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Magnetization dynamics of an in-plane magnetized synthetic ferrimagnetic free layer
submitted to spin-transfer torques and applied field
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An equilibrium stability analysis of an in-plane magnetized synthetic ferrimagnetic free layer (SyF) submitted
to multiple spin-transfer-torque (STT) influences and to applied field has been carried out. Analytical expressions
for the frequency and linewidth of the excitations were derived, in the case of strong coupling between the two
layers compared to the anisotropy field. The expression of the critical current for the onset of excitations in
the SyF was then calculated. Above the critical current, the destabilized mode, acoustic or optical, is found to
depend on the applied field direction, but also on the asymmetry of the two layers composing the SyF. A strong
thickness asymmetry reduces the critical current at zero field, and allows to select the destabilized mode. The
critical current of an in-plane SyF with mutual spin torque between the layers and without reference layer was
computed. For a symmetric SyF, the optical mode is the only mode that can be destabilized by STT.
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I. INTRODUCTION

Spin-transfer torque [1,2] (STT) in magnetic tunnel junc-
tions (MTJ) is particularly interesting for manipulating the
magnetization in spintronic devices. Indeed, via the STT
phenomenon, the magnetization can pump energy into the
spin current and be driven into a very original dynamics
behavior. There are two main applications for STT devices:
magnetic random access memory (STT-MRAM) [3,4] and
STT nano-oscillators (STO) [5–8]. In both cases, the free
layer magnetization, in equilibrium when no current is flowing
through the device, gets destabilized by the spin transfer
torque from the reference layer when a current starts flowing
through the structure with appropriate polarity. The free layer
magnetization then switches or remains in a dynamical state of
self-sustained oscillations. In the case of an in-plane magne-
tized free layer with in-plane reference layer, the dynamics is
well-described by the Landau-Lifshitz-Gilbert equation with
additional STT terms. Stability analysis of the equilibrium
configuration successfully predicts the critical currents and
FMR oscillations frequency in such structures. However,
analytical expressions of the critical currents are only known
if the free layer is composed of a single ferromagnetic
layer [9,10].

In this paper, we analyze the magnetization dynamics of a
synthetic ferrimagnetic (SyF) composite free layer, composed
of two in-plane magnetized layers coupled by Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction. SyF layers with
antiparallel coupling are interesting because of their reduced
magnetostatic stray fields. Thus using SyF layers in nanopillars
allows to reduce the magnetostatic influence of adjacent layers.

If the effect of an external field on the stability of a SyF free
layer is well-documented [9], the STT-induced excitations are
not fully understood. Here, we present a general equilibrium
stability analysis of the SyF free layer, which consists in finding
the eigenvalues of the 4 × 4 dynamical matrix. In the case of a
large RKKY coupling compared to the anisotropy fields, which
is generally the case in MRAM and STO stacks, analytical
expressions of the eigenvalues can be computed with a good
approximation. This is achieved by solving approximately the
quartic equation of the characteristic polynomial, in the limit

of a small damping parameter α. This allowed us to obtain the
expression of the critical current for a SyF free layer and, also,
to determine which mode, acoustic or optical, is excited by
the current in the FMR limit. In previous papers, the critical
currents of a SyF could be obtained either only at zero applied
field and for symmetric layers [9], or only for the specific
applied field at which the two modes, acoustic and optical,
have the same critical current [10]. Contrary to these previous
studies, the analytical expression of the critical current in the
most general case and for any applied field could be computed.
These analytical expressions give insights on the contribution
of each physical or material parameter.

To illustrate the importance of knowing the analytical
expressions of the critical current of a SyF, we focused
on two representative systems: (i) an MTJ composed of an
in-plane SyF free layer and of a fixed in-plane reference layer
for memory application. We show that the critical currents
of strongly asymmetric SyF are lower than in single layers
with the same magnetic volume. (ii) The second is a SyF
with mutual spin torque between the two layers and without
reference layer, for oscillator application.

II. EQUILIBRIUM STABILITY ANALYSIS

A. Description of the model and parameters

The free layer is composed of two coupled magnetic layers,
labeled 1 and 2, as described in Fig. 1. The total free energy
E holds the demagnetizing energy of both layer, the uniaxial
anisotropy and the Zeeman energy due to the in-plane field
applied along the easy axis, plus an RKKY interaction term.
The magnetization of layer 1 (2) is labeled m1 (m2), its
saturation magnetization M1 (M2), its volume V1 = t1S (V2)
with thickness t1 (t2) and area S, its demagnetizing field
Hd1 (Hd2), and its anisotropy field Hk1 (Hk2), assumed to
be along the x axis. The external field Hx1 = Ha + Hex1

(Hx2 = Ha + Hex2) is composed of the sum of the in-plane
applied field Ha that is common to the two layers, and a
bias field Hex1 (Hex2) assumed for generality to be different
in the two layers. These bias fields can have various origins
(magnetostatic coupling to the reference layer, exchange bias
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FIG. 1. (Color online) Schematics of the synthetic ferrimagnet
(SyF) as a free layer with a fixed in-plane magnetized reference layer.

to an additional antiferromagnetic layer, etc.):

E = 1
2μ0V1M1Hd1(m1 · uz)

2 − 1
2μ0V1M1Hk1(m1 · ux)2

− μ0V1M1Hx1m1 · ux + 1
2μ0V2M2Hd2(m2 · uz)

2

− 1
2μ0V2M2Hk2(m2 · ux)2 − μ0V2M2Hx2m2 · ux

− SJRKKYm1 · m2, (1)

where JRKKY is the Ruderman-Kittel-Kasuya-Yosida (RKKY)
coupling energy per unit area. A negative JRKKY corresponds to
an antiferromagnetic coupling between the layers. With an an-
tiferromagnetic coupling, Jex < 0, the two stable equilibrium
configurations are defined by (m1 = ux , m2 = −ux), called
parallel P, and (m1 = −ux , m2 = ux), called antiparallel AP, P,
and AP referring to the orientation of the magnetization in layer
1 relatively to that of the reference layer. With a ferromagnetic
coupling, Jex > 0, the equilibriums are (m1 = ux , m2 = ux)
for P, and (m1 = −ux , m2 = −ux) for AP.

We introduce what we call the spin-torque potentials of each
layer, which account for the spin-transfer torque effect on the
magnetization dynamics of the layers [11]. These spin-torque
potentials simplify the expressions, as they are independent
of the choice of basis, and give exactly the same expressions
as the usual formalism (see Appendix A). The spin-torque
potentials P1 and P2 are defined for each layer. They include
the spin torque due to the reference layer on the two layers,
and the mutual spin torque:

P1 = − �

2e
I

η1

λ1
ln(1 + λ1m1 · ux) + �

2e
Iη21m1 · m2, (2)

P2 = − �

2e
I

η2

λ2
ln(1 + λ2m2 · ux) − �

2e
Iη12m1 · m2. (3)

Here, a positive current corresponds to electrons flowing from
layer 2 towards layer 1, and then to the reference layer. The
spin polarization and spin polarization asymmetry due to the
reference layer on layer 1 (layer 2) are labeled η1 (η2) and λ1

(λ2, respectively). η2 in general is expected to be much smaller
than η1 since the spin-polarized electrons originating from the
reference layer get spin-reoriented within a distance of the
order of 1 nm when traversing layer 1. However, if layer 1 is
sufficiently thin, a STT influence from the reference layer on
layer 2 may still exist [12,13]. However, η2 will be neglected
in the second part of the paper. The spin polarization of the
current due to layer 1 (layer 2) that induces a torque on layer 2
(layer 1) is labeled η12 (η21, respectively). The spin polarization

asymmetry is assumed to vanish for the mutual spin torque.
Notice the minus sign in front of the mutual spin-torque term
(last term) in P2, and the plus sign in P1, because the layer
2 receives reflected electrons from layer 1, whereas layer 1
receives direct electrons from layer 2 for positive current.

The Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equa-
tion reads

μ0V1M1
dm1

dt
= γ1m1 × ∂m1 (E + βα1P1) + γ1m1

×{m1 × [∂m1 (α1E − P1)]},

μ0V2M2
dm2

dt
= γ2m2 × ∂m2 (E + βα2P2) + γ2m2

×{m2 × [∂m2 (α2E − P2)]},

where α1 and α2 are the damping constants of the layers.
For i = (1,2), γi = μ0γ

1+α2
i

, with γ the gyromagnetic ratio.

We consider that γ1 = γ2 = μ0γ . The adimensional term β

accounts for possible interlayer exchange coupling (IEC), or
fieldlike spin torque. See Appendix A for the definition of β.

Without applied current, the free layer magnetization is in
one of the two equilibrium configurations, P or AP. When a
current is applied, the equilibrium may become unstable. The
stability of the equilibrium is studied by linearizing the LLGS
equation around the equilibrium position. The eigenvalues of
the 4 × 4 dynamical matrix L, obtained by differentiating
the LLGS vector field (see Appendix B), correspond to the
FMR eigenmodes. The FMR eigenfrequency and linewidth
correspond to the imaginary part and the double of the real
part of the eigenvalues of L, respectively.

In the following, we use simplified notation to represent
the average quantities over the two layers and the asymmetric
quantities:

n = sign(JRKKY), m = cos φ1,

ω = γ0(Hd2 + Hd1)/2, ε = Hd2 − Hd1

Hd2 + Hd1
,

α = (α2 + α1)/2, ζ = α2 − α1

α2 + α1
,

b1 = γ0

ω

[
Hk1 + m(Ha + Hex1) + |JRKKY|

μ0M1t1

]
,

b2 = γ0

ω

[
Hk2 + nm(Ha + Hex2) + |JRKKY|

μ0M2t2

]
,

Q = b2 + b1

2
, κ = b2 − b1

b2 + b1
,

j1 = γ |JRKKY|
ωM1t1

, j2 = γ |JRKKY|
ωM2t2

,

j = (j2 + j1)/2, ν = j2 − j1

j2 + j1
, J =

√
j1j2,

i1 = mI

1 + mλ1

γ �

2eωS

η1

α1M1t1
,

i2 = nmI

1 + nmλ2

γ �

2eωS

η2

α2M2t2
,
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i = (i2 + i1)/2, μ = i2 − i1

i2 + i1
,

k21 = nI

1 + nλ21

γ �

2eωS

η21

α1M1t1
,

k12 = nI

1 + nλ12

γ �

2eωS

η12

α2M2t2
,

k = k12 + k21

2
, ρ = k12 − k21

k12 + k21
.

B. Calculating the eigenvalues of the dynamical matrix

The dynamical matrix is evaluated at the two equilib-
rium positions, (θ1 = θ2 = π/2, cos φ1 = ±1, cos φ2 = ±1),
labeled by the parameter m = cos φ1: m = 1 is the parallel (P)
equilibrium state, m = −1 is the antiparallel (AP) equilibrium
state. If n = 1, the two layers of the SyF are parallel at
equilibrium, if n = −1, there are antiparallel. In the later
configuration, the system is called a synthetic antiferromagnet
(SAF), it is widely used for memory and nano-oscillator
applications:

L = ω

⎛
⎜⎜⎜⎝

−α1(1 − ε + b1 + i1 − k21) −b1 + βα2
1(i1 − k21) α1n(j1 − k21) j1 + βα2

1k21

1 − ε + b1 − βα2
1(i1 − k21) −α1(b1 + i1 − k21) −n

(
j1 + βα2

1k21
)

α1(j1 − k21)
α2n(j2 + k12) j2 − βα2

2k12 −α2(1 + ε + b2 + i2 + k12) −b2 + βα2
2(i2 + k12)

−n
(
j2 − βα2

2k12
)

α2(j2 + k12) 1 + ε + b2 − βα2
2(i2 + k12) −α2(b2 + i2 + k12)

⎞
⎟⎟⎟⎠.

It is important to notice that the dynamical matrix L can
be separated in four 2 × 2 blocks. The top left (respectively,
bottom-right) correspond to the dynamical matrix of the layer
1 (respectively, layer 2) alone, the other layer being fixed. Due
to the RKKY interaction, the block corresponds to an isolated
layer with exchange field coming from the coupling with the
fixed layer. The two other 2 × 2 blocks contain only interaction
terms proportional to the RKKY coupling.

To calculate the eigenvalues, one needs to solve a quartic
equation. The fact that the eigenvalues are expected to be
two pairs of complex-conjugate values implies that the quartic
equation can be factorized into two quadratic equations.
Hence the four eigenvalues are given by the following general
expressions:

λi = t1

4
±1

√
W

2
±2

i

2

√
2a + W ±1

2b√
W

. (4)

The four possibilities of the couples ±1 and ±2 yield four
independent solutions, where ±2 distinguishes two complex-
conjugate values. Here, the quantity W is real positive, hence
the real part of the eigenvalues (corresponding to half of
the linewidth) is given by the sum of the first and second
terms. The imaginary part is given by the square-root term.
This assumption is valid if the expression inside the radical
is positive, which is supposed to be always the case here,
otherwise it means that the FMR frequency vanishes. Whereas
the parameter ±2 differentiates two complex conjugates
eigenvalues, the parameter ±1 differentiates two eigenmodes
of the SyF, the so-called optical and acoustic modes, which
are associated to different eigenvectors. The optical mode is
defined to be the mode with the highest frequency. By looking
numerically at the eigenvectors of the optical mode, it appears
that the in-plane angles of the two layers magnetization with
respect to the x axis are in phase, whereas the out-of-plane
angles are in antiphase, and vice versa for the acoustic mode.

The parameters of Eq. (4) depend on the coefficients of the
characteristic polynomial of degree four. These coefficients
are polynomial functions of the matrix traces of powers of the
dynamical matrix L. Considering α � 1 (except for b, that we

calculate up to the third order in α), they are given by

t1 = trace(L), t2 = trace(L2), t3 = trace(L3),

a = − 1
2 t2 + 1

8 t2
1 ≈ − 1

2 t2,

b = − 1
3 t3 + 1

4 t1t2 − 1
24 t3

1,

d = 5
48 t4

1 − 1
2 t2

1t2 + 1
4 t2

2 + 1
3 t1t3 − 4 det(L),

≈ 1
4 t2

2 − 4 det(L),

and W is the solution of the cubic equation

W 3 + 2aW 2 + dW − b2 = 0. (5)

In most cases, the polynomial of Eq. (5) can be reduced to a
linear equation, because the parameter b is small (it is of order
α in ω unit) compared to a and d (of order 1 in ω unit).

For small RKKY coupling energy per unit area compared
to the anisotropy energy per unit area (HkMst), namely
JRKKY ≈ 1 × 10−5 J/m2 for Hk = 20 kA/m, Ms = 1.2 ×
106 A/m, and t ≈ 3 nm, the cubic equation may be approxi-
mated by a quadratic equation by dropping the W 3 term to get
a good approximation of the solution.

For relatively high RKKY coupling,
JRKKY ≈ 1 × 10−4 J/m2 or larger, the W 2 term can also
be dropped and the solution W of Eq. (5) has the following
expression:

W = b2

d
.

The two modes, optical and acoustic, have different fre-
quencies, but also different linewidths, which are twice the real
part of λi . Let ωop, ωac, �ωop, and �ωac be the eigenfrequency
and linewidth of the optical and acoustic modes. They are given
by

ωop =
√

a

2
+

√
d

2
, ωac =

√
a

2
−

√
d

2
, (6)

�ωop = t1

2
+ b√

d
, (7)

�ωac = t1

2
− b√

d
. (8)
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Neglecting the terms of order superior to 1 in α, the quantities t1, a, d, and b are given by
t1 = −2αω[1 + 2Q + 2i + 2ρk + ζ (ε + 2μi + 2κQ+2k)],

a = 2ω2[Q(1 + Q) + (κQ)2 + εκQ + nJ 2],

d = 4ω4J 2

{(
Q

J

)2

[ε + κ(1 + 2Q)]2 + 1 + n

2
[(1 + 2Q)2 − ε2] + 1 − n

2
[1 − (ε + 2κQ)2]

}
,

b = − 2αω3

(
Q[ε + κ(1 + 2Q)][ε + 2μi + 2κQ + 2k + ζ (1 + 2i + 2Q + 2ρk)] + 2

(
1 + n

2

)
(1 + 2Q)[J 2 + kj (ρ − ν)

+ ζkj (1 − ρν)] − 1 − n

2
(ε + 2κQ){2kj (1 − ρν) + 2ζ [J 2 + kj (ρ − ν)]}

)
.

For symmetric systems without fixed reference layer and with mutual spin torque, b vanishes. Hence we need the term of
order 3 in α of b. Assuming the two layers have the same damping parameter (ζ = 0), the third order of parameter b is given by

bα3 = 2α3ω3

{
(ε + 2κQ + 2k + 2μi) ×

(
ε

2
+ β[(k + μi)(1 + 2Q) + (i + ρk)(ε + 2κQ)]

)

+
(

1 + n

2

)
2β[(1 + 2Q + 2i + 2ρk)kj (ρ − ν) − (1 + 2Q)k2(1 − ρ2) + j 2(1 − ν2)(2i + 2ρk)]

+
(

1 − n

2

)
2βkj (1 − ρν)(ε + 2κQ − 2k − 2μi)

}
.

To illustrate the validity of these expressions in the approximation of relatively strong RKKY coupling, Fig. 2 shows the error
between the analytical expression of the linewidth and the values extracted from the numerical eigenvalues computation of the
4 × 4 matrix L. The linewidth versus applied current is computed for a symmetric SyF, with an anisotropy field of Hk = 20 kA/m
and a small applied field Ha = 2 kA/m to differentiate the two modes. Figure 2(a), with JRKKY = −1 × 10−4 J/m2, shows a
good agreement between the analytical and numerical expression, whereas in Fig. 2(b), with JRKKY = −1 × 10−5 J/m2, the two
expressions differ, especially for large currents.

The expressions of the eigenfrequencies for the two modes, optical and acoustic, are independent of α at the first order.
Therefore they could be extracted from the dynamical matrix of the conservative part alone. With only the conservative part, the
4 × 4 dynamical matrix has several vanishing coefficients, so it is easier to compute its determinant. The eigenfrequencies are
consistent with previous publications [9] that do not take the dissipative part into account. At the first order in α, they are given
by

ω2
op/ac

ω2
= Q(1 + Q) + κ2Q2 + εκQ + nJ 2

±
√

Q2[ε + κ(1 + 2Q)]2 + 1 + n

2
J 2[(1 + 2Q)2 − ε2] + 1 − n

2
J 2[1 − (ε + 2κQ)2]. (9)

III. STABILITY ANALYSIS OF A SYF
WITH REFERENCE LAYER

A. Critical currents of the two modes

According to these expressions, ωop and ωac are indepen-
dent of the applied current up to order 1 in α, the current
dependence of the eigenfrequencies is of order α2I . Moreover,
the difference of the squared frequencies of the two modes is
proportional to the RKKY coupling:

δω2 = ω2
op − ω2

ac = 2ω2J
√

γn

withγn = d/(4ω4J 2) ≈ 1.

The critical current for the optical and acoustic modes are
computed by solving �ωop = 0 and �ωac = 0. However, the
linewidths of the two modes are different, so the critical current
characterizing the onset of the excitations is given by the
smallest of the two currents.

In the case of two layers with the same damping constant,
ζ = 0, and without mutual spin torque, the critical current
(either optical or acoustic) is given by

∣∣icop/ac

∣∣ = 1/2 + Q ± (κQ + ε/2)δ

1 ± μδ
,

where δ = Q

J
√

γn
[ε + κ(1 + 2Q)].

Notice that the critical currents of the two modes are equal
for δ = 0. The critical current is also maximum if δ = 0. This
maximal critical current was computed by Baláž et al. [10]
using another method, which provides an analytical expression
only for the maximal critical current though. Their expression
is in agreement with the expressions presented in this paper.

In order to decrease the critical current in a SyF, we need
to increase the denominator of the previous expression, by
increasing δ. Hence there are two different options to reduce
the critical current in a SyF: (i) increasing the demagnetizing
field mismatch ε; (ii) increasing the mismatch κ , by increasing
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FIG. 2. (Color online) Comparison of the analytical (full lines)
and numerical (dotted lines) real parts of the eigenvalues of the
two modes, optical (upper green lines) and acoustic (lower red
lines) of a symmetric SyF with different RKKY coupling: (a)
JRKKY = − 1 × 10−4 and (b) −1 × 10−5 J/m2. The other parame-
ters are Ha = 2 kA/m, α = 0.02, MS = 1.2e6 A/m, Hd1 = Hd2 =
1.2e6 A/m, Hk1 = Hk2 = 20e3 A/m, η1 = 0.3, and S = 10−14 m2.

the uniaxial anisotropy mismatch, or inducing an exchange
bias field on one of the ferromagnetic layer by coupling it to
an antiferromagnetic layer, or increasing the layers thickness
mismatch. The three cases (the uniaxial anisotropy mismatch
is not treated) are represented in Fig. 3.

In this figure, the phase diagram of the single layer and
SyF free layers versus applied current and field, obtained
from macrospin simulations, is compared to the analytical
expressions. The diagrams represent the average in-plane
component along the easy axis of the first layer magnetization
〈m1

x〉, the one that is the closest to the reference layer. This
component is related to the TMR, so it represents a physical
measurable parameter. The average of m1

x is taken between
8 and 10 ns of the 10-ns long current pulse. Hence the
results are supposed to reflect less of the transient regime,
and more of the steady state reached after the pulse is applied.
The magnetization is initially in the P configuration: m1

x = 1,
represented in red on the graphs. The AP configuration
(m1

x = −1) is represented in blue. The simulation parameters
are summarized in Appendix C.

Figure 3(a) represents the phase diagram of a single
layer (SL) free layer, initially in the P configuration. The
simulation parameters are α = 0.02, MS = 1.2 × 106 A/m,
Hk = 20 × 103 A/m, Hex = 0, η1 = 0.3, λ1 = 0, S = 10−14

m2, and t = 3 nm. The magnetization is reversed for a density
of current around 5 × 1011 A/m2 (5 mA with an area S =
100 × 100 nm2) at zero field. Only one direction of the field,
negative fields, switches the free layer. The other field direction
stabilizes the free layer in the P configuration. The calculated
critical line is in good agreement with the simulations. Notice
that the calculated critical line is composed of two parts: (i) a
“horizontal” line that corresponds to the vanishing of the FMR
eigenfrequency (its equation is given by Ha = Hk) and (ii) the

critical current linear with respect to the field, that comes from
the vanishing of the linewidth �ω. Its expression is given
by Ic = α

η1

2e
�

μ0MSV (Hd

2 + Hk + Ha) [9]. For large positive
fields (Ha > 10 kA/m), the magnetization is destabilized into
an in-plane precession (IPP) state instead of switching just
above the critical current.

Figure 3(b) is the phase diagram of a symmetric SyF,
initially in the P state (m1

x = 1, m2
x = −1). The simulation

parameters are α = 0.02 (α1 = α2), MS = 1.2 × 106 A/m
(MS1 = MS2), Hd1 = Hd2 = 1.2 × 106 A/m, Hk1 = Hk2 =
20 × 103 A/m, Hex1 = Hex2 = 0 A/m, η1 = 0.3, η2 = 0, t1 =
t2 = 1.5 nm, JRKKY = −1 × 10−3 J/m2. These parameters are
the same for Figs. 3(c)–3(f), except otherwise mentioned. The
calculated critical line for the acoustic mode (red dotted line)
and the optical mode (green dashed line) are in agreement with
the simulations. The optical critical line is defined by the van-
ishing of the optical linewidth, �ωop = 0. The acoustic critical
line is composed of two parts, like in the single layer case: (i)
two horizontal lines, corresponding to the vanishing of the
acoustic eigenfrequency ωac. The two critical field values, for
positive and negative field can be different, as seen in the other
graphs of Fig. 3. In the symmetric case, they have the same
absolute value. The critical fields are defined by the vanishing
of Eq. (9). (ii) The second part corresponds to the vanishing
of the acoustic linewidth, �ωac = 0. It is defined by Eq. (10).

Notice that the calculated critical lines are also in agreement
with the critical lines computed by extracting numerically the
eigenvalues of the dynamical matrix, which are not shown on
these graphs because they superpose with the calculated lines.
This is because the condition of a large RKKY coupling is
fulfilled, as it was stated previously (see Fig. 2).

For negative fields, the acoustic critical current is smaller
than the optical critical current. Just above the acoustic
critical current, the magnetization is destabilized following
the acoustic mode, and it reaches an IPP steady state, with an
oscillation frequency close to the acoustic FMR frequency. For
currents slightly larger than the acoustic critical current, the
IPP state does not survive and the magnetization switches. The
range of IPP state is not clearly visible on the graph because of
its small current range. It spans close to the border between P
and AP region in negative fields. For positive fields, the optical
critical current is smaller than the acoustic critical current.
Hence, above the optical critical current, the magnetization
is destabilized and grows away from the equilibrium with
optical-like oscillations, to eventually switch.

For a symmetric SyF as described in Fig. 3(b), the
evolutions of the transverse in-plane components of the
magnetization, m1y and m2y , above the optical and acoustic
critical lines are shown in Fig. 4. The destabilization mode
is different in the two cases, positive and negative fields
of Ha = ±50 kA/m, and with the same applied current
of I = 9.2 mA (above the critical current in both cases).
For positive fields, the mode is optical, characterized by a
high oscillation frequency and in-phase transverse in-plane
components. On the contrary, for negative fields, the mode
is acoustic, with a lower frequency and out-of-phase in-plane
transverse components.

Figures 3(c)–3(f) show the phase diagram of asymmetric
SyF. In Fig. 3(c), the layer 2 is subjected to an exchange bias
field of Hex2 = −50 kA/m, all the other simulation parameters
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FIG. 3. (Color online) Macrospin simulations, diagram of the average 〈m1
x〉 between 8 and 10 ns of a 10 ns-long simulation with m1

x = 1
initially. Red dotted line, acoustic critical line. Green dashed line, optical critical line. Different configurations are represented: (a) single
layer with an equivalent magnetic volume, α = 0.02, MS = 1.2 × 106 A/m, Hk = 20 × 103 A/m, η1 = 0.3, S = 10−14 m2, t = 3 nm; and
(b) identical layers, α = 0.02, MS = 1.2 × 106 A/m, Hd1 = Hd2 = 1.2 × 106 A/m, Hk1 = Hk2 = 20 × 103 A/m, η1 = 0.3, S = 10−14

m2, t1 = t2 = 1.5 nm, JRKKY = −1 × 10−3 J/m2. Same layers with mismatch: (c) Hex2 = −50 kA/m. (d) Hd1 = 0.7 × 106 A/m, Hd2 =
1.2 × 106 A/m. (e) t1 = 2 nm, t2 = 1 nm. (f) t1 = 1 nm, t2 = 2 nm.

are the same as for the symmetric case. This exchange bias
field can originate from an antiferromagnetic layer in contact
with layer 2. The critical lines define the same “arrow” shape
than in the symmetric case but slightly shifted towards the
positive fields. The critical fields are also larger than in the
symmetric case. For negative fields, the IPP range is expanded
compared to the symmetric case. The critical current at zero
field is slightly reduced compared to the symmetric case.

In Fig. 3(d), the demagnetizing field of layer 1 is reduced
to the value Hd1 = 0.7 × 106 A/m. The demagnetizing field
of layer 2 is unchanged. The reduced demagnetizing field
can be achieved, for instance, by improving the interface
between layer 1 and the MgO barrier to increase the interface
perpendicular anisotropy [14]. In this case, the arrow shape
of the critical lines of the two modes is shifted towards
positive fields. The critical field at zero field is much reduced
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FIG. 4. (Color online) Evolution between 4 and 6 ns of the trans-
verse in-plane components of the magnetization of the two layers,
m1y and m2y , with an applied current density of 9.2 × 1011 A/m2

(9.2 mA with S = 10−14 m2). The SyF is symmetric, corresponding
to the case of Fig. 3(b). (a) Positive applied field of Ha = 50 kA/m:
high-frequency optical destabilization. (b) Negative field of Ha =
−50 kA/m: low-frequency acoustic destabilization.

compared to the symmetric case. Notice that the IPP region
has disappeared in this case.

In Figs. 3(e) and 3(f), the two layers of the SyF have
different thicknesses: t1 = 2 nm, t2 = 1 nm, and t1 = 1 nm,
t2 = 2 nm, respectively. The total thickness remains 3 nm,
like for the symmetric SyF and the single layer. Thus the
comparison is made with systems with the same magnetic
volume. The thickness asymmetry provokes a shift of the arrow
shape of the critical lines, towards either positive or negative
field (respectively). In both cases, the critical current at zero
field is reduced compared to the symmetric case.

The present analysis does not permit to conclude on the
existence or not of an IPP region. For this, a different approach
should be used, based on the work of Slavin et al. [15]. In
this theory (for single layers), not only the linear part of the
LLGS equation is computed, but also the non-linear part that
describes the self-sustained oscillations.

Even if the range of existence of in-plane precession (IPP)
cannot be known from this equilibrium analysis, macrospin
simulations show that self-sustained IPP are acousticlike.
Therefore the IPP were never encountered above the optical
critical current. This is specially interesting to use SyF
free layer for memory application. If we assume that the
spin torque originating from the reference layer is totally
transmitted to the first layer of the SyF, then in the case of an
asymmetric SyF with t1 < t2 [see Fig. 3(f)], the critical current
at zero field is always optical. With the other current polarity,

the destabilization of the AP equilibrium is also optical.
Therefore, no self-sustained oscillations (with reasonable
applied currents) can be obtained at zero field. For memory
application, it ensures that the magnetization of layer 1 (and
layer 2 simultaneously) is reversed with an applied current
larger than the critical current.

B. Decrease of the critical current of a SyF free layer

It was shown that the critical current of a SyF free layer
could be reduced by introducing asymmetry in the structure.
However, no quantitative comparison was given with the
critical current of a single layer (SL) free layer. To investigate
this, the expression of the critical currents of SyF and SL free
layer will be compared in the given framework (as in Fig. 3):
(i) the layers of the SyF and of the SL of comparison have
the same saturation magnetization MS (meaning that all the
layers are made of the same material) and the total thickness
of the SyF, t1 + t2, is equal to the thickness t of the single
layer; (ii) all the layers have the same damping α and there is
no spin-efficiency asymmetry (λ1 = λ2 = 0); and (iii) the spin
torque originating from the reference layer is neglected on the
second layer in the SyF (i2 = 0). There are some evidence that
the spin torque may be transferred to the second layer [12,13],
however, the STT on the second layer is smaller than on the
first one. Therefore it is neglected here.

A general expression for reduced demagnetizing fields is
also used. The effective demagnetizing fields are reduced
due to perpendicular interface anisotropies [14,16]. The
interface anisotropy originates from the interface with the
MgO separating the first layer from the reference layer, but
also from another interface on top of the structure:

H SL
d = MS − K1 + K2

μ0MSt
,

Hd2 = MS − K2

μ0MSt2
,

Hd1 = MS − K1

μ0MSt1
.

With K1 the surface anisotropy energy density due to the
interface with the MgO and K2 the one due to the top interface.
We introduce the characteristic currents I

SyF
0 and I SL

0 :

I
SyF
0 = 2eS

�η1
α

Hd1 + Hd2

2
MS (2t1),

I SL
0 = 2eS

�η1
αH SL

d MSt.

We use the notation Q = Q′ + j , so that for a single layer
(SL):

I SL
c = I SL

0 (1/2 + Q′).

For the critical current of the SyF, we neglect the asymmetry
term in the numerator of Eq. (10), so that

I SyF
c = I

SyF
0

1/2 + Q′ + j

1 + |δ| .
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We use the adimensional thickness asymmetry τ :

t = t2 + t1, τ = t2 − t1

t2 + t1
.

Notice that because M1 = M2 = MS , τ = −ν.
According to the expressions of the demagnetizing fields,

the ratio σ of the SyF and of the SL characteristic currents,
σ = I

SyF
0 /I SL

0 , is given by

σ = 1 − τ
1 + ε

1 + τε
.

Therefore the critical current for a SyF MTJ is smaller than
for a single layer MTJ if the following condition is fulfilled:

σ
(

1
2 + Q′ + j

)
<

(
1
2 + Q′) (1 + δ).

This can be written as a maximum for the adimensional RKKY
coupling energy J defined earlier:

2J <
(1 + 2Q′)(1 + ετ )

1 − τ

×
[
τ

J

j

1 + ε

1 + ετ
+ ∣∣ε + κ(1 + 2Q′ + 2j )

∣∣1 + Q′/j√
γn

]
.

Two particular cases are of interest: (1) ε = 0 =⇒ 2J <
τ

1−τ
C with C = 2 or C = −Q′/j if τ is positive or negative, re-

spectively, and (2) τ = 0 =⇒ 2J < |ε|(1 + 2Q′)(1 + Q′/j ).
In this framework, where no spin torque is acting on layer

2 of the SyF, it appears that the critical current of a single layer
can be reduced by making it a SyF with the same magnetic
volume. The corresponding SyF must be strongly asymmetric,
either due to the thickness difference between its two layers
(Fig. 5), or due to an interfacial surface anisotropy (Fig. 6).
For an asymmetric SyF, reducing the RKKY coupling energy
reduces the critical current (Fig. 7).

However, these parameters also affect other properties of
the SyF, like for instance the coercive field. As seen in Fig. 3(f),
the coercive field for a SyF with asymmetric thicknesses, t1 =
1 nm and t2 = 2 nm, is much reduced compared to a symmetric
SyF: 50 kA/m compared to 150 kA/m in the symmetric case.
Therefore the thickness asymmetry must not be too large, so
that the MTJ has a large enough bistable region with respect

FIG. 5. (Color online) Critical current vs thickness of layer 1, t1,
for the same total thickness t t of 3 nm.

FIG. 6. (Color online) Critical current vs interfacial surface
anisotropy energy of the layer 1, Ks1.

to external field to avoid external perturbating fields to change
its magnetization orientation.

IV. STABILITY ANALYSIS OF SYF OSCILLATOR
WITHOUT PINNED POLARIZING LAYER

Unlike the previous section, the system of interest consists
in a SyF bilayer without fixed polarizing layer (η1 = η2 = 0,
so i = 0), with antiferromagnetic coupling between the layers
(n = −1), and with mutual spin torque between the layers,
as shown in Fig. 8. The layers magnetizations are excited
only by the mutual spin torque between the layers. It also
provides an extra coupling between the layers, in addition
to the RKKY coupling. Some experimental results on this
configuration were presented in Ref. [17]. An experimental
phase diagram is presented, for positive applied field, which
shows that the self-sustained oscillations appear only for
positive current. This feature can possibly be explained by
the following analytical calculations of the critical current,
because the two modes, acoustic or optical, are excited each
for one polarity of the current. If only one of these modes is
detected experimentally, it would explain why the excitations
are only encountered for one current polarity. Moreover, the
simulations show that it is possible to excite an optical-like
mode in this structure. Since the optical mode has a larger
frequency than the acoustic mode usually encountered in
conventional STO, such structure could extend the frequency
range of STO.

FIG. 7. (Color online) Critical current vs RKKY coupling energy
JRKKY with a thickness asymmetry: t1 = 1.3 nm, t2 = 1.7 nm.
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FIG. 8. (Color online) Schematics of a SyF oscillator without
reference layer and with mutual spin torque between the layers.

In order to simplify the problem and try to focus on what
makes this system special, the layers are supposed to be
identical, hence ε = ν = ζ = ρ = 0, and also t1 = t2, j = J .
In addition, without applied field, κ = 0, and so the linewidths
for the two modes, optical and acoustic, write

�ωop/ac = −αω

[
1 + 2Q ∓ 2βα2k2

j
(1 + 2Q − 2j )

]
. (10)

The equilibrium state becomes unstable when the linewidth
becomes positive, and according to the previous equation,
without applied field, this is possible only for the optical mode.
Notice also that without the spin-torque fieldlike term (β = 0),
the linewidth is not modified by the current in the symmetric
case. Because k is proportional to the applied current I ,
increasing the current increases the acoustic mode linewidth
in absolute value but it always remains negative. However,
when increasing the current, the optical mode linewidth will
eventually vanish.

The critical lines corresponding to �ωop/ac = 0 are rep-
resented on the phase diagram of Fig. 9 versus applied
current and applied field. Without applied field, only the
optical mode can be excited. The final state of macrospin
simulations are superposed to the critical lines and show a good

FIG. 9. (Color online) Critical lines vs current and field without
fixed polarizing layer and with mutual spin torque between the layers.
Red dotted line is the acoustic mode and green dashed line is the
optical mode. From Ha = −50 to 50 kA/m, a steady state from
macrospin simulations: in-plane steady state (white region) and IPP
(grey region). The bottom layer of the SyF is initially along +ux

(center), and reverses to −ux in the top right and bottom left. The IPP
is optical-like around zero field and close to the optical critical line,
and acousticlike otherwise. The layers are identical, with thicknesses
t1 = t2 = 1.5 nm, JRKKY = −10−3 J/m2, and βIEC = 1.

FIG. 10. (Color online) Critical current vs RKKY coupling en-
ergy JRKKY without fixed polarizing layer and with mutual spin torque
between the layers. The layers are identical, with S = 10−14 m2 and
thicknesses t1 = t2 = 1.5 nm and no applied field, Ha = 0.

agreement. The simulation were realized on a symmetric SyF
with t1 = t2 = 1.5 nm, α = 0.02, Hk = 20 kA/m, JRKKY =
−10−3 J/m2, βIEC = 1. The mutual spin polarization are equal:
η21 = η12 = 0.3. Moreover, λ21 = λ12 = 0. The simulations
were only performed between −50 and 50 kA/m. The bottom
layer of the SyF, layer 1, is initially oriented along +ux . The
two layers are antiparallel due to the RKKY coupling, m1 = ux

and m2 = −ux . The gray regions represent a final IPP steady
state, with acoustic-like or optical-like oscillations, depending
on the region. The borders acoustic/optical inside the gray
region were not calculated, only the mode just above the
critical current was identified. The white regions represent an
equilibrium state, either m1 = +ux below the critical current,
or m1 = −ux for two regions above the critical current. The
latter m1 = −ux reversed regions cannot be predicted by the
linear analysis presented in this paper.

The expressions of the critical lines are complicated with
an applied field, however, it is possible to obtain the expression
of the critical current for Ha = 0 (and Hex1 = Hex2 = 0).

Let Im be a characteristic current amplitude, given by

Im = αMst1
2eωS

γ �

1 − λ21

η21
, (11)

The critical current I
op
c of two identical layers with mutual

spin torque and without applied field is given by

I op
c = Im

α

√
j

2βIEC

√
1 + 2Q

1 + 2Q − 2j
. (12)

Because j is proportional to the RKKY coupling energy
per unit area JRKKY, it appears that the critical current is
proportional to the square root of the RKKY coupling constant
for small coupling, as shown in Fig. 10. Notice that the RKKY
constant is also included in Q, therefore for a large RKKY
constant, namely, j > 1/2, the critical current tends to be
proportional to j .

V. CONCLUSION

The analysis of the equilibrium stability of an in-plane SyF
free layer with reference layer was performed. The expressions
of the FMR frequency and linewidth were extracted. They
were found to be different for the two modes, optical and
acoustic. Consequently, the critical currents in a SyF, defined
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by the vanishing of the FMR linewidth, can be of two different
types, acoustic or optical, depending on which linewidth
vanishes. The type of critical current can be selected by tuning,
for example, the thicknesses of the two layers composing
a SyF.

In a symmetric SyF, the critical current (either acoustic or
optical) is generally larger than the critical current of a single
layer free layer with equivalent magnetic volume. This is due
to the RKKY coupling energy. However, we showed that the
critical current of a strongly asymmetric SyF could be reduced
below the value of the equivalent single layer. This opens
new perspectives to reduce the critical current in magnetic
random-access memories.

Finally, we studied the system composed of an in-plane SyF
with mutual spin torque between the two layers and without
reference layer. In this configuration, and for a symmetric SyF,
we found that only the optical mode can be excited at zero field.
It is qualitatively different from conventional STO, for which
the self-sustained oscillations are acousticlike. Moreover, the
IEC, or fieldlike spin torque, was found to play a preponderant
role in the excitation of such mutual spin-torque oscillators.
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APPENDIX A: EQUATION OF MOTION
AND SPIN TRANSFER TORQUES

The spin transfer torque was introduced by Slonczewski [1]
and Berger [2], as an additional torque in the Landau-Lifshitz-
Gilbert (LLG) equation that describe the dynamics of the
magnetization m of a single layer:

ṁ = −μ0γ m × Heff + αm × ṁ + μ0γ τ STT,

Heff = −1

μ0MSV

∂E

∂m
,

τ STT = aJ m × (m × Mpol) + bJ m × Mpol,

where E is the free energy of the layer, MS is the saturation
magnetization, V is the volume of the layer, α is the damping
constant, and γ is the gyromagnetic ratio.

Regarding the spin-torque terms, Mpol is the unit vector
of the magnetization direction of the fixed polarizing layer,
situated after the free layer according to the current direction.
bJ represents the interlayer exchange coupling (IEC), or
fieldlike term. aJ is the spin torque amplitude given by the
general expression

aj = �

2e

I

μ0MSV

η

1 + λm · Mpol
.

Here, I is the applied current, η is the spin polarization of the
current due to the polarizing layer, and λ is the spin-efficiency
asymmetry, that depends on the spacer between the free layer
and the polarizing layer. It can be considered to be zero for a
tunnel barrier and nonvanishing for metallic spacers.

Like for the effective field Heff , which derives from the free
energy, it is interesting to write the STT as the gradient of a
potential. In this way, the change of basis are much simplified.
The torque itself cannot derive from a potential, however, we
can define the potential P , such that

aJ Mpol = −1

μ0MSV

∂P

∂m
,

P = − �

2e

Iη

λ
ln(1 + λm · Mpol).

Therefore we transform the LLG equation to eliminate the ṁ
term from the right-hand side and we assumed that γ /(1 +
α2) ≈ γ :

ṁ = γ

MSV
m ×

(
∂mE + α∂mP − bJ

aJ

∂mP

)
+ γ

MSV
m

×
[

m ×
(

α∂mE − ∂mP − α
bJ

aJ

∂mP

)]
.

The first term is the conservative part of the LLG equation.
For compactness, we introduce a coefficient β that accounts
for the STT term of the conservative part:

αβ = α − bJ

aJ

. (A1)

With this notation, β vanishes if the STT is neglected in
the conservative part. It is unity if the intrinsic IEC, bJ , is
neglected, for example, in spin valves. bJ has a quadratic
dependence to the applied current, whereas aJ is linear with
respect to the current [18]. Therefore β may depend on the
applied current.

The second term in Eq. (A1) is the dissipative term. We
neglect the contribution from bJ , as we suppose that α bJ

aJ
� 1.

This assumption is justified by the maximal value encountered
in MTJ for bJ , which is 30% the value of aJ . The damping
constant is supposed to be small, α < 0.1.

The LLG equation rewrites as

ṁ = γ

MSV
m × ∂m(E + αβP ) + γ

MSV
m

× [m × ∂m(αE − P )]. (A2)

APPENDIX B: DYNAMICAL MATRIX

The Landau-Lifshitz-Gilbert-Slonczewski (LLGS) vecto-
rial equation for a SyF free layer has four degrees of freedom,
therefore it may be more convenient to write it in spherical
coordinates instead of cartesian coordinates. We use the angles
θ1, φ1, θ2, and φ1:

m1
x = sin θ1 cos φ1,

m1
y = sin θ1 sin φ1,

m1
z = cos θ1,

m2
x = sin θ2 cos φ2,

m2
y = sin θ2 sin φ2,

m2
z = cos θ2.
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We also introduce the following scalar functions related to
the one introduced in Appendix A:

H1 = γ

M1V1
(E + βα1P1), �1 = γ

M1V1
(α1E − P1),

H2 = γ

M2V2
(E + βα2P2), �2 = γ

M2V2
(α2E − P2).

In the spherical coordinates, using the previous scalar func-
tions, the LLGS equation rewrites(

θ̇1

sin θ1φ̇1

)
= �1 ∂R̃1

H1 − ∂R̃1
�1,

(
θ̇2

sin θ2φ̇2

)
= �1 ∂R̃2

H2 − ∂R̃2
�2,

�1 =
(

0 −1
1 0

)
, ∂R̃i

=
(

∂
∂θi

1
sin θi

∂
∂φi

)
for i ∈ (1,2).

To study the stability of equilibriums, we need to differen-
tiate the right-hand side of the LLGS equation, to obtain the
4 × 4 dynamical matrix that we call L. The expression of L in
spherical coordinates is given by

L =
(

�1 0
0 �1

)
Hess[H1, H2] − Hess[�1, �2].

Inside the block matrix, 0 is the 2 × 2 null matrix.
For two arbitrary scalar functions A and B, the 4 × 4 matrix

called Hess[A,B] is defined further, when the equilibrium
configuration is assumed to be in-plane (cos θ1 = cos θ2 = 0).
The standard notation for the second derivative, Aθ1φ2 = ∂2A

∂θ1∂φ2
,

is used. The second derivatives are then evaluated in the
equilibrium configuration, cos θ1 = cos θ2 = 0, cos φ1 = m,
and cos φ2 = nm:

Hess[A,B] =

⎛
⎜⎜⎜⎜⎜⎜⎝

Aθ1θ1 Aθ1φ1 Aθ1θ2 Aθ1φ2

Aθ1φ1 Aφ1φ1 Aφ1θ2 Aφ1φ2

Bθ1θ2 Bφ1θ2 Bθ2θ2 Bθ2φ2

Bθ1φ2 Bφ1φ2 Bθ2φ2 Bφ2φ2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

APPENDIX C: ANNEXE

Several parameters are common to all the graphs presented
in this paper. For instance, the saturation magnetizations Ms

and the anisotropy fields Hk . The following table presents the
parameters used for Figs. 3(a) and 3(b).

Single layer SyF Value

Ms Ms1,Ms2 1.2 × 106 A/m
Hk Hk1,Hk2 20 × 103 A/m
α α1,α2 0.02
t t1,t2 3 nm (1.5-1.5 nm SyF)
S 100 × 100 nm2 = 10−14 m2

η η1 0.3
η2 0

– η21 = η12 0.3
λ λ1,λ2,λ12,λ21 0
β 1

According to the value of the area S of the pillars, currents
expressed in mA correspond to current densities of 1011 A/m2.
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