). The inset shows a closeup of the area

delimited by a dashed line with some of the states annotated. The
different colors and marker styles distinguish between diabatic states
(see Appendix B) with states of similar energy at zero field sharing the
same color and marker style. Zero energy is continuously calibrated to
be at the mean between the two blue circles’ levels (which correspond
to | ↑ − 7

2 ↑ − 7
2 〉 and | ↓ 7

2 ↓ 7
2 〉 at zero field).

on the relative location of the two spins. It is directly related to
the energy splitting of the degeneracy by the transverse field:

Bz
eff(B

x) ≡
[
E

(∣∣↑ − 7
2↑ − 7

2

〉) − E
(∣∣↓ 7

2↓ 7
2

〉)]
2gLμB(〈J z

↑〉 − 〈J z
↓〉) . (8)

For small Bx , the calculation of E(|↑ − 7
2 ↑ − 7

2 〉) −
E(|↓ 7

2 ↓ 7
2 〉) can be calculated perturbatively [Eq. (6),

Appendix A]. However, for the experimental detection of
the random field, one needs to calculate Bz

eff beyond the
perturbative regime. We therefore calculate Bz

eff as a function of
Bx using an exact numerical diagonalization of a full (18 496 ×
18 496) two-Ho ion Hamiltonian:

H2Ho = HCF + HHF + Hdipolar + HZeeman

with an applied transverse magnetic field along one of the
crystallographic “hard” axes chosen as the x axis.

We exploit the sparsity of the Hamiltonian matrix and use
the iterative Arnoldi process [29] (see Appendix B). The pair
Hamiltonian is diagonalized and the effective longitudinal field
is calculated for pairs at various nearby relative positions. In
Fig. 3, we plot the lowest-energy levels for transverse fields
between 0 and 2 T for a n.n. pair (see also Fig. 1).

The effective longitudinal field for such a pair was deter-
mined [as in Eq. (8)] by the energy difference between the
| ↑ − 7

2 ↑ − 7
2 〉 and | ↓ 7

2 ↓ 7
2 〉 levels (blue circles in Fig. 3).

This energy difference, shown in Fig. 4, turns out to be
practically linear up to transverse field values of above
1 T, i.e., well beyond the perturbative regime. The function
�E = [0.81Bx − 0.01(Bx)3] K fits this curve well up to
Bx ≈ 1.2 T. The linear coefficient is in excellent agreement
with the perturbative expansion δEperturbative = 0.8135Bx K
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FIG. 4. (Color online) Energy difference between the
| ↑ − 7

2 ↑ − 7
2 〉 and | ↓ 7

2 ↓ 7
2 〉 states for n.n. pairs.

(see Appendix A). The corresponding effective field for n.n.
pairs is therefore Bz

eff = 0.044Bx .
This linearity, below Bx ≈ 1 T, of the energy difference

is general for all pairs (both FM and AFM), and Fig. 5
shows a unified plot of the effective fields for various pairs. A
generalization to any other direction of the applied field could
be easily obtained. At this point, we wish to iterate that the

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
x  [T

]

Bz
eff

 [T] 

3rd n.n. pairs,
r = (−a,± 1

2a,− 1
4c)

Bz
eff = 0.0063Bx

4th n.n. pairs,
r = (1

2a,± 1
2a, 1

2c)
r = (− 1

2a,± 1
2a,− 1

2c)
Bz

eff = 0.0056Bx

n.n. pairs,
r = (1

2a, 0, 1
4c)

Bz
eff = 0.044Bx

3rd n.n. pairs,
r = (1

2a,±a, 1
4c)

Bz
eff = 0.0032Bx

FIG. 5. (Color online) Effective longitudinal fields for lattice
neighbors of the eight shortest distances (the axes are switched to help
resolve similar curves from one another). The second and fifth n.n.
pairs are not shown since they lie on the XY plane [e.g., 	r = (±a,0,0)]
and therefore do not experience an effective field which requires finite
off-diagonal dipolar terms. The four strongest effective longitudinal
fields, which we hope to measure in experiment, are accentuated.
Only pairs producing positive effective fields are shown. For each
pair plotted, there is a conjugate pair which sees a Bz

eff of the same
absolute magnitude and opposite sign so that the negative side of the
Bz

eff axis is simply a mirror image of this figure. The relative positions
of these conjugate pairs can be obtained by changing the sign of the
x component in the positions shown.
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FIG. 6. Energy levels of the 8 × 2 lowest electronuclear levels as
a function of an applied longitudinal magnetic field Bz (single-ion
picture). Bx = 0. The level crossings are practically equally separated
in the horizontal axis (�Bz = 23 mT). This figure is based on a similar
plot by Giraud et al. [15].

effective fields in the system are determined by the random
distribution of the Ho pairs and it is in this sense that the field
is random.

IV. MEASURING THE RANDOM FIELD

In Sec. III, we have shown that in the presence of an applied
transverse magnetic field, each pair of spatially nearby spins
experiences an effective longitudinal field which is specific to
the relative positions of the two Ho ions. These effective fields
will show as shifts in the susceptibility profile as a function of
an applied longitudinal magnetic field Bz and under the right
protocol as distinct susceptibility peaks. We first discuss such
an experimental protocol in nonequilibrium. This protocol
follows the experiments of Giraud et al. [15,16], only with an
additional applied transverse magnetic field. We then consider
similar experiments in equilibrium. We calculate explicitly the
magnetization and susceptibility curves, and suggest specific
parameters which are favorable for the detection of the
effective longitudinal field.

A. Resonances and hysteresis of susceptibility

In a strong dilution of the Ho ions, a first approximation
would be to treat these ions singly, neglecting the interionic
interaction completely. In the single-ion picture, an applied
longitudinal field would shift the HF levels to produce the
energy spectrum as in Fig. 6. A back and forth sweep
of the longitudinal field (nonequilibrium) applied to the
LiHoxY1−xF4 compound at low temperatures is expected to
produce tunneling of ions at resonant field values correspond-
ing to the crossings in Fig. 6. This was indeed observed in the
original experiments as steps in the magnetization hysteresis
curve and peaks in the corresponding susceptibility (Fig. 3 in
Ref. [15]). Each of these observed resonances was labeled with
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FIG. 7. (Color online) Energy levels in the two-ion picture of the
(8 × 2)2 lowest electronuclear levels (i.e., all the levels corresponding
to both ions being either | ↑〉 or | ↓〉) as a function of an applied
longitudinal magnetic field. No dipolar interaction. The field is given
in units of the distance between single-flip resonances �Bz = 23 mT.

an integer number n corresponding to the distance from zero
field in units of �Bz = 23 mT.

However, a similar experiment at a higher sweep rate
(Fig. 5 in Ref. [15]) showed additional tunneling resonances
exactly midway between the original resonances (half integer
n). These were explained as the outcome of cotunneling of
two ions. The extension of Fig. 6 to a two-ion picture shows
these extra resonances clearly (Fig. 7). In the Hilbert space
of two ions, there are two Zeeman terms, so that the slope
with field can be either double the slope of single ions (for two
aligned spins | ↓↓〉 or | ↑↑〉] or practically zero [for antialigned
(A-A) spins α| ↑↓〉 + β| ↓↑〉]. Figure 7 also explains the
susceptibility peaks observed by Giraud et al. [15] at large
integer n > 7 through the additional crossings witnessed for
the appropriate field values.

B. Hysteresis under a transverse field

Repeating the nonequilibrium experiments of Giraud et al.
with the addition of a constant applied transverse field would
shift the resonant field values for each ion pair by the
effective fields we calculate in Eq. (8). The contribution of
each pair to the susceptibility would be shifted by a different
amount, thereby generating, in principle, more peaks. For these
additional peaks to be observed, they have to lie well outside
the intrinsic dipolar broadening of the primary peaks. Within
the aforementioned limit of |Bx | < 1.2 T, and given the width
of the primary resonances at T = 10 mK, only the first, third,
and fourth n.n. pairs can produce adequately shifted peaks (see
relative positions and specific field values in Fig. 5). Since
these shifted peaks are generated only by specific pairs, their
magnitude is small. Thus, their detection relies on a careful
choice of parameters that places the pair peaks at field values
in-between unshifted primary peaks, and on following their
shift as function of transverse field.

FIG. 8. (Color online) Predicted Bz values (blue dots) of shifted
susceptibility (χzz) peaks for two transverse field values. (a)
Bx = 72 mT, (b) Bx = 464 mT. Blue solid lines illustrate the
unshifted primary peaks for perspective only (different functional
form than experimental results but similar peak width). Green squares
mark (experimentally obtained [16]) valley minima. The shifted peaks
which are expected to be clearly visible in experiment are noted. All
other shifted peaks (blue dots) are expected to broaden the unshifted
primary peaks, without being separately visible. The field value of
(b) was specifically chosen so that the contributions of first, third, and
fourth n.n. pairs would coincide and combine to make a more distinct
peak in such an experiment.

Examples of predicted positions of shifted peaks are shown
in Figs. 8(a) and 8(b). The shifted peaks belonging to the
third and fourth n.n. pairs [see Fig. 8(b)] can only become
discernible for Bx � 0.4 T. The ability to precisely predict
the position of these peaks is a direct consequence of our
exact calculation of the effective longitudinal field beyond
perturbation theory regime.

This experimental protocol could prove the validity of the
ansatz employed by Giraud et al. [15] which explains the small
susceptibility peaks at half integer n as cotunneling peaks.
Furthermore, the size of the shifted peaks should indicate the
relative contribution of each pair to the cotunneling peaks in
the original experiment. Another advantage of this protocol
is the ability to study the combined effects of interaction,
quantum fluctuations induced by the transverse field, and the
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FIG. 9. (Color online) Energy levels as a function of Bz in zero
transverse field (solid blue) for FM (first n.n.) and AFM (third n.n.)
pairs. The resonances involving ground levels are the only ones that
will show in an adiabatic sweep at a very low temperature. The dashed
red lines show the shift in ground-state energies due to an effective
field (Bz

eff = 35 mT for first n.n. and Bz
eff = 5 mT for third n.n.)

generated when a transverse field Bx = 0.8 T is applied. The relevant
resonances in (b) are magnified in the inset for a better view of the
energy shift due to the weak effective field.

effective longitudinal field on the dynamics of the system.
However the above method has the disadvantage of producing
results for which the distinctness of the pair resonances
against the “background” of the unshifted resonances is highly
sensitive to experimental parameters (such as transverse field,
sweep rate, and measurement resolution). We now discuss
a variation of this experiment where the applied field is
swept adiabatically so that the system stays at instantaneous
equilibrium throughout the sweep.

C. Adiabatic field sweep

An adiabatic sweep leads to a Boltzmann population of
states where for temperatures much lower than the 215 mK HF
splitting, only the instantaneous ground state is significantly
populated. This is in contrast to the situation in Sec. IV B,

FIG. 10. (Color online) Predicted susceptibility to Bz

(χzz = ∂Mz(Bx ,Bz)
∂Bz ). The large peak (at Bz < 0.004 T) is truncated for

better contrast away from it.

where excited states could be significantly populated due to
the finite sweep rate. For pairs of spins, the instantaneous
ground states depend on the intrapair dipolar interaction (see
representative examples in Fig. 9).

Let us consider first the case of Bx = 0. For FM pairs, the
A-A spins state is located at a higher energy, and the ground
states change directly from the state | ↑ − 7

2 ↑ − 7
2 〉 to the state

| ↓ 7
2 ↓ 7

2 〉 at Bz = 0. For AFM pairs, the A-A spins state is
at a lower energy. Sweeping the longitudinal field, e.g., from
positive to negative, these pairs start at the | ↑ − 7

2 ↑ − 7
2 〉 state,

which first changes to the A-A spins state at Bz > 0 and to the
| ↓ 7

2 ↓ 7
2 〉 state at Bz < 0. If we now introduce a finite Bx ,

the energy of the | ↑ − 7
2 ↑ − 7

2 〉 state increases while that of
| ↓ 7

2 ↓ 7
2 〉 decreases. The energy of the A-A spins state stays

fixed. For the FM pairs, this results in a linear dependence
in Bx of the field Bz where the pair flips (the intersection
of these levels moves to more positive or more negative Bz,
depending on the intrapair orientation and the resulting sign of
the effective longitudinal field). Similarly, for the AFM pairs,
it results in a linear shift of the values of the single-spin flips.

Experimentally, the above shifts in energy crossings will
present themselves in the magnetization curves once the lon-
gitudinal field is swept (adiabatically). We therefore calculate
the magnetization and susceptibility as a function of Bx , Bz,
temperature, and Ho concentration. As shown in the example
of Fig. IVC, the AFM pairs should, unrelated to the transverse
or effective fields, produce small peaks adjacent to the zero Bz

primary peak. To make sure these resonances do not obscure
the shifted peaks of the effective fields, we have explicitly
calculated the susceptibility due to nearby AFM pairs (up
to fifth n.n.) with farther pairs included implicitly in the
broadening of the central peak. The effective fields taken into
account in the calculation of the susceptibility include only
nearby pairs (up to fourth n.n.), as farther pairs produce only
negligible fields.

In Figs. 10 and 11, we plot the susceptibility as a function
of Bx and Bz for dilution x = 0.005 and temperature T =
10 mK. The central peak at Bz < 0.004 T is omitted, for a
better visualization of the shifted pair peaks. The susceptibility
peaks running diagonal in Bx and Bz correspond to the shifted
resonances of first n.n. pairs. The shifted peaks associated
with the third and fourth n.n. pairs are harder to discern at
this resolution. Changing the concentration x or temperature
T will not affect the peaks’ positions. Both the height and
width of the shifted peaks increase with x while a decrease in
temperature simply narrows the peaks.
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FIG. 11. (Color online) Projection of the predicted χzz suscepti-
bility (color scale) on the entire Bx-Bz plane. The area of the big
peak at zero longitudinal field (−0.004 < Bz < 0.004 T) is omitted
for better contrast away from it. The dashed lines indicate the paths
used to produce Figs. 12 through 15.

Finding the effective fields therefore amounts to finding
the positions of the shifted peaks in the Bx-Bz plane. The
advantage of the adiabatic protocol is that by choosing the
right field sweep path in the Bx-Bz plane, we can isolate the
contribution of a shifted peak from any other susceptibility
features. We demonstrate three such paths that should show
distinct shifted peaks (see the dashed lines in Fig. 11).

The first path is a sweep of the longitudinal field with a
constant transverse field Bx = 0.6 T. Such a path shows the
shifted peaks for n.n. pairs along with other unshifted peaks
(Fig. 12). The latter are due to pairs experiencing much weaker
or zero Bz

eff and help to put the former in perspective. A small
change in Bx would change the positions of the shifted peaks
linearly.

The second path is a sweep of the transverse field with a
constant longitudinal field Bz = −30 mT. At Bx = 0, all of
the spins are down (except some second n.n. AFM pairs, and
when the transverse field is changed, only the first n.n. pairs see
a significant effective field, so that only (some of) them cross

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

5

10

15

20

Bz [T]

χ
zz

[1 T
]

Shifted 1st n.n. Shifted 1st n.n. 

FIG. 12. (Color online) Predicted susceptibility for an adiabatic
sweep of Bz with constant Bx = 0.6 T (solid blue line). The same is
depicted for Bx = 0 (dashed red line) for comparison. Aside from the
shifted peaks clearly noted in the figure, and the big zero field peak
in the center, some unshifted peaks of AFM pairs are also visible
corresponding (from outside in) to the second, third, and fifth n.n.
pairs.

−1 −0.5 0 0.5 1

0

2

4

Bx [T]

χ
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[1 T
]

Shifted 1st n.n.
r = (− 1

2a, 0, 1
4c)

Shifted 1st n.n.
r = (1

2a, 0, 1
4c)

FIG. 13. (Color online) Predicted susceptibility (χzz =
∂Mz(Bx ,Bz)

∂Bz ) for an adiabatic sweep of Bx with constant Bz = −30
mT. Each peak corresponds to one out of two different first n.n. pairs.

a resonance and flip up showing a change in magnetization
and therefore significant susceptibility (Fig. 13). This path
was selected because it shows the shifted peaks for n.n. pairs
without any unshifted peaks to obscure them.

The third path is again a sweep of the transverse field but
with a different constant longitudinal field Bz = −4 mT. This
path was selected since it shows the shifted peaks for both first
and fourth n.n. pairs (Figs. 14 and 15). For this path, we present
both the susceptibility to change in Bz (χzz = ∂Mz(Bx,Bz)

∂Bz ) and
the susceptibility to change in Bx (χzx). In the latter, the
different signs of the effective field realized in pairs with
different intrapair orientations are manifested not only in the
positions of the susceptibility features, but also in their nature,
i.e., dips versus peaks. Note also that since this path runs along
the big (unshifted) χzz susceptibility peak centered around
zero longitudinal field, we expect the measurement of χzx to
be less noisy than that of χzz. The predictions of Figs. 12–15
take into account a broadening of 1 mT due to both spin-spin
interactions with farther Ho ions and HF interactions with
fluorine ions.

V. CONCLUSIONS

LiHoxY1−xF4 is the archetypal anisotropic dipolar magnet
which constitutes a realization of the RFIM upon any finite di-
lution. The consequences of the random effective longitudinal

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
20

25

30

35

40

Bx [T]

χ
zz

[1 T
]

Shifted
4th n.n.

Shifted
4th n.n.

Shifted
1st n.n.

Shifted
1st n.n.

FIG. 14. (Color online) Predicted susceptibility (χzz =
∂Mz(Bx ,Bz)

∂Bz ) for an adiabatic sweep of Bx with constant Bz = −4 mT.
The peaks for the fourth n.n. pairs are broader than those for the first
n.n. pairs precisely because of the lower effective field of the former.
The width of the shifted peaks is in fact another measure for the
effective field.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4
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χ
zx

[1 T
]
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FIG. 15. (Color online) Predicted susceptibility (χzx =
∂Mz(Bx ,Bz)

∂Bx ) for an adiabatic sweep of Bx with constant Bz = −4
mT. The reason for the inversion of the susceptibility at the left half
of the figure is that for some pairs, sweeping Bx positively sweeps
the effective longitudinal field negatively resulting in spins flipping
down instead of up.

field can be observed macroscopically for various Ho concen-
trations. In this paper, we show that by considering rare pairs in
very dilute LiHoxY1−xF4 systems, the effective longitudinal
field can be readily measured. By diagonalizing exactly the
full two-Ho Hamiltonian in the LiHoxY1−xF4 lattice in the
presence of an applied transverse field, we calculate the
effective longitudinal field experienced by various nearby
Ho pairs beyond perturbation theory. We show that these
effective longitudinal fields result in shifted susceptibility
peaks in nonequilibrium hysteresis experiments. These shifts
are nearly linear in the applied transverse field, up to a rather
high field of Bx ≈ 1.2 T. The slope of the effective field
versus the applied transverse field depends, in both sign and
magnitude, on the intrapair distance and relative orientation.
We then calculate the magnetization in equilibrium for all
values of applied transverse and longitudinal magnetic fields,
and deduce susceptibility curves for various paths in the
Bx-Bz plane. Both the sign and the magnitude of the effective
longitudinal fields have clear signatures in these paths. Thus,
following the protocols suggested in this paper the effective
longitudinal field can be directly measured, inferring directly
on the magnitude of the random field in the LiHoxY1−xF4

system at any concentration. This would provide a first direct
measurement of the random field in a FM Ising-type system.
In addition, such a measurement will give strong support to the
conjecture that even in an extreme dilution, both single-spin
tunneling and pair cotunneling exist.
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APPENDIX A: PERTURBATIVE EXPANSION

The original analysis by Schechter and Laflorencie [4]
employed second-order perturbation theory to derive the split-
ting with transverse field between the degenerate Ising states
of a general anisotropic dipolar magnet model Hamiltonian.
Here, we give the results of a similar though more detailed

expansion using the specifics of the LiHoxY1−xF4 compound
as an indication to the validity of our numerical results (a more
detailed derivation can be found in Ref. [30]). Note that this
perturbative analysis can include all the ions in the compound
as opposed to just a pair of ions in the numerical analysis.

The unperturbed Hamiltonian is composed of the CF term
[Eq. (1)] and the longitudinal components of the HF and
dipolar interactions [Eqs. (2) and (5)]:

H0 = HCF + AJ

∑
i

I z
i J z

i +
∑
i �=j

V zz
ij J z

i J z
j . (A1)

We are interested in the energy splitting between global-Ising
states for which all the ions are in one of the (single-ion)
electronuclear Ising states (e.g., | ↑ − 5

2 〉). Specifically, the
calculation is carried out for any two such states, which are
degenerate and related by J z

k → −J z
k and I z

k → −I z
k (where k

is an ion index) symmetry for all ions. The ground states, which
according to the scaling (“droplet”) picture [31,32] are only
twofold degenerate, can be taken as a representative example.

The perturbation H ′ is composed of the remaining HF
and dipolar components and also an applied transverse field
(chosen to point along the x axis):

H ′ =
∑

α,β �=zz

∑
j �=i

∑
i

V
αβ

ij J α
i J

β

j

− gLμBBx
∑

i

J x
i + AJ

2

∑
i

(I+
i J−

i + I−
i J+

i ). (A2)

We are interested here in the breaking of the degeneracy of
the time-reversal levels by the applied transverse field. From
symmetry, only odd terms in Bx appear in the perturbative
expansion. In order to compare with our numerical results,
we therefore calculate the coefficient of the linear term. The
dominant contribution comes from fluctuations to the first
excited electronic state �2. This contribution is given by [4]

δE =
∑

k

2gLμB

[
4η

�0

∑
i �=k

V zx
ki Bx

]〈
J z

k

〉
, (A3)

where �0 = 10.8 K is the energy separation between
the (single-ion) ground levels and the �2 level. The
square of the coupling between �2 and the ground states
η = |〈�2|J x | ↑〉|2 = 5.62 is found numerically. This energy
splitting has the form of a sum of (single-ion) longitudinal
Zeeman splittings [see Eq. (3)] and dictates the effective
longitudinal fields

Bz
k,eff = 4η

�0

∑
i �=k

V zx
ki Bx. (A4)

The expressions in Eqs. (A3) and (A4) are a result of an
approximation which takes into account only the first excited
electronic state �2. Taking into account all excited electronic
states, we find a correction which amounts to multiplying δE

by 1.47 (see details in Ref. [30]). Further quantitative accuracy
comes from the calculation of the term linear in Bx in third
order of the perturbative expansion.

This term is given by

δE(3) = 2gLμB

∑
k

[∑
j �=k

∑
i �=j

10η2

�2
0

V zx
kj V xx

ij Bx

]〈
J z

k

〉
. (A5)
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We thus arrive at a quite accurate prediction for the energy
splitting at small transverse fields. Considering only Ho ion
pairs as in the numerical calculation, we get

δEperturbative = δE(2) + δE(3)

= 4gLμB

[
4ηṼ zx

pair

�0

(
1.47 + 10ηṼ xx

pair

4�0

)
Bx

] 〈
J z

k

〉
= 0.8135Bx K, (A6)

where the numerical value is given for n.n. pairs.
We note that terms which are third power in Bx come from

orders 4 and higher of the perturbative expansion, and are
therefore small. Our result in Eq. (A6) is in good agreement
with our numerical calculations, which are well fit by the
function �Enumerical = [0.81Bx − 0.01(Bx)3] K.

APPENDIX B: NUMERICS

To diagonalize the 18 496 × 18 496 two-ion Hamiltonian
(17 electronic states times 8 nuclear states for each ion, squared
for the 2 ions) for various pairs we use the Arnoldi method
[29] (closely related to the Lanczos method [33]). We do this
in the transverse field range 0 < Bx < 2 T in increments of
10 mT. This iterative method is efficient in both computation

time and storage space. Only a small fraction of the eigenstates
is sought (we find the 576 lowest-energy eigenstates which at
zero transverse field correspond to states for which both ions
are at one of the three lowest-energy single-ion electronic
states |↑〉,|↓〉,|�2〉), and only the nonzero components of
the sparse Hamiltonian matrix are stored (instead of the full
matrix which takes up around 5 GB of RAM and requires
high-end hardware). To calculate the effective field for a
pair of ions at a given relative position, we are interested
in the energy difference between the states that at zero field
are are defined as |↑ − 7

2↑ − 7
2 〉 and |↓ 7

2↓ 7
2 〉 (blue circles in

Fig. 3). Values for the energy difference of other electronuclear
pairs such as |↑ − 7

2↑ − 5
2 〉 and |↓ 7

2↓ 5
2 〉 are only slightly

different.
As the field increases, the states mix, yet, their Ising

character given by their 〈J z〉 = ±const value is well satisfied.
Competition between the HF interaction and the effective
longitudinal field results in level crossings of two spin states
belonging to various nuclear states (see Fig. 3). For the
calculation of the effective longitudinal field, we follow the
levels diabatically through the level crossings. Both the Ising
character of the states and the diabatic tracking are well defined
up to Bx ≈ 1.2 T. This value of the applied transverse field thus
constitutes an upper limit to our calculations of the effective
longitudinal field.
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