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Control of skyrmion magnetic bubble gyration
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The skyrmion magnetic bubble in a ferromagnetic disk exhibits hypocycloidal gyrations contrary to the vortex
gyration, showing a simple circular trajectory. To describe the hypocycloidal bubble gyration, a mass term is
needed in Thiele’s equation. In this study, we analytically derived both mass and spring constant term, which
are crucial parameters for describing the bubble gyration. Values obtained by these analytic expressions were
consistent with those obtained by simulations. We could find the dependences of these two terms on several
external parameters, including the bubble radius. Especially using the radius’s dependence, we could obtain
regular polygonlike trajectories such as a square and a triangle confirmed by the numerical simulations. Based
on this effective method to control the bubble gyration, the regular polygonlike trajectories of this skyrmion
magnetic bubble make it possible to study the bubble gyration without time-resolved experiments.
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I. INTRODUCTION

The dynamics of a magnetic vortex has been one of
the major issues in magnetism because of its interesting
physics and possibilities for applications [1–6]. The magnetic
vortex is a fundamental state in the soft magnetic disks
and is comprised typically by the vortex core, which has
magnetization points out of the plane and is surrounded by
chiral in-plane magnetizations. The dynamics of the position
of vortex core R in a parabolic potential well is described by
Thiele’s equation as [7,8]

G × Ṙ − KR − DṘ = 0. (1)

Here, G is a gyrocoupling vector, K denotes a spring constant
for a restoring force induced by the parabolic potential well,
U (X,Y ) = K(X2 + Y 2)/2, and D is a dissipation tensor.
Among these three coefficients, G is the most important for
gyration because the rotation of the core is induced by G.
If we set the z axis perpendicular to the disk plane, G =
(0, 0, G), where G = −4πqdM/γ , d is the disk thickness, M

is the magnetization, and γ is the gyromagnetic ratio, q is the
skyrmion charge and is determined by q = (1/4π ) ∫ dxdym ·
(∂xm × ∂ym) with the normalized magnetization m [9]. The
vortex is known to have q = ±1/2, so gyration of the vortex
core is expected because of the nonzero G [3,9].

Equation (1) describes successfully the vortex core motion
in in-plane magnetization disks, and many experiments have
been carried out based on Eq. (1) [1,2,4]. As a result, the
vortex state and its related dynamics are understood both
theoretically and experimentally. A question of what would
be the corresponding state in perpendicular magnetization
anisotropy disks was asked [10], and the answer is a magnetic
bubble state.

The magnetic bubble state [10–14] is a circular domain
placed in the center of the disk and surrounded by the domain
with an opposite magnetization, as shown in Fig. 1(a). Inner
and outer domains have perpendicular magnetization due to the
strong perpendicular magnetic anisotropy. Between the two

*Corresponding author: cyhwang@kriss.re.kr

domains, the magnetization direction rotates gradually from
one to the other direction, forming a domain wall. This bubble
state was also expected to exhibit a circular gyration like a
vortex core because the bubble state has nonzero skyrmion
charge q = ±1 [10,15,16].

However, Moutafis et al. showed that the skyrmion
magnetic bubble rotation does not follow Eq. (1). Through
numerical simulations, they showed that the trajectory of the
bubble rotation roughly resembles a pentagon, not a circle
[15]. This unconventional trajectory has been a problem of the
dynamical motion of a skyrmion bubble. Recently, Makhfudz
et al. have finally solved this mysterious trajectory [16]. They
inserted a Newtonian mass term in Thiele’s equation as

G × Ṙ − KR − DṘ = MR̈. (2)

Then, Eq. (2) exactly describes the skyrmion bubble trajectory.
Equation (2) produces two different frequencies with opposite
signs, meaning that two waves with opposite directions
propagate along the domain wall, and their combined motion
generates a hypocycloid trajectory that has been called
“roughly a pentagon.”

In this report, we focused on questions such as the
following. How can we get “a regular pentagon” trajectory?
How can we obtain regular polygonlike trajectories having a
natural number of vertices during one rotation such as a triangle
and a square? We suggest an effective method for obtaining
a regular polygon trajectory. Regular polygon trajectories are
useful for experiments aimed at detecting the bubble gyrations.
In addition, we also provide the analytic expression for the
spring constant and the mass constant induced by the dipolar
repulsion. These analytic expressions are useful to expect the
skyrmion bubble gyration and further studies including the
Dzyaloshinsky-Moriya interaction (DMI) [3,17,18].

II. MICROMAGNETIC SIMULATIONS

A “regular pentagon” trajectory that has five vertices is
shown in Fig. 1(b), which was generated by a simulation
similar to that of Moutafis et al. [15]. The significant difference
between the two simulations is an external field in the z

direction. We applied the nonzero external field −7 mT along
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FIG. 1. (Color online) (a) A skyrmion magnetic bubble domain
state in a perpendicular magnetic anisotropy disk. The magnetization
of the bubble is aligned in the −z direction (colored red). The blue
color represents alignment of the magnetization in the +z direction.
Black arrows in the disk denote the in-plane magnetization direction.
A white dashed circle represents the domain wall position where
the total energy is minimized. The bubble position shifted −6.4 nm
from the white dashed circle to the x direction for gyration. (b) A
regular pentagonlike trajectory of the bubble domain gyration with
the external field Hz = −7 mT. The line represents the trajectory
of the center of the bubble. The trajectory has five vertices and
thus resembles a regular pentagon. (c) Several examples of regular
polygonlike trajectory with respect to the external field. The time
scale is the same as in (b).

the z axis. The other parameters were set to the same values
as Moutafis’ simulations. The saturation magnetization was
set at M = 106 A/m, the exchange stiffness at A = 1.0 ×
10−11 J/m, and the uniaxial anisotropy along the z direction
for perpendicular magnetization at K = 1.3 × 106 J/m3. The
disk was 160 nm (=2RD) in diameter and 32 nm in thickness.
We divided the structure on the x-y plane by 1.6 nm ×
1.6 nm cells and assumed uniform magnetization along the
thickness direction. The damping constant α = 0.01 was
used. The simulations were carried out by the object-oriented
micromagnetic framework (OOMMF) simulator [19] without
DMI [20]. To obtain the “regular pentagon” trajectory, before
starting the gyration, an external field Hz in the z direction
was applied until the magnetization state was stabilized, and
then the bubble position shifted to the x direction with −6.4
nm distance. To shift the bubble position, the magnetization of
each cell was replaced by the magnetization of four cells ahead
in the x direction. Figure 1(a) shows an initial magnetization
state of the shifted bubble. Next, we relaxed the magnetization
state with constant Hz to keep the bubble radius constant. Note
that the shifting method used in this study is different from
that of Moutafis et al. They use the external field gradient
to shift the bubble position [15]. Despite these differences,
the trajectory with the zero external field was basically the
same as that of the result of Moutafis et al. The only
differences were the amplitude and start position of gyration.
To draw the gyration trajectory, the center position was found
by circular fittings of the domain wall position, where the

perpendicular component of magnetization was 0. We obtained
the domain wall distance r from the center of the disk as a
function of the azimuthal angle φ, and then the center of the
bubble was calculated by circular fitting. Thus, the trajectory
shown in Fig. 1(b) represents the center of the domain
wall.

In addition to a pentagon trajectory, the external field can
produce a regular polygonlike trajectory. Figure 1(c) shows
several examples of the trajectory: a hexagon with Hz =
10 mT, a square with −40 mT, and a triangle with −110 mT.
When Hz decreases, the number of polygon sides and interior
angles also decrease. As a result, a pentagram trajectory was
obtained at Hz = −240 mT. From these results, we verified
that the external field could determine the trajectories of bubble
gyration, including regular polygonlike shapes.

III. RESULT AND DISCUSSION

Makhfudz et al. show that these hypocycloid trajectories
are generated by two different wave modes with opposite
propagation directions and different speeds [16]. The shifted
initial magnetization state consisted of two sinusoidal waves
with wave number k = 1/r̄ . After starting the relaxation, these
two waves propagate along the domain wall with different
frequencies, which can be derived from Eq. (2) by neglecting
the damping term because the gyrotropic force overwhelms
the viscous force:

ω± = − G
2M ±

√( G
2M

)2

+ K
M . (3)

These two frequencies were obtained from simulations. The
value of ω+ was obtained directly from gyration because ω+
was related to one rotation time of the bubble; then, we could
calculate ω− from the number of polygon sides during one
rotation. For example, when Hz = −110 mT, the number of
sides of the trajectory is 3.01, and ω+/2π = 2.21 GHz. Then
ω− was calculated from this relation, ω−/2π = −ω+/2π ×
(N − 1) = −4.43 GHz [16], where N is the number of sides.
Figure 2 shows the two frequencies with respect to the external
field. ω+ and ω− have opposite signs, and the amount of ω−
is always larger than ω+. The external field also changes the
bubble radius. The negative field of Hz expands the radius of
the bubble because the bubble has negative magnetization in
the z direction. The expansion of the domain occurred until
the change in Zeeman energy was compensated by the dipolar
and tension energies [21]. Then, the radius had a stabilized
value. The averaged radii of the bubble domain with respect
to the external fields Hz are shown in the inset of Fig. 2. The
bubble radius increases monotonically as Hz decreases. The
bubble state persists in the external field range from −290
to 59 mT. If the external field exceeds the range, the bubble
domain disappears, and the disk produces a single domain
state.

According to Eq. (3), the two frequencies are determined by
only three constants: the spring constant K, the mass constant
M, and the gyrotropic constant G. Among these constants, the
gyrotropic constant is a material and structural parameter and
is determined as G = −4πqdM/γ = 2.29× 10−12 J s/m2 in
this study (q = −1) [16]. Thus, we should think only about the
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FIG. 2. (Color online) Frequencies obtained by gyration results
with respect to the external magnetic field Hz applied to the
perpendicular direction to the disk; ω+ (�) is obtained by a clockwise
rotation of the bubble, and ω− (◦) represents counterclockwise

rotation of the bubble. The thick green line ( ) denotes the frequency
derived from the massless Thiele’s equation. The black (─) and red
( ) lines are obtained by analytic equation. The inset shows the
averaged radius r̄ as a function of Hz.

two parameters K and M to understand the physical meaning
of the two frequencies. From Eq. (3), we derived the mass and
the spring constant separately. By adding ω+ and ω−, the mass
constant could be represented as follows:

M = −G
ω+ + ω−

. (4)

The mass constant obtained from the simulation was plotted in
Fig. 3(a) as a function of the bubble radius. It is interesting to
note that the mass constant was in exact linear relation with the
bubble radius, and we thought that the mass of the bubble was
determined by the total length of the domain wall and not by
the area of the bubble. According to Makhfudz et al., the mass
is determined by M = πr̄g2/κ , where g = G/2π and κ is a
constant related to the domain wall energy density difference
between the Bloch and Néel wall configurations [16,22,23].
Note that they pointed out the difference values of κ obtained,
respectively, from simulation (κsim = 1.36 × 10−10 J/m) and
from calculation (κcalc = 2.81 × 10−10 J/m). To solve this
discrepancy, we obtained κ through the analytic approach. The
energy density per unit length induced by the surface magnetic
charge on the domain wall is represented as (μ0/2) NW

i M2dλ.
Here, λ is the domain wall width, and in this study λ = 9.1 nm.
The coefficient 1/2 means the self-energy. NW

i is the direction-
dependent (i = r,φ,z) demagnetization factor of the wall. The
Bloch and Néel wall sates correspond to i = φ and i = r ,
respectively, as depicted in Fig. 3(b). Then, the wall-type
energy difference is defined as κ = (μ0M

2dλ/2)(NW
r − NW

φ )
[24]. Due to the nonexistence of surface charges on the Bloch
wall, NW

φ is 0. For calculating NW
r , we assumed an infinite

rectangular stripe with a thickness d and a width λ and
computed the dipolar field. Using the demagnetization factor
NW

r , we finally obtained the following equation describing the
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FIG. 3. (Color online) Mass constant M and spring constant K
for the skyrmion bubble gyration. (a) Mass of the bubble with respect
to r̄ . The line is obtained by the analytic Eq. (5). (b) Origin of the
skyrmion bubble mass. The energy difference between the Bloch and
Néel-type wall generates the mass of the bubble. The Bloch wall
does not make any surface magnetic charge on the domain wall, but
the Néel wall does. (c) The dependence of the spring constant on
the bubble radius. The line is obtained by the analytic Eq. (7). (d)
The schematic diagram describing the origin of the spring constant.
When the disk moves from the initial position (dashed circle) to the
x direction, excessive magnetic surface charges are induced.

skyrmion bubble mass:

M ≈ 4π2g2

μ0M2λ

[
4d tan−1

(
2d

λ

)
− λln

(
1 +

(
2d

λ

)2
)]−1

r̄ .

(5)

From Eq. (5), κ is determined as 1.35 × 10−10 J/m, which is
the same as the simulation result in Ref. [16]. We also plotted
the above equation in Fig. 3(a), and we confirmed a good match
between the analytic and the simulation results.

Next, we obtained the spring constant K from the two
angular frequencies ω+ and ω− in Eq. (3). Then K could
be written as

K = Gω+ω−
ω+ + ω−

. (6)

The spring constants calculated by Eq. (6) were plotted as
points in the inset of Fig. 3(c). The parameter K increases
exponentially as r̄ increases. Contrary to the mass constant
that exhibits clear linear relation with the bubble radius,
dependence of K on external parameters is not simple. When
the bubble moves from the disk center with the constant
bubble radius, the Zeeman energy and the tension energy [21]
does not change. The energy difference is mainly induced
by the excessive dipolar energy. Changing the position of
the bubble with a fixed radius on a disk is energetically the
same as translation of the disk with fixed bubble position and
radius. This situation is depicted in Fig. 3(d). Then, excessive
magnetic surface charges are generated on both sides of the
bubble with different distances. This asymmetry induced by

064413-3



MOON, CHUN, KIM, QIU, AND HWANG PHYSICAL REVIEW B 89, 064413 (2014)

the distance difference produces the quadratic dependence
of the energy on the disk shift 
x. After the calculation of
the extra dipolar energy between these two magnetic surface
charges and the bubble, we obtained the following asymptotic
equation for the spring constant [25]:

K ≈ μ0πM2d2

12RD

[
48

τ
− 24

(
1

ρ−
+ 1

ρ+

)

+π2

(
1 + 2R2

D

d2

) (
1

ρ−
+ 13

ρ+
− 14

τ

)

+ π2r

RD

{
1

ρ3−
− 13

ρ3+
− 2R2

D

d2

(
1

ρ−
− 13

ρ+

)}]
. (7)

Here, τ =
√

1 + (d/RD)2 and ρ± =√
(r/RD ± 1)2 + (d/RD)2. In Fig. 3(c), we plotted the

analytic line from Eq. (7), and it shows good agreement with
the simulation results.

Using the K results, we compared the frequencies, re-
spectively, derived from massless Thiele’s equation [Eq. (1)]
and the massive equation [Eq. (2)]. The massless equation
produced only one frequency, ω = K/G, plotted in Fig. 2.
However, the massive equation generates two different fre-
quencies: one with a positive value and one with a negative
value. The positive ω+ converges to ω at the low radius range.
So, we can regard ω+ as a perturbed frequency from ω. This
is a reasonable expectation since the amount of perturbation
increases as the bubble radius increases and the mass effect
depends on the bubble radius. In contrast to ω+, the ω−
of the massive equation is not a perturbed frequency from
ω because the sign is opposite. The term ω− is solely a
nontrivial frequency originating from the mass term. These
two frequencies also can be predicted from Eqs (5) and (7).
These frequencies are plotted in Fig. 2 and are well matched
to the simulation results. This means that we can expect the
gyration motion with a given radius of the skyrmion bubble.

Finally, we point out the usefulness of a “regular polygon”
trajectory for the skyrmion magnetic bubble experiments.
In the vortex core gyration experiments with conventional
in-plane material, a time-resolved experiment is needed for
detecting the vortex gyration [1,2] because the gyration occurs
within several nanoseconds and the trajectories resemble a
circle. The time for bubble gyration is expected to be of the
order of nanoseconds for one rotation, but the trajectories
show hypocycloidal shapes, not circles. This difference makes

ω–/ω+= –2 ω–/ω+= –3 ω–/ω+= –4 ω–/ω+= –4.4

 )c( )a(  )d( )b()( )( )()( <mz>t
1

-1

0

FIG. 4. (Color online) Time-averaged images of bubble gyra-
tions. We assumed the zero wall width and neglected the damping
effect. Different colors denote the time-averaged perpendicular
magnetic component 〈mz〉t during the bubble gyration. The angular
frequency ratio ω−/ω+ is integers (a–c) and not integer (d).

it possible to detect the gyration of the bubble with non-
time-resolved experiments. If we obtain an integer for the
angular frequency ratio ω−/ω+ through the bubble radius
adjustment using the external field, the time-averaged images
show flowerlike patterns [Figs. 4(a)–4(c)]. This means that
time-resolved experiments are not essential for measuring the
bubble dynamics; therefore, we expect that the frequency-
ratio-tuning method will be useful to detect the bubble
gyration.

IV. CONCLUSIONS

We studied the gyration of a skyrmion magnetic bubble
numerically and analytically using a constant external field.
The radius of the bubble was controlled systematically by
the external field and determined the gyration of the bubble.
Adjusting the external field, the bubble gyrations showed
various polygonlike trajectories, including regular polygons
with a natural number of vertices. Using the various poly-
gonlike trajectories, the mass of the bubble and the spring
constant were obtained and showed good agreement with the
analytic calculation. This analytic formulation will be useful in
further studies, including unconventional effect such as DMI.
In addition, we suggested that the regular polygon trajectory
is useful for the experiments of the skyrmion bubble gyration.
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(London) 444, 461 (2006).

[3] M.-Y. Im, P. Fischer, K. Yamada, T. Sato, S. Kasai, Y. Nakatani,
and T. Ono, Nat. Commun. 3, 983 (2012).

[4] S.-K. Kim, K.-S. Lee, Y.-S. Yu, and Y.-S. Choi, Appl. Phys. Lett.
92, 022509 (2008).

[5] J. Miltat and A. Thiaville, Science 298, 555 (2002).
[6] K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi,

H. Kohno, A. Thiaville, and T. Ono, Nat. Mater. 6, 270
(2007).

[7] A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).
[8] O. A. Tretiakov, D. Clarke, G.-W. Chern, Y. B.

Bazaliy, and O. Tchernyshyov, Phys. Rev. Lett. 100, 127204
(2008).

[9] O. A. Tretiakov and O. Tchernyshyov, Phys. Rev. B 75, 012408
(2007).

064413-4

http://dx.doi.org/10.1126/science.1095068
http://dx.doi.org/10.1126/science.1095068
http://dx.doi.org/10.1126/science.1095068
http://dx.doi.org/10.1126/science.1095068
http://dx.doi.org/10.1038/nature05240
http://dx.doi.org/10.1038/nature05240
http://dx.doi.org/10.1038/nature05240
http://dx.doi.org/10.1038/nature05240
http://dx.doi.org/10.1038/ncomms1978
http://dx.doi.org/10.1038/ncomms1978
http://dx.doi.org/10.1038/ncomms1978
http://dx.doi.org/10.1038/ncomms1978
http://dx.doi.org/10.1063/1.2807274
http://dx.doi.org/10.1063/1.2807274
http://dx.doi.org/10.1063/1.2807274
http://dx.doi.org/10.1063/1.2807274
http://dx.doi.org/10.1126/science.1077704
http://dx.doi.org/10.1126/science.1077704
http://dx.doi.org/10.1126/science.1077704
http://dx.doi.org/10.1126/science.1077704
http://dx.doi.org/10.1038/nmat1867
http://dx.doi.org/10.1038/nmat1867
http://dx.doi.org/10.1038/nmat1867
http://dx.doi.org/10.1038/nmat1867
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.100.127204
http://dx.doi.org/10.1103/PhysRevLett.100.127204
http://dx.doi.org/10.1103/PhysRevLett.100.127204
http://dx.doi.org/10.1103/PhysRevLett.100.127204
http://dx.doi.org/10.1103/PhysRevB.75.012408
http://dx.doi.org/10.1103/PhysRevB.75.012408
http://dx.doi.org/10.1103/PhysRevB.75.012408
http://dx.doi.org/10.1103/PhysRevB.75.012408


CONTROL OF SKYRMION MAGNETIC BUBBLE GYRATION PHYSICAL REVIEW B 89, 064413 (2014)

[10] C. Moutafis, S. Komineas, C. A. F. Vaz, J. A. C. Bland, T.
Shima, T. Seki, and K. Takanashi, Phys. Rev. B 76, 104426
(2007).

[11] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.
Matsui, N. Nagaosa, and Y. Tokura, Nature (London) 465, 901
(2010).

[12] G. D. Skidmore, A. Kunz, C. E. Campbell, and E. D. Dahlberg,
Phys. Rev. B 70, 012410 (2004).

[13] M. Hehn, K. Ounadjela, J. P. Bucher, F. Rousseaux, D. Decanini,
B. Bartenlian, and C. Chappert, Science 272, 1782 (1996).

[14] S. Komineas, C. A. F. Vaz, J. A. C. Bland, and N. Papanicolaou,
Phys. Rev. B 71, 060405(R) (2005).

[15] C. Moutafis, S. Komineas, and J. A. C. Bland, Phys. Rev. B 79,
224429 (2009).
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