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Theory of magnon-skyrmion scattering in chiral magnets
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We study theoretically the dynamics of magnons in the presence of a single skyrmion in chiral magnets
featuring Dzyaloshinskii-Moriya interaction. We show by micromagnetic simulations that the scattering process
of magnons by a skyrmion can be clearly defined although both originate in the common spins. We find that (i) the
magnons are deflected by a skyrmion, with the angle strongly dependent on the magnon wave number due to the
effective magnetic field of the topological texture, and (ii) the skyrmion motion is driven by magnon scattering
through exchange of the momenta between the magnons and a skyrmion: the total momentum is conserved. This
demonstrates that the skyrmion has a well-defined, though highly non-Newtonian, momentum.
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I. INTRODUCTION

The skyrmion is a topological texture of field configu-
ration and was first proposed as a model for hadrons in
nuclear physics [1,2] and has been discussed in a variety
of condensed-matter systems [3–6]. Most recently skyrmions
have been found in magnets with Dzyaloshinskii–Moriya
(DM) interaction, attracting intensive interest [7–10]. Here
it is a swirling spin structure characterized by the skyrmion
number Q, which counts how many times the mapping from
the two-dimensional real space to the spin space wraps the
surface of the sphere. The skyrmion has a finite size determined
by the ratio of the ferromagentic exchange interaction J

and the DM interaction D, i.e., localized in real space
within 3–100 nm, and has very long lifetime because of
topological protection, i.e., any continuous deformation of
the field configuration cannot change the skyrmion number.
Therefore, the skyrmion can be regarded as a particle made out
of the spin field. These advantages, i.e., small size and stability,
together with ultralow threshold current density for the motion
(∼106 A/m2) [11,12] compared with that for the domain-wall
motion (∼1010–1012 A/m2) [13,14], make the skyrmion an
appealing and promising candidate as an information carrier
in magnetic devices [15–18].

On the other hand, the low-energy excitations in magnets
are magnons [19]: propagating small disturbances in the under-
lying spin texture. In sharp contrast to the skyrmion, a magnon
is a propagating wave, and can be created and destroyed easily,
i.e., it belongs to the topologically trivial sector. Therefore,
an important issue is the interaction between magnons and
skyrmions, which offers an ideal laboratory to examine the
particle-field interaction in field theory, and also provides the
basis for the finite temperature behavior of skyrmions. It has
been known that the motion of a domain wall in ferromagnets
can be induced by magnons: the domain wall moves against
the direction of the magnon current [20–22]. Recently the
skyrmion version of the magnon-induced motion has been
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studied [23,24], when magnons are produced by a temperature
gradient. However, the elementary process involving a single
skyrmion and magnons has not been studied up to now. The
only work on magnon-skyrmion dynamics we are aware of
(Ref. [25]) precludes from the outset, in the context of quantum
Hall systems, any skew scattering, which does not agree with
the observations in chiral magnets. Another work considered
magnon scattering off skyrmions in time-reversal invariant
systems [26].

The skyrmion is characterized by a spin gauge field a and
carries an emergent magnetic flux b = ∇ × a associated with
the solid angle subtended by the spins. This spin gauge field a is
coupled to the conduction electrons, which results in nontrivial
effects such as the spin transfer torque driven skyrmion motion
and topological Hall effect. Surprisingly, a tiny current density
∼106 A/m2 can drive the motion of the skyrmion crystal via
spin transfer torque [11,12], which is orders of magnitude
smaller than that in domain-wall motion in ferromagnets
(1010–1012 A/m2) [13,14]. This has been attributed to the
Magnus force acting on the skyrmion and its flexible shape
deformation reducing the threshold current [27,28]. An in-
teresting recent development is the discovery of skyrmions
in an insulating magnet Cu2OSeO3 [10,29,30], where the
electric-field-induced motion is associated with multiferroic
behavior. It is expected that in this insulating system, the
only low-energy relevant excitations are the magnons, and the
interaction between magnon and skyrmion becomes especially
relevant.

In this paper, we study the scattering process of a magnon
by a skyrmion by solving numerically the Landau-Lifshitz-
Gilbert (LLG) equation for magnons with the center of wave
numbers k incident on a skyrmion of size ξ in Sec. II.
The simulations clearly show wave-number-dependent skew
scattering of the magnon, and furthermore similar large Hall
angle of skyrmion motion due to the back action. This process
is well analyzed in terms of momentum conservation, strongly
indicating that the skyrmion is particlelike with a well-defined
momentum as worked out in Sec. III. By mapping the situation
to a charged particle scattered by a tube of magnetic flux
we show in Sec. IV that the principal contribution to skew
scattering is the emergent Lorentz force generated by the
skyrmion.
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FIG. 1. (Color online) Snapshots of scattering processes with three different wave numbers. (a1)–(a4): k̄ξ � 1.87π ; (b1)–(b4): k̄ξ � 0.83π ;
(c1)–(c4): k̄ξ � 0.52π ; time steps of the snapshots as indicated. The inset of (a1) shows the color representation of the in-plane spin component
in (xy) spin space. In (a1), (b1), and (c1), the wavelengths λ ≡ 2π/k̄ of the incident waves are compared with the size of the skyrmion ξ . The
vertical blue line in (a4), (b4), and (c4) denotes the incoming magnon direction. For the higher wave numbers we can clearly identify the skew
scattering of the magnons. In (a4) the white dashed lines indicate the equal phase contour of the scattered magnons, and blue line perpendicular
to those defines the scattering skew angle ϕ̄. The yellow lines represent the path traversed by the skyrmion, also clearly showing skew scattering
over an angle �. Hence we see that the skyrmion skew angle is nearly half of the magnon skew angle as expected from the conservation of the
momentum.

II. NUMERICAL RESULTS

Our model is the chiral magnet on the 2D square lattice:

H = −J
∑

r

mr · (
mr+aex

+ mr+aey

)

−D
∑

r

(
mr × mr+aex

· ex + mr × mr+aey
· ey

)

−B
∑

r

(mr)z. (1)

Here, mr is the unit vector representing the direction of
the local magnetic moment and a is the lattice constant. In
the following, we measure all physical quantities in units of
J = � = a = 1, where � is the reduced Planck constant. For a
typical set of parameters J = 1 meV and a = 0.5 nm, in these
units we have the correspondences for time t = 1: 6.58 ×
10−13 s; mass M = 1: 2.78 × 10−28 kg; and magnetic field
B = 1: 17.3 T. We fix DM interaction D = 0.18. The ground
state for the Hamitonian (1) is the helical state for external field
B < Bc1 = 0.0075, the ferromagnetic state for B > Bc2 =
0.0252, and the skyrmion crystal for Bc1 < B < Bc2 [28].

To study the scattering of magnon plane waves off a single
skyrmion, we have performed micromagnetic simulations
based on the Landau-Lifshitz-Gilbert (LLG) equation:

dmr

dt
= −mr × Beff

r + αmr × dmr

dt
, (2)

where α is the Gilbert damping coefficient fixed to α = 0.04 in
the whole paper and Beff

r = − ∂H
∂mr

. We perform the simulation
at B = 0.0278 (>Bc2), putting a metastable skyrmion at the
center of ferromagnetic background [Fig. 1(a1)]. The size of
the skyrmion ξ in this paper is defined as the distance from the
core (mz = −1) to the perimeter (mz = 0), and ξ = 8 for our
parameter set. At the lower boundary a forced oscillation of
frequency ω with fixed amplitude A ≡ 〈m2

x + m2
y〉 = 0.0669 is

imposed on the spins, producing spin waves with wave vector
k = (0,k) traveling toward the top. Here, the amplitude of the
magnon with wave number k is proportional to 1

ω2−ω2
k+iαω

,

where ωk is the dispersion of the magnon with energy gap B.
We estimated the averaged k̄ from the real-space image of the
magnon propagation. For ω = 0.08, 0.04, 0.02, 0.0125, and
0.01, we find k̄ξ � 1.87π, 1.20π, 0.83π, 0.64π , and 0.52π ,
respectively. Note that the latter three frequencies are below
the magnon gap.

Figure 1 shows snapshots of the scattering processes with
three different wavelengths (see also Supplemental Material,
movies 1 and 2 [31]). These lead to several remarkable
observations. First, one can clearly see that the identity of
the skyrmion remains intact even though some distortion of
its shape occurs. This originates in the topological protection,
and is not a trivial fact since both the skyrmion and magnons
are made out of the same spins. Namely, the skyrmion number
Q = 1

4π

∫
d2x m · (∂xm × ∂ym) is −1 for the skyrmion while

that of magnons is zero, and hence the conservation of
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FIG. 2. (Color online) The scattering properties obtained by numerical and analytical calculations. (a) The Hall angles � (red line)
and velocities v (blue line) of skyrmion motion are estimated from the numerical results for different wave numbers k̄. To obtain
these values, we traced the center-of-mass coordinate R of a skyrmion between Y = 51 and Y = 31. The coordinate R is defined as
R ≡ ∫

d2rρtop(r)r/
∫

d2rρtop(r), where ρtop(r) ≡ m(r) · [∂xm(r) × ∂ym(r)]. There is a strong nonmonotonic wave-number-dependent behavior
in both quantities. We compare these observations to the idealized cases of magnons scattering off a uniform flux tube by an Aharonov-Bohm-type
calculation: (b) Expectation of the magnon Hall angle ϕ̄ as a function of wave number k. It is strongly peaked around kξ ≈ 1, and vanishes
for both low and high wave number, in the latter case as ∼1/k. The relation � = ϕ̄/2 derived by momentum conservation seems to be well
obeyed by comparing images (a) and (b). (c) Magnon scattering amplitude of several wave numbers k. The asymmetry in left or right scattering
can be clearly seen and is due to the effective Lorentz force induced by the Berry phase of the skyrmion. For low wave numbers, the scattering
amplitude is almost flat, indicating the wave “missing” or “ignoring” the skyrmion; for high wave numbers it is strongly peaked, indicating
mostly forward scattering, which is well known in the Aharonov-Bohm effect.

the skyrmion number protects the identity of the skyrmion.
Second, the incident wave is clearly scattered by the skyrmion,
with sizable “skew angle” or “Hall angle.” As the wave
number k̄ is increased, the diffraction becomes smaller and
one can define the trajectory of the scattered magnons clearly
in Figs. 1(a1)–1(a4) for k̄ξ � 1.87π . As shown in the blue
lines in Fig. 1(a4), the scattered trajectory has an angle ϕ̄

compared with the direction of the incident magnons (vertical
line). As the wave number k̄ is reduced, the diffraction is
enhanced, but the skewness of the scattered waves can still be
seen in Figs. 1(b2)–1(b4) for k̄ξ � 0.83π and 1(c2)–1(c4) for
k̄ξ � 0.52π . Therefore, the skew angle ϕ̄ strongly depends
on k̄ξ . Third, by tracing the center-of-mass position of the
skyrmion, it is found that it moves in turn backward and
sidewards in the opposite direction as indicated by the yellow
lines in Figs. 1(a4), 1(b4), and 1(c4). The skew angle � of the
skyrmion motion is plotted in Fig. 2(a), which shows strong
k̄ dependence. Also the speed v of the skyrmion depends on
the wave number k̄ for fixed amplitudes of the magnons, as
shown in Fig. 2(a). This skyrmion motion can be understood by
the magnons exerting spin transfer torque on the skyrmion, or
equivalently analyzed in the light of momentum conservation
as will be discussed below.

III. SKYRMION MOMENTUM

The dynamic term of a skyrmion particle is Sdyn = ∫
dt L,

where [32]

L = 2πQ(Y∂tX − X∂tY ) + M

2
[(∂tX)2 + (∂tY )2]. (3)

Here, X,Y are the skyrmion center-of-mass coordinates, and
M is the mass of the skyrmion. Then the momentum is
Px = ∂L

∂∂tX
= 2πQY + M∂tX and Py = ∂L

∂∂t Y
= −2πQX +

M∂tY . Assuming a massless skyrmion (M = 0) and elastic
scattering (p(in)

mag = p(out)
mag + �Pskyrm), we can estimate the skew

angle as follows. For the magnon p(in)
mag = (0,k) and p(out)

mag =
(k sin ϕ̄,k cos ϕ̄), then

�Pskyrm = (−k sin ϕ̄,k(1 − cos ϕ̄)). (4)

Using Px = 2πQY,Py = −2πQX one finds the skyrmion
Hall angle:

� = arctan(�X/�Y ) = ϕ̄/2. (5)

The numerics, i.e., � and ϕ̄ in Fig. 1(a4), is consistent with
this relation. In the present simulation, the displacement �R

of the skyrmion is about 30, over the time period of 2000
for kξ � 1.87π . The velocity v is of the order of 30/2000 ∼=
1.5 × 10−2. The mass M is of the order of the number of spins
constituting one skyrmion and is of the order of 200 in our
simulation. Therefore, Mv ∼ 3 	 2π�R ∼ 200, and hence
the assumption of the massless skyrmion above is justified.

We can estimate the velocity of the skyrmion purely in terms
of momentum transfer of the spin wave to the skyrmion. A
plane wave

√
Ae−iωt+ik̄y has momentum p(in) = Ak̄. The part

of the incident wave that interacts with the skyrmion is of size
2ξ , the diameter of the skyrmion. Hence the momentum of the
part of the magnon plane wave interacting with the skyrmion
is k = 2ξAk̄. The magnitude of the transferred skyrmion
momentum is |�Pskyrm| = k

√
2 − 2 cos ϕ̄ = 4ξAk̄ sin 1

2 ϕ̄.
Now we are sending in a continuous plane wave instead

of a single magnon. The time it takes for the plane wave to
pass by/through the skyrmion is Tk ≡ 2ξ/vk where vk is the
group velocity of the magnon, given by vk = ∂ωk

∂k
= 2Jk, and

ωk = Jk2 + B is the magnon dispersion. Hence in one unit
of time, the plane wave interacts with the 1/Tk part of the
skyrmion. Thus the amount of momentum transferred in one
unit of time is

�P̃ ≡ |�Pskyrm|
Tk

= 4ξAk̄ sin 1
2 ϕ̄

2ξ/2J k̄
= 4JAk̄2 sin

1

2
ϕ̄. (6)

064412-3



JUNICHI IWASAKI, ARON J. BEEKMAN, AND NAOTO NAGAOSA PHYSICAL REVIEW B 89, 064412 (2014)

In our units J = 1. The incoming magnons of average
wave number k̄ are generated by a forced oscillation with
magnitude A ≡ 〈m2

x + m2
y〉 = 0.0669 per lattice spin. For

the case of k̄ξ = 1.87π (k̄ = 1.87π/ξ = 1.87π/8 ≈ 0.73) we
find ϕ̄/2 ≈ 15◦, so sin ϕ̄/2 ≈ 0.26 [see Fig. 1(a4)]. In this case
we therefore find �P̃ ≈ 0.036 and skyrmion velocity V =
�P̃/2π = 0.0058. This is different from the value obtained
in the simulations (0.015) by a factor of ∼=2.5 [Fig. 2(a)], but
considering the rough and tentative nature of the estimate, the
agreement is rather good.

These simple momentum conservation considerations lead
us to conclude that the skyrmion is a particle with well-
defined momentum, that nevertheless defies the Newtonian
intuition. For instance, here an elastic scattering process causes
backwards motion of the skyrmion, which is impossible for
Newtonian particles.

IV. EFFECTIVE MAGNETIC FIELD

To further identify the nature of the magnon skew scattering,
we map the situation onto that of a charged particle (the
magnon) moving in the background of a static magnetic field
(the skyrmion), assuming the disturbances of the magnon on
the emergent fictitious magnetic field are small. The emergent
field corresponds to the skyrmion number, so the sign of
the scattering direction is fixed, but would be opposite for
an antiskyrmion configuration. This situation corresponds
precisely to Aharonov-Bohm (AB) scattering, and using
results from the extensive literature [33–37], we shall derive an
exact expression for the scattering amplitude of the magnon.

In the continuum limit, the Hamiltonian Eq. (1) for the local
moments m(x,y) reads

H =
∫

d2x

[
J

2
(∇m)2 + Dm · (∇ × m) − B · m

]
. (7)

We can make a change of variables to a complex 2-vector
zρ = (z↑,z↓) (a CP 1 field) via m = z∗

ρσ ρσ zσ , where σ ρσ are
the Pauli matrices and the constraint

∑
ρ |zρ |2 = 1 must be

imposed [38]. The Hamiltonian turns into

H =
∫

d2x 2J |(∇ + ia + iκσ )zρ |2 − B · z∗
ρσ ρσ zσ , (8)

where κ = D/2J and a = iz∗
ρ∇zρ . The Hamiltonian is invari-

ant under gauge transformations zρ → zρe
iε and a → a + ∇ε,

where ε(r) is any smooth scalar field. The gauge field is related
to the Berry curvature b = ∇ × a, and the skyrmion number
Q ≡ 1

4π

∫
d2x bz = 1

4π

∫
d2x m · (∂xm × ∂ym) is quantized.

We now separate zρ = z̆ρ + z0
ρ into magnon and skyrmion

contributions, and assume that a static skyrmion a0 of size ξ

with Q = −1 has formed while the magnons z̆ρ move in this
skyrmion background. A typical skyrmion solution in polar
coordinates is ar = 0, aϕ = r

ξ 2+r2 . For small deviations from
this background configuration we need only to consider the
exchange term; the DM and Zeeman contributions are constant
on this energy scale. Summarizing, we are considering the
low-energy dynamics of

HLE =
∫

d2x 2J |(∇ + ia0)z̆ρ |2. (9)

This is precisely the Hamiltonian of a charged particle moving
in an external magnetic field b0 = ∇ × a0. Notice that the
components z̆↑, z̆↓ are now decoupled at this level of the
approximation. We are interested in the scattering outcome
of an incoming plane wave, far away from the origin of
the skyrmion. Then in this ferromagnetic regime, the spins
point along the out-of-plane z direction, and we can make the
approximation z↑ ≈ 1. In other words, we only consider the
field z̆↓.

The problem of a charged particle scattered by a magnetic
flux was intensively studied in and after the discovery of
the Aharonov-Bohm (AB) effect [33–37]. There, one is
usually interested in the case that the particle does not enter
regions of finite magnetic flux, but nevertheless the case of a
uniform magnetic flux tube of radius ξ has been considered
in Refs. [34–37]. They also consider an electrostatic shielding
potential V to prevent the particle from entering the region of
nonzero flux, but the results are in fact general for any V , and
the limit of V → 0 may be taken without additional treatment,
as we do from now on. To make use of these established
results we shall approximate our smooth skyrmion potential
aϕ = r/(ξ 2 + r2) with that of a uniform magnetic flux:

aϕ =
{

1/r, r � ξ,

r/ξ 2, r � ξ.
(10)

One can verify that the total fictitious flux Q is the same for
both potentials (in the AB setup, the value of Q corresponds
to the product of the electric charge and magnetic flux). As the
magnon will principally scatter due to the fictitious Lorentz
force, this approximation will not deviate too much from
the actual situation, and has the advantage of allowing for
an exact solution. The full derivation is quite technical and
not essentially different from the earlier work and is deferred
to the Appendix. The wave function can then be expressed
in terms of Bessel functions, with coefficients determined by
the properties of the flux tube. The wave function outside
of the flux tube z̆> can be written as a superposition of an
incoming plane wave and a scattered spherical wave, z̆> =
exp(ikx) + F (ϕ) exp(ikr)√

r
where F (ϕ) is called the scattering

amplitude. In the Appendix it is derived that the exact solution
for the scattering amplitude is

F (ϕ) = f AB(ϕ) + e−iπ/4

√
2πk

∞∑
n=−∞

eiπ(n−|n+Q|)(e2i�n − 1)einϕ.

(11)

Here the AB contribution f AB(ϕ) vanishes for integer
skyrmion number Q, and �n is the phase shift of the nth
partial wave.

The scattering amplitude is evaluated numerically; the
results are shown in Figs. 2(b) and 2(c). We clearly see a
large skew angle at the scattering of the magnon for k ≈ 1/ξ .
For both very low and very high wave numbers the skew angle
tends to zero, and the maximum skew angle is about 60◦ around
k̄ξ ≈ 1.1.

V. CONCLUSIONS

We have studied the scattering process of magnons and
a skyrmion both numerically and analytically. The numerics
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show a large skew angle of the magnon scattering, and
skyrmion motion as the back action of the scattering. We
have demonstrated that the principal contribution of the skew
scattering is due to the emergent magnetic field generated by
the Berry curvature of the skyrmion. The obtained scattering
amplitude shows that the magnon skew scattering is strongly
wave-number dependent, up to 60◦ around kξ = 1.1, which is
consistent with the numerical results. This should be compared
with the case of topological Hall effect of the conduction
electrons coupled to the skyrmions [39–42], where the Hall
angle is typically of the order of 10−3 because the Fermi wave
number kF of the electrons is much larger than ξ−1. For both
very low and very high wave numbers the skew angle tends to
zero. For large k, the skew angle is reduced and asymptotically
behaves as ∝1/k. This indicates that the velocity of the
skyrmion induced by the back action should increase linearly
in the large k region of Fig. 2(a) since the momentum transfer
from magnons to skyrmion is ∝ k2 × � ∼ k2 × 1/k ∼ k in
that region assuming the elastic scattering. Unfortunately, this
large k limit was not successfully analyzed in the numerical
simulation due to a technical difficulty, which requires further
studies.

The skyrmion retains its identity during the scattering
process as a result of topological protection. Furthermore,
the skyrmion can be interpreted as a (semiclassical) particle
with a well-defined momentum which is however highly
non-Newtonian. The observed behavior can then simply be
viewed as an elastic scattering process, and the skyrmion is
nearly massless in this situation.

Due to the topological nature of the interaction, the magnon
scattering of a skyrmion is qualitatively different from other
scattering, namely it has a transverse component. Therefore
any experimental signature of transverse motion of magnons
would be evidence of the presence of skyrmions, since
topologically trivial configurations such as magnetic bubbles
or domain walls cannot induce skew scattering. We are led
to think that insulating systems such as Cu2OSeO3, in which
there are no conduction electrons, would be most suitable for
such studies. One promising way of inducing spin waves is via
the inverse Faraday effect using laser light [43].
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APPENDIX: DERIVATION OF
THE SCATTERING AMPLITUDE

Here we derive Eq. (11). For a0 = 0 Eq. (9) describes plane
waves of energy E = a2Jk2, where a is the lattice constant
and k is the wave number. For nonzero a0 the equation of

motion for a particle of this energy reads in polar coordinates[
∂2
r + 1

r
∂r + 1

r2
[∂ϕ − ir(−Q)aϕ]2 + k2

]
z̆↓ = 0. (A1)

Here we tentatively allow the skyrmion number Q to deviate
from the value −1. The only term dependent on ϕ is the one
involving ∂ϕ , and we can make a partial wave expansion
z̆↓(r,ϕ) = ∑

n z̆n = ∑
n wn(r)einϕ . For r � ξ , the wn are

eigenfunctions of the equation[
∂2
r + 1

r
∂r + k2 1

r2
(n + Q)2

]
w>

n = 0. (A2)

This is precisely Bessel’s equation, and the general solution is

z̆>
n = einϕ[anJ|n+Q|(kr) + bnY|n+Q|(kr)]. (A3)

For the region r � ξ , the Schrödinger equation reads
[
∂2
r + 1

r
∂r − 1

r2

(
n + Q

r2

ξ 2

)2

+ k2

]
w<

n (r) = 0. (A4)

We make a change of variables v = Qr2/ξ 2 and fn(v) =
rw<

n (r). The above equation is then rewritten as
[
∂2
v + 1/4 − n2/4

v2
+ k2ξ 2/4Q − n/2

v
− 1

4

]
fn(v) = 0.

(A5)

This is known as Whittaker’s equation for the parameters
κ = k2ξ 2/4Q − n/2 and μ2 = n2/4. The solutions, known
as Whittaker functions Mκ,μ(v), are not well defined for
μ = −1, − 2, . . . , but for our purposes it suffices to choose
μ = |n/2|. These solutions are

fn(v) = Mκ,μ(v) = e−z/2zμ+1/2�
(

1
2 + μ − κ,2μ + 1,v

)
,

(A6)

where � is the confluent hypergeometric series,

�(a,c,v) = 1 + a

c
v + a(a + 1)

c(c + 1)

1

2!
v2 + · · · . (A7)

Continuity in the wave function and its first derivative at the
matching point r = ξ leads to the equalities

cnw
<
n (ξ ) = anJ|n+Q|(kξ ) + bnY|n+Q|(kξ ), (A8)

[cn∂rw
<
n (r) = an∂rJ|n+Q|(kr) + bn∂rY|n+Q|(kr)]r=ξ . (A9)

With the notation �κ,μ(v) = �( 1
2 + μ − κ,2μ + 1,v) one can

derive

∂rw
<
n

∣∣
r=ξ

= Mκ,μ(Q)

ξ 2

(
|n| − Q + 2Q

∂v�κ,μ(v)
∣∣
v=Q

�κ,μ(Q)

)
.

(A10)

Substituting Eq. (A8) in Eq. (A9) we eventually find

bn

an

= −
AnJ|n+Q| − ∂r̄J|n+Q|(r̄)

∣∣
r̄=kξ

AnY|n+Q| − ∂r̄Y|n+Q|(r̄)
∣∣
r̄=kξ

, (A11)
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where we have defined

An = 1

kξ

(
|n| − Q + 2Q

∂v�κ,μ(v)
∣∣
v=α

�κ,μ(α)

)
. (A12)

We expect to retrieve the Aharonov-Bohm result,

z̆AB =
∞∑

n=−∞
einϕeiδAB

n J|n+Q|(kr), (A13)

where δAB = −|n + Q|π/2, in the limits of vanishing
skyrmion size ξ → 0 or vanishing flux Q → 0. Brown [37]
has shown that the solution

an = cos �ne
i�neiδAB , bn = sin �ne

i�neiδAB , (A14)

which defines the partial wave shifts �n in terms of an and
bn, corresponds to an incoming plane wave and an outgoing
propagating scattered wave, and this solution does reduce to
the AB results in the mentioned limits, for which all �n ≡
tan(−bn/an) → 0. Brown has also shown that, for any Q,
�n → 0 as n → ∞, and in practice the �n vanish quickly

for n > kξ . Writing the solution as the superposition of an
incoming and a scattered wave, z̆> = exp(ikx) + F (ϕ) exp(ikr)√

r
,

Brown obtains the scattering amplitude,

F (ϕ) = f AB(ϕ)

+ e−iπ/4

√
2πk

∞∑
n=−∞

eiπ(n−|n+Q|)(e2i�n − 1)einϕ. (A15)

Here f AB is the Aharonov-Bohm scattering amplitude,

f AB(ϕ)
eiπ/4

√
2πk

sin(π |Q|) eiϕsgn(Q)

cos
(

1
2ϕ

) . (A16)

The AB scattering amplitude is clearly vanishing for integer Q.
We evaluate this exact solution Eq. (A15) numerically. Here

we make use of the fact that the phase shifts �n tend to zero
quickly for n > kξ , meaning that only the lowest few partial
waves contribute to scattering. The scattering amplitude and
the skew angle ϕ̄ = ∫

ϕ|F (ϕ)|2/ ∫ |F (ϕ)|2 for several values
of k̄ξ are shown in Fig. 2.
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