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We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders
of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from
that of coherent potential approximation, which is based on adjusting the effective-medium parameters to mini-
mize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters,
such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial’s
structural unit cell with a piece of homogenized material. From the Green’s theorem applied to the exterior domain
problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We
verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice,
and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost
exactly with numerical simulations and experiments and the scheme’s validity is constrained by the number of
dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends
to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.
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I. INTRODUCTION

The emergence of metamaterials has been based on the
premise that the collective behavior of local resonances can
lead to effective material parameter values not found in
nature. By controlling the microstructural heterogeneities,
exotic dynamic responses at the macro- or mesoscale can be
achieved, and their characteristics have significantly broad-
ened the horizon for elastic/acoustic wave manipulations.
Novel phenomena, such as focusing and subwavelength
imaging [1-4], near-field amplification [5], cloaking [6-9],
localization of ultrasound [10], one-way transmission [11-13],
as well as superabsorption [14] were proposed or were
experimentally demonstrated. At the core of these phenomena
are the resonance-induced and frequency-dependent effective
material characteristics, such as highly anisotropic constitutive
parameters [1,15], zero refractive index [16-19], negative
mass [20-23], negative bulk modulus [24,25] or shear mod-
ulus [26], as well as simultaneously negative mass and
modulus [18,27-30].

However, accompanying metamaterials’ exotic effective
parameter values is a challenge to the classical homogenization
theory, which is based on the philosophy of adjusting the
effective parameter values so as to minimize scatterings at the
long-wavelength limit. Such a basic viewpoint is inconsistent
with the fact that the novel effective parameter values of
metamaterials arise mainly from the resonant scatterings.
In particular, the novel properties of the metamaterials are
usually at frequencies beyond the low frequency, or the
long-wavelength limit, that is the validity constraint of the con-
ventional homogenization approaches [31]. There are efforts to
extend the conventional homogenization to higher frequencies
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by a scheme denoted as “two-scale asymptotic” [32,33] in
which a separate set of expansions (different from the long-
wavelength asymptotic) is applied near the standing-wave
modes at the edges of the Brillouin zones (BZs) for periodic
structures. The effective-medium characteristics in the pass
bands can thereby be approached from two directions. There
are also some nonasymptotic homogenization approaches for
metamaterials. For Bloch-type electromagnetic (EM) waves
in periodic media, a field-averaging homogenization scheme
was proposed [34]. A broadband homogenization scheme was
introduced [35] that considers the homogenization problem as
averaging over the responses resulting from suitable source
distributions. For elastic/acoustic systems, a general method
for either periodic or random structures was presented [36],
based on ensemble averaging of the response functions in
which the system is driven by a specified body force so that
the effective parameters are functions of both wave number
and frequency. Enhanced versions of classical coherent po-
tential approximation (CPA) have also been applied to both
electromagnetic and elastic/acoustic metamaterials [37,38];
equivalent results were also obtained from matching the scat-
tered waves by homogeneous scatterers with the predictions
of the multiple-scattering formalism [39—41]. These schemes
are noted to operate under the assumption of the wavelength
being much larger than the relevant feature size. We should be
reminded that, in the traditional homogenization schemes, the
long-wavelength limit implicitly implies minimal scatterings
since, for classical waves, the Rayleigh scattering cross section
approaches zero in that limit. Hence, the long-wavelength
limit is intrinsically consistent with the basic premise of
minimizing scatterings in the traditional homogenization
scheme. However, once there are local resonators, such as
the case in metamaterials, the resonant scatterings differ
significantly from Rayleigh scatterings. In particular, the fact
that the wavelength is large compared to the feature size of
each resonator no longer guarantees weak scattering.
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In this paper, as a generalization of the specialized
technique reported in our previous paper [29], we propose
an approach to homogenize acoustic metamaterials based on
matching the lowest-order scattering amplitudes arising from a
finite volume (or a structural unit) of the relevant metamaterial
with that of a homogenized material whose material
parameters are the desired quantities to be determined. From
the Green’s theorem applied to the exterior domain problem,
matching the scattering amplitudes is the same as matching
the interfacial responses of the relevant finite volume. The
surface responses of a heterogeneous structural unit, in turn,
may be formally calculated based on its eigenstates, which
can be obtained numerically, e.g., such as by the finite element
method (FEM). The problem can thereby be converted
into a set of response equations for the unknown material
parameters. We show that the relevant effective parameters
can be explicitly solved as functions of frequency, and the
homogenized effective medium provides an exact match to the
motions at the boundaries of structural units (SUs) and, hence,
the scattering amplitudes with that of the actual metamaterial.
The advantage of this approach is that it is conceptually clear
cut and focuses on the resonant scatterings that are the source
of metamaterials’ exotic behaviors. It can ensure validity
over a broad range of frequencies: In one dimension (1D),
the theory is valid for all frequencies, and in two dimensions
(2D), the validity of the theory is shown to be almost over the
entire Brillouin zone, even when the effective wavelength is
comparable to the size of the unit cell at the Brillouin-zone
boundary. Such accuracy is achieved by matching only the
lowest two orders of scattering amplitudes (surface motions).

We demonstrate the effectiveness of the proposed approach
through three examples. The first is a two-phase layered lattice
in which one phase is stiff and heavy while the other phase is an
elastic medium. The wave propagation characteristics and the
relevant wave fields, calculated from the homogenized effec-
tive parameters, are shown to yield excellent agreement with
numerical simulations. The second example is a 2D hexagonal
lattice of concentric cylinders. The homogenized medium pre-
dictions are compared with numerical simulations from FEM
and multiple-scattering theory (MST) with excellent agree-
ment. The third example is the membrane-type metamaterial
with a decorated-membrane resonator as the unit cell of a pla-
nar array. Again the comparison of the transmission/reflection
characteristics with the experimental results from impedance
tube measurements shows excellent agreement.

In what follows, derivation of the homogenization scheme
is presented in Sec. II with the application to 1D scalar waves
discussed in Sec. IIB and the application to the 2D case
discussed in Sec. IIC. Examples and results are given in
Sec. III. In Sec. IIT A, we show and discuss the 1D layered
lattice, followed by the 2D hexagonal lattice of concentric
cylinders presented in Sec. III B. The case for the decorated-
membrane resonator is shown in Sec. III C. We conclude in
Sec. IV with a summary of results and some comments on the
prospect of generalizations.

II. METAMATERIAL HOMOGENIZATION

Metamaterials are usually composed of a finite number
of similar units comprising inner heterogeneities, shown
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FIG. 1. (Color online) (a) Schematic of the unit cells and their
boundaries for a typical metamaterial. The inner heterogeneous
scatterers are denoted by gray disks, the external boundaries are
marked by black solid lines, and the internal unit boundaries are
delineated by dashed lines. (b) The relevant SU (marked €2) of the
metamaterial. Its boundary is denoted by the red lines. The incident
waves are illustrated as circular wave fronts in the medium M, external
to the SU.

schematically in Fig. 1(a). The relevant wave propagation
characteristics as well as the consequent effective wave vector
k [42] and impedance Z at the interface (delineated by the
black solid line) are completely determined by the scatterings
of its single SU [as delineated in Fig. 1(b) by the red line].
As shown in what follows, the most relevant properties of the
SU to our homogenization scheme are the surface responses
characterized by its Green’s function with both arguments
evaluated on the boundary—G(&’,£), where & and &’ denote
coordinates on the SU’s boundary €2 [the red line in Fig. 1(b)].
Below we show that the surface responses are directly related
to the scatterings by the SU.

Consider a SU [region 2 in Fig. 1(b)] embedded in a
medium M containing a certain background incident wave
(displacement field) ®j,. Since, in this paper, we consider only
scalar acoustic waves, the displacement involved will comprise
only one (vector) component. The medium M can be either
the neighboring units (for the internal units) or the external
environmental medium of the metamaterial (for the surface
units). By applying the Green’s theorem to the medium [43],
the scattering field &, from the SU is related to the interfacial
normal stress y,,(§) on the surface 92 as

Dye(x') = ?gg Gm(x" &)Y (8)d8, (1a)

in which x’ represents the bulk coordinate in the medium
external to the SU and its Green’s function Gy satisfies
the homogeneous Neumann boundary condition. One can
similarly apply the Green’s theorem on the SU to relate the
normal stress 1, with the total displacement &y, + ®. on 92,

Un(§) = — ?gg G(E.ENPin(E) + Pe(EN]dE",  (1b)

where the Green’s function G is internal to the SU. It also
obeys the homogeneous Neumann boundary condition, and
its inverse G~ satisfies [, G™'(x,x)G(x',x")dx" = §(x,x").
The minus sign in front of Eq. (1b) is from Newton’s third law.
By substituting Eq. (1b) into Eq. (1a), we obtain an expression
for the scattering field as

Do) = — ﬁm G, E)G (6.6 [Pin(E)

+ @yc(§)]d8 dt’. @
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In Eq. (2), it is seen that the SU contributes only in terms of its
surface responses G(&,&’). By employing a set of orthonormal
surface modes {¢,} defined on the SU’s surface 9€2, these
surface responses can be expressed in terms of scalar numbers,

Gup = ﬂm 01 (EVG(E E)pp €)dE dE. 3)

where the integrals are over the entire surface.

The wave characteristics of metamaterial’s SU, with all
its structural complexities, may be calculated numerically
in terms of its eigenvalues and eigenfunctions. The Green’s
function can then be obtained in the form of eigenfunction
expansion, and the G, can be explicitly evaluated (Sec. IL A).
Effective material parameter values can then be obtained at
each frequency by solving the following equation:

Gaop = Gop(k.2), “
with G denoting the Green’s function of the homogenized ma-
terial characterized by the effective parameters whose values
are to be determined. Notice that, as the unknown variables,
k and Z are usually not just two simple scalars but can
have a large number of components when complexities (such
as anisotropy and polarizations) are present in the effective
constitutional relations—Newton’s second law and Hooke’s
law [44]. However, the number of equations as expressed by
Eq. (4) must be consistent with the square of the number
of surface modes, thus, generally infinite. It follows that, to
guarantee the solution of Eq. (4), there must be truncation
in the number of surface modes to be considered so that it
matches the number of effective material parameters. Since we
would like to first account for the lower-frequency behaviors,
therefore, only the lowest multipoles will be considered. In
this manner, there is a natural upper frequency limit beyond
which our scheme becomes inaccurate.

It should be noted that, although the proposed scheme is for
systems with resonant inclusions, it can be equally effective
for nonresonant systems. The only difference between the two
cases lies in the fact that, for metamaterials, the eigenfunctions
of the system usually already have the monopole or dipole
symmetry, hence, only a few eigenfunctions are needed in the
Green’s function expansion, shown below. For the nonresonant
systems, more eigenfunctions may be needed in order to attain
the desired accuracy.

A. Expansion of the Green’s function by resonant
eigenfunctions

Metamaterial owes its novel features to the collective be-
haviors of arrays of local resonators. A suitable mathematical
description of such behaviors would be the Green’s function
expansion based on the eigenfunctions of its SU. Let {¢;}
be the set of normalized eigenstates of the SU under the
homogeneous Neumann boundary condition, i.e., under the
force-free condition. The Green’s function has an expansion
form as [29,45]

/
e Z ¢,(x )7 (x) )

a) —a)z
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where w denotes angular frequency. For each eigenstate ¢;(x),
an average mass density is defined as

Pi E/QW(X)/J(X)(P,-(X)dx, (6)

with p(x) being the local mass density. Here, w; is the
corresponding eigenfrequency. The summation is over all the
eigenstates.

It should be noted that, although the boundary condition for
¢; is assumed to be force free, the solution to those problems
where the boundary forces are nonzero can also be obtained
from the above Green’s function through integration with the
inhomogeneous term.

In accordance with its definition Eq. (3), the surface
responses of the SU can be expressed as

foq 0aENPi(EVE" §,0 &7 (E)pp(§)dE
Gop = Z 0Q p[ (a),2 _322) B .

(N

From Egs. (5) and (7), it is seen that each term in the
summation is only dominant in the frequency domain around
its eigenfrequency w;. Response of the SU is strongest at these
resonance frequencies, accompanied with ajump of 7r in phase.
Hence, instead of the infinite summations, for the purpose of
investigating a finite frequency range, only several eigenstates
in the relevant range are needed. The inclusion of additional
eigenmodes, beyond those in the relevant frequency range,
can improve the accuracy. We would like to note that, between
two adjacent eigenmodes, there is always an antiresonance at
which the SU is decoupled to external waves and G, = 0.

B. Homogenization of one-dimensional systems

Explicit relations between G and its effective parameters
(k,Z) on the right-hand side of Eq. (4) are given in this section
for 1D systems.

For scalar waves, a 1D SU with a length of 2a has only two
independent surface modes,

@0 = [8(x — a) + 8(x + a)]/+/2, (8a)
=[8(x — a) — 8(x + a)]/v/2, (8b)

where @o(¢)) is related to the monopolar (dipolar) scattering
and § is the Dirac § function. In the parity symmetric cases,
except for the two trivial ones Go; = G 9 = 0, the SU’s surface
responses are completely described by the following two
values as defined by Eq. (7):

¢ @l¢i(a) + ¢i(—a)]

Goo = Z e — o) (9a)
_ 5 @Igi@) — gi(—a)]

G = 2,: p (6012 — a)z) . (9b)

Hence, Eq. (4) implies only two equations.
For the homogenized material, the governing equation is

given by
3?7 )\ -
(ﬁ +k )d)(x) = (10a)
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with the accompanying boundary condition,

V(€)= wZ 0p(x)/d(kx) - fil = (10b)
for external surface traction @, where 71 denotes the outward
normal unit vector. The two effective parameters are given by
k=wy/p/C and Z = \/ﬁ , where p denotes the effective-
mass density and C denotes the effective modulus. There is
equality between the number of equations and the number of
unknown variables g and C in Eq. (4). This ensures that the
1D scalar wave system can be homogenized to all frequencies.

From the solution to Eq. (10), one can explicitly obtain the
following expressions (details can be found in Appendix A):
_cot(lfa)’ G = tan(lia). an
wZ wZ

00 =

By substituting Eq. (11) into the homogenization condition
Eq. (4), the effective wave vector k can be obtained as the
solution of the following transcendental equation:

Go/G1 = —cot’(ka). (12a)
Consequently, the effective impedance Z is given by
7 = —cot(ka)/(@G). (12b)

Based on these two expressions, the two material parameters
p and Z are determined by

p=Zklw, C=wZk. (12¢)
It should be noted that the solution of Eq. (12a) can yield
multiple solutions for k. The natural choice is for |Re(k)| to
be as small as possible. In a periodic system, this corresponds
with the first Brillouin zone.

From Eq. (12a), it can be deduced that, even when the
dissipation is absent in the system (both Goy and G;; are
real), the effective wave vector k may still have an imaginary
part, provided Ggyy/G1; > 0. This indicates the existence
of evanescent modes, i.e., band gaps. An extreme case is
in the limit when k — ioo that corresponds to Ggy = Gy;.
As demonstrated in Sec. IIIC, a small decay length can
ensure the superattenuation phenomena in the membrane-type
metamaterial in which sound waves with long wavelengths can
be completely blocked by a thin layer of decorated membrane.

Direction of the phase velocity for the propagating waves
relative to the direction of wave energy propagation, i.e., in the
pass bands with Gog/ G1; < 0, can be identified from Eq. (12a)
by adding a small dissipation factor into the system. Small
dissipation gives the effective wave vector a small positive
imaginary part, i.e., k +is/a and, thereby, leads to an extra
imaginary component on the right-hand side of Eq. (12a),

2ie cot(ka)/ sin’(ka). (13a)

The small dissipation also gives rise to a positive imaginary
component for each of the two heterogeneous surface re-
sponses: Gooi1y + iBgooc11) [29] with B being the infinitesimal
dissipation coefficient and

¥ i(a) £ ¢i(—
200ty = Z wd; (@)¢i(a) £ ¢i( Cl)].

i pi(wf — “)2)2
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It follows from the above that an extra imaginary part would
appear on the left-hand side of Eq. (12a) as

—iBGoo(g11 — go0G11/Gw)/G1;- (13b)

Since Ggo/ G11 < 0, the equality between the two imaginary
parts Egs. (13a) and (13b) means that k must be positive when
G < 0,1.e., the phase velocity is along the positive direction.
Otherwise, k is negative when Gy > 0. One can easily prove
that, under this situation, both effective-mass density p and
modulus C should be negative in their real parts (double
negativity).

C. Homogenization of isotropic two-dimensional systems

In 2D, the simplest isotropic SU is a circular disk. Its ath
surface mode for scalar waves is

@a(§) = 8(r — a)cos(ab)//anm, (14)

where § denotes the Dirac § function, r is the radial coordinate,
and & = (a,0) denotes the surface coordinate, where 6 is the
angle measured from some fixed axis. For simplicity, we will
consider only the lowest two surface modes—the monopolar
case with o« = 0 and the dipolar case with o = 1.

Under the above truncation, an isotropic SU has only two
nontrivial scalars for its surface responses as defined by Eq. (7),

2 2
a 1o ¢i(a.0nde’ [" ¢ (a,0)do
Goo =~ : 15
O Z pi(@? — ) (152)
a ~— i di(a,0)cos 0'd0’ [ ¢7(a,0)cos 6 db
Gu=2Y ' |
T pi(a)i —w )
(15b)

With the above constraint, Eq. (4) is noted to consist of only
two equations.
For homogenization, we consider an effective 2D isotropic
scalar wave equation,
( a2 10 1 32

A L A =2 P ) 16
or? r8r+ + >¢(r ) (162)

r? 962
accompanied by the boundary condition for a surface traction
Y along the surface normal 71 pointing outward,

U(a,0) = wZ 3¢(r,0)/d(kr) - itly—a- (16b)

The wave equation and its boundary condition are noted to
contain two effective parameters k = wy/p/C and Z = \/5C.

Analytical solutions for the two homogeneous surface
responses of interest can be solved from Eq. (16) as (see
Appendix B for details)

Goo = —Jo(ka)/[wZ ] (ka)],
_ kal(ka)

G = ——= = —. (17b)
wZlkaJy(ka) — Ji(ka)]

(17a)

Here, Jo1)(ka) is the Bessel function of the first kind with
the order O(1). Substitution of Eq. (17) into the homogenization
condition Eq. (4) gives a transcendental equation for the
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effective wave vector k as

Goo _ Joka)Jy(ka) — kaJg (ka)

— = = 18
G kaJ2(ka) (18a)
The effective impedance Z can be determined as
Z = —Jyka)/[@J (ka)G o] (18b)

Similar to the 1D case, the two effective material parameters
are given by

p=Zklw, C=wZk. (18¢c)
Also similar to the 1D case, the effective wave vector k
is uniquely defined in Eq. (18a) by choosing the minimum
|[Re(k)|. Evanescent waves arise if Ggo/G11 > 0.054 so that
k would have imaginary parts. For the propagating waves
(Goo/G11 < 0.054), the direction of the phase velocity is also
determined from Eq. (18a) by introducing a small dissipation
into the system, following the similar arguments at the end of
the previous section.

What one should be aware is that, owing to the truncation
performed, the validity of Eq. (18) is conditioned on the
monopole and dipole being the dominant modes. This is true
only up to the frequency regime when the higher-order modes
become significant. Within such a high-frequency range,
although Eq. (18) can still accurately reproduce the monopolar
and dipolar scattering behaviors, other components of the
wave motions, such as those associated with the higher-order
multipoles, can become much more dominant, and the validity
of the scheme breaks down. However, the precise demarcation
point is dependent on the precise microgeometry of the system
and can vary from case to case.

It should be noted that, in maintaining the truncation at
the dipole level, indirectly, we are also imposing some form
of long-wavelength approximation, albeit in a weaker form.
But such a weaker constraint has the advantage of giving the
scheme more accuracy at somewhat higher frequencies.

D. Results in the long-wavelength limit

The homogenization results are much simpler if the condi-
tion of long effective wavelength, i.e., ka <« 1,1is imposed. It
would lead to results that are coincident with those obtained
from the conventional method, such as the CPA [38,41].

By requiring ka < 1, a set of explicit expressions can be
obtained based on Eqs. (12) and (18),

_ 1

ki, = £—/—dG11/Goo, (19a)
a

Z1, = £/—dG11/ G /(@G 1), (19b)

pL = —d/(@*aGy), (19¢)

C_‘L:a/Gn. (19d)

Here, the plus sign is chosen for conventional pass bands,
the minus sign is chosen for negative refraction, and d = 1 for
ID and d = 2 for 2D. Notice that, in Eq. (19), the monopolar
G and dipolar G each separately determine the effective-
mass density g and effective modulus Cy, respectively. This
is noted to be not the case beyond the long-wavelength limit.
Solutions of Egs. (12) and (18) indicate that, in general, the
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FIG. 2. (a) Schematic of the layered lattice. The thick black lines
represent the stiff plates, whereas, the elastic layer is shaded in
gray. Wave propagation is perpendicular to the plates. (b) and (c)
Displacement fields for the first two nontrivial eigenstates of the
relevant SU.

(@) A
] -

effective parameters p and C are each related to both G
and G] 1-

III. THREE EXAMPLES

A. One-dimensional layered lattice

In this first example, we investigate a periodically laminated
structure in which a stiff plate of negligible thickness alternates
with an elastic layer, shown schematically in Fig. 2(a). This is
a 1D system for waves propagating normal to the layers, and in
this particular example, the displacement associated with the
propagating waves is parallel to the layers, i.e., shear waves are
considered. Since the system is 1D, the procedure introduced
in Sec. II B is applicable with the relevant p and C being the
mass density and shear modulus, respectively.

We chose the SU containing one layer of the elastic material
with two neighboring plates being its boundaries. The material
parameters of the elastic material are set to be unity, i.e., pg =
1, Co =1, and the thickness is set to be 1. By choosing the
areal mass density of the stiff plate as p4 = 1, the lowest
two eigenmodes of the SU (excluding the first trivial mode
of wp, = 0, corresponding to rigid translation) are shown in
Figs. 2(b) and 2(c). The first mode, at w;_ = 1.72, is dipolar in
character; the second eigenmode, at w,, = 4.06, is monopolar
in character in which the two stiff plates vibrate in unison. The
subscript + is used to denote the monopolar mode, and the
dipolar mode is denoted by —.

Based on these eigenmodes, the relevant parameters p;
[evaluated from Eq. (6)] w; and boundary displacements
¢i(Fa) are shown in Table I. The two heterogeneous surface
responses Gy and G, can be evaluated from Eq. (9). We
note that the rigid translation and the second mode at w;,
contribute only to Gy, whereas, the dipolar mode at w;_
contributes to G ;. An antiresonance can be found at @, = 7
at which Gy = 0. Here, we use the tilde symbol to denote
antiresonances. The four effective parameters k, Z, p, and
C in Eq. (12) can be calculated as functions of frequency
with the results shown in Fig. 3 (ten eigenmodes have been

TABLE 1. The values of w;, p;, and boundary displacement
¢;(Fa) for each of the first three eigenstates in the layered lattice.

i w; Pi ¢i(a) ¢i(—a)
0, 0 2.00 1.00 1.00
1_ 1.72 3.70 1.64 —1.64
2, 4.06 1.49 —0.70 —0.70
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Im(ka) arg(Z) Im(p)
5() /4 —-m/4 w/4 4
@A) T /

4 1 Juwa,
3 \ 1.
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Q 1 4
=
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0 /4 0 2
Re(ka)

abs(2)

FIG. 3. (Color online) The effective parameters of the layered
lattice. The black (red) curves represent the real (imaginary) parts of
the effective parameters in (a), (c), and (d). In (b), the black curve
denotes the amplitude, and the red curve denotes the phase. The band
gaps are shaded in gray, whereas, the blank region denotes the pass
bands. In the region [@, ,w;, |, the wave vector kis negative in value.
However, it is plotted in the positive domain because of the usual
convention.

employed here for comparison with simulations). Two band
gaps (gray bands) appear in the frequency region (w;_, &, ) and
at frequencies beyond », in which Re(C) < 0. A pass band
with negative refraction of index can be found at [, ,w», ] in
which both 5 and C are negative in their real parts.

To check the validity of the effective description, we
calculate the transmission through a length of this metamaterial
embedded in a background medium. We set the background
medium having material parameters pPpack = Chack = 1.
From the effective parameters presented in Fig. 3, solutions
of the transmission coefficient 7 are analytically available
from the transfer-matrix method [46]. The results for samples
comprising different numbers of units are depicted in Fig. 4 as
solid curves. They are seen to agree remarkably well with the
direct simulation results (open circles). In Fig. 4(c), it is seen
that the transmission intensity is dramatically reduced in the
band gaps (the gray bands) when there are ten units. In contrast,
when the sample comprises only a small number of units
[Fig. 4(a)], the wave transmission and reflection are mainly
determined by the impedance matching with the background
medium [Fig. 3(b)].

As our homogenization scheme only matches the motion
at the units’ boundaries, the differences between the effective
fields and the actual ones can be very pronounced inside the
unit. To demonstrate this, transmission through a five-layer
sample is calculated at three representative frequencies. The
results are shown in Fig. 5. Itis seen that, within the sample (the
gray regions), the effective fields (black curves) only coincide
with the actual motions (red curves) on the stiff plates (black
points), i.e., the units’ boundaries. The differences emerge
inside the SU and can become significant at higher frequencies
[see Fig. 5(c)]. Despite all these differences inside the SU,
excellent agreement is seen between the homogenization
prediction and the actual scattering fields in the background
medium as expected.
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FIG. 4. Intensity transmission coefficients 7 for the layered
lattice samples comprising (a) one layer, (b) five layers, and
(c) ten layers of the SU. The solid curves are the results predicted
from the effective parameters in Fig. 3, and the open circles are
the numerically simulated results. The band gaps are shaded in
gray, whereas, the pass bands are shown as blank regions. Excellent
agreement is seen between the homogenization predictions and the
numerical simulations.

B. Two-dimensional hexagonal lattice of concentric cylinders

In the second example, we check the accuracy of our
homogenization scheme for a 2D isotropic metamaterial. For
simplicity, we consider a hexagonal lattice [Fig. 6(a)] with
its high rotational symmetry [47]. The sample consists of
cylindrical inclusions arranged in a triangular lattice in the
x-y plane, embedded in a uniform elastic matrix of pg = 1 and
Cy = 1. Each inclusion comprises three concentric cylinders.
The elastic displacement of the wave is along the z axis.
By setting the lattice constant to be 1, the radii of the three
cylinders are r; = 0.15, r, = 0.35, and r3 = 0.4, and the side
length of the hexagonal unit cell is [ = 1/+/3.

FIG. 5. (Color online) (a)~(c) The displacement fields for the
layered lattice with five layers of the SU at three representative
frequencies. The sample is shaded in gray. The black curves denote the
effective fields obtained from homogenization prediction, whereas,
the red lines represent the fields obtained by simulations. The
black dots mark the displacements of the plates. It is seen that the
homogenization theory cannot reproduce the internal displacement
patterns of the metamaterial at higher frequencies, even though its
prediction of the scattered field remains accurate. (d) Schematic of
the incident, reflected, and transmitted waves for the system whose
displacement field patterns are shown in (a)—(c).
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FIG. 6. (Color online) The unit cell and eigenstates of the hexag-
onal lattice. (a) The unit cell of the hexagonal lattice. Heavy
components are colored gray, whereas, the light components are
left blank. The numberings are for ease of identifying the different
components within the unit cell. (b)—(d) The first three nontrivial
eigenstates for the SU of the hexagonal lattice. Here, the SU is taken
to be a circular region, whereas, the unit cell is hexagonal in shape.
Such a difference is immaterial at low frequencies but can become
noticeable at high frequencies, especially near the BZ boundaries.

For our purpose of homogenization, the SU is a cylinder
with the filling ratio v = 0.58, i.e., the same as that of the
hexagonal unit cell [as in Figs. 6(b)-6(d)]. All components
have same modulus (C; = C, = C3 = Cy = 1) but differ in
their mass density: The central component is the heaviest with
p1 = 400, surrounded by a layer of material with p, = 1. The
outermost layer of the inclusion has a mass density of p3 =
100. By using the COMSOL MULTIPHYSICS FEM package, the
lowest three nontrivial eigenstates of the SU are calculated as
shown in Figs. 6(b)-6(d) (excluding the first rigid translation
mode at wp, = 0) with their frequencies at w;_ = 0.68, w,, =
0.77, and w3 = 1.04.

Whereas, the symmetry of the second eigenmode is clearly
monopolar and thereby only contributes to Gy, the first and
third modes are dipolar in character and contribute to G ;. The
surface responses can be calculated from Eq. (15) in which
the values of the relevant parameters for each eigenmode
are shown in Table II (the bra-ket notation here stands for
the surface integral over the SU’s surface). An antiresonance
with Gog = 0 can be found at @, = 0.38, whereas, another
antiresonance is located at @, = 0.82 with G;; = 0.

Solving Eq. (18) gives the values of the four effective
parameters k, Z, 5, and C at each frequency as shown in Fig. 7.
We have used 25 eigenmodes for the relevant calculations.
Three band gaps (gray bands) were found below w = 1.1.
In the first band gap (&1, ,w;_), the effective-mass density is
negative in its real part; for the other two band gaps located at
(w5, ,@, ) and beyond w3 _, the real part of effective modulus
C is negative. A narrow negative index of the refraction pass
band exists in the region [w_,w;, |. The corresponding results
from the CPA approach are also plotted with dashed lines for
comparison. As seen in Fig. 7, the agreement is excellent at

TABLE II. The values of w;, p;, and boundary displacement
(@i l@oy) for each of the first four eigenstates in the hexagonal lattice.

i w; i (dilgpo) (&iler)
0, 0 47.0 1.95 0
1_ 0.68 18.4 0 2.41
2, 0.77 30.0 2.32 0
3_ 1.04 12.7 0 0.45
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FIG. 7. (Color online) The effective parameters of the hexagonal
lattice as deduced from the homogenization theory. The black (red)
curves represent real (imaginary) parts of the effective parameters in
(a), (c), and (d). In (b), the black curve denotes the amplitude, and the
red curve denotes the phase of impedance. The band gaps are shaded
in gray, whereas, the pass bands are left blank. For comparison, the
results obtained from the CPA are plotted as dashed lines. It is seen
that, at the limit of ka <« 1, the agreement with our scheme is very
good. At higher frequencies, the present homogenization scheme is
capable of reproducing the scattered fields rather accurately. It is seen
that the CPA has failed to predict the imaginary parts in (c) and (d)
as well as the resonant feature for the effective modulus at @, .

the low-frequency regime, but the CPA differs significantly
from our scheme when frequencies are away from the ka < 1
limit. In particular, all the imaginary parts of the two effective
material parameters g and C [Figs. 7(c) and 7(d)] as well as the
resonant feature of C at @, [Fig. 7(d)] are missed by the CPA.

In order to verify our homogenization scheme, we compare
the wave fields of a finite metamaterial sample with a similarly
shaped homogeneous body having the relevant effective
material parameters. As shown in Fig. 8(d), a sample consisting
of 21 unit cells (the hexagons) is placed near a point source (red
disk) in a medium with pp,cxk = Chack = 1. In Figs. 8(a)-8(c),
we present the wave field comparisons under three representa-
tive frequencies. In each of these field mappings, in the lower
half space is plotted the field arising from the heterogeneous
metamaterial units, whereas, the predictions based on the
homogenized units are plotted in the upper half. Both are
calculated with the COMSOL MULTIPHYSICS FEM package.
Clearly, the agreement is excellent in the external background
medium as well as at the internal boundaries between adjacent
unit cells (white lines). Our effective descriptions only fail
in the internal regions of unit cells, especially at the central
heavy cylinders. This comparison points out the essential
difference between our scheme and the CPA. In the CPA,
the intent is to agree everywhere; however, here, we focus
only on the scattered field that is the basis of metamaterial’s
functionalities. We would like to note that, in Fig. 8(c),
w = 1.022 is very close to the Brillouin-zone boundary and is
close to the third eigenmode frequency w;_ = 1.04, hence,
resonant scattering features can be seen clearly. Here, the
relevant wavelengths in the matrix and in the effective medium
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FIG. 8. (Color online) (a)—(c) The scattered fields for the hexag-
onal lattice with 21 units at three representative frequencies. The
upper semicircular regions are the effective fields predicted from our
homogenization scheme, and the lower semicircular regions are the
results of numerically simulating the actual sample with all of its
structural complexities. It is seen that, except for the inner regions of
the metamaterial, the agreement is exceptionally good. (d) Schematic
illustrating the relevant scattering process whose wave fields are
shown in (a)—(c).

are only 6.15 and 1.96 times the lattice constant, respectively.
Owing to the truncation performed, this effective description
is expected to be inaccurate when the frequency reaches the
first quadrupolar eigenmode frequency of the SU w = 1.21.

The anisotropy of the hexagonal lattice is expected to
be important at the boundaries of the Brillouin zone. At
these frequencies, the higher-order surface responses from the
lattice’s geometry are expected to play a role. This is clear in
the band-structure comparison between the original heteroge-
neous hexagonal unit cell (open circles) and a homogenized
one (solid lines) shown in Fig. 9. The former is based on
the MST technique [48]. Besides the perfect agreement in
most of the regions (except the “deaf” mode around w = 0.8
that cannot be excited by propagating waves), discrepancies
between the results of different approaches can be seen around
the M and K points and can become significant at the
K -point Dirac cone at w = 0.75 (pointed by the arrow). This
is a typical lattice scattering mode containing a quadrupole
symmetric mode as shown in the right column of Fig. 9. In
order to match such a lattice effect, anisotropic constitutive
relations, containing more effective parameters, would have to
be introduced. However, new effective parameters may bring
new mechanisms into the original effective system. Although
this can be interesting, further studies would be needed. These
are left as a future pursuit.

C. Decorated-membrane system

The membrane-type metamaterial [21] is the third example
for illustrating our scheme. The experimental sample com-
prises a rigid skeleton decorated by a planar array of designed
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FIG. 9. (Color online) The band structures of the hexagonal lat-
tice. The solid lines are predicted from our homogenization scheme,
whereas, the open circles are the results of numerical simulations on
the original heterogeneous composite. It is seen that the prediction
of the homogenization scheme misses the band around w = 0.8. This
is the deaf mode that cannot be excited by propagating waves. The
wave mode at the Dirac cone (marked by the arrow) is shown in the
right panel.

membranes. In Fig. 10(a), we show a unit in the planar array,
consisting of a circular elastic membrane (black line) with a
radius of R = 14 mm and a thickness of 0.2 mm, decorated
by a circular rigid platelet with a radius of 4.6 mm and a
mass of 237 mg (delineated by the central flat rectangle) at
the center. The membrane is fixed to an aluminum skeleton
(indicated by two gray rectangles on the sides) with a radial
tensile stress of 4.9 x 10° Pa. The material parameters of the
rubber membrane can be found in Ref. [49]. The unit cells
are isolated from each other by the much higher rigidity of the
aluminum grids as compared to the membranes. The amplitude
and phase of the transmission and reflection were measured in a
modified impedance tube apparatus, comprising two Briiel and
Kjer-type-4206 impedance tubes with the sample sandwiched
in between [50].

We limit the relevant acoustic angular frequency w by
the condition 2w vy/w = A > 2R, where vy = 343m/s is the
speed of sound in air. Thus, w < 7.70 x 10* Hz under this
constraint. An immediate consequence is that, as far as the
radiation modes are concerned, i.e., far-field transmission
and reflection, the system can be accurately regarded as 1D
and the conclusions in Sec. II B are applicable. This can be
seen as the following. The normal displacement W of the

(a)g,; (i))/:\E(C)
I 1 =

w1, = 1453 He| [w2, = 6614 Hz

FIG. 10. (a) Schematic illustrating the decorated-membrane sys-
tem. The black line represents the membrane, whereas, the central flat
rectangle denotes the attached rigid platelet. The two gray rectangles
on the sides denote the aluminum frame. (b) and (c) The first and
second eigenmodes of the decorated membrane. Circular symmetry
is assumed.
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membrane can be decomposed into W = (W) + §W, where
(W) represents the surface-averaged normal displacement
of the membrane and §W denotes the fine details of the
membrane motion. In the air layer next to the membrane
surface, the acoustic wave must satisfy the dispersion relation
ki + ki = (27 /A)?, where ky(1) represents the wave-vector
component parallel (perpendicular) to the membrane surface.
Because of the displacement continuity condition, the 2D {k;;}
set may be regarded as the Fourier-transform components
of W. For the §W component of the motion, we must have
ky = 27 /2R > 2 /), hence, the relevant kf_ < 0. That is,
the displacement component § W couples only to evanescent
nonradiating modes. The displacement component (W), on the
other hand, represents the pistonlike motion of the membrane
and has k; components peaked at k; = 0; hence, it is coupled
to the radiation modes.

Figures 10(b) and 10(c) present the two eigenstates below
the angular frequency of 7500 Hz that have the circular
symmetry. For the first eigenmode at w;, = 1453 Hz, the
membrane and the rigid platelet vibrate in unison, whereas,
in the second mode at w,, = 6614 Hz, the membrane vibrates
with the platelet remaining almost motionless. It is obvious that
both eigenstates are monopolar and all the dipolar eigenstates
are in the very high-frequency regime, owing to the small
thickness of the membrane. One consequence is that the
long-wavelength limit condition discussed in Sec. II D is now
valid in almost the entire frequency range of interest (except
for the very narrow regions around the antiresonances).

The effective bulk modulus C can be directly evaluated as
(C) = 2.68 x 10° Pa. Based on the two eigenstates shown in
Fig. 10, the other three effective parameters can be calculated
from Eq. (19) in which

G =a/{C),
2

(20a)

_ 2Wia))?
Gm=2 (i) (0 — ? —ifi)”

i=1

(20b)

Here, a = 0.1 mm is the half thickness of the membrane,
and (p;) denotes the surface average of the p; in Eq. (6). Dissi-
pative effects are considered in order to make comparisons
with the experiments. Because the membrane’s dissipative
property is usually not available a priori, the values of the dis-
sipation coefficients §;’s are extracted from the experimentally
measured membrane displacement profile by using the method
introduced in Ref. [29]. All the relevant parameters in Eq. (20)
are available in Table III. The three effective parameters and
their variations as functions of frequency are shown in Fig. 11.
Five eigenstates were used in their evaluations.

It should be noted that the effective-mass density p diverges
to negative infinite at the static limit [Fig. 11(c)]. This can

TABLE III. The values of w;, p;, surface-averaged boundary
displacement (W;(a)), and dissipation coefficient B; for each of the
first two eigenstates in the decorated-membrane structure.

i w; (Hz) (01) (kg/m’) (Wi(a)) i (Hz)
1y 1453.1 7796 1.388 3.13
2 6614.4 1379 1.424 30.02
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FIG. 11. (Color online) The effective parameters of the

decorated-membrane structure. (a) The effective wave vector,
(b) the effective impedance Z, and (c) the effective mass density
p. The units for the material parameters are normalized to those
of rubber: Z, =19 x 10°Nsm™> and p, = 1.3 x 10°kg/m’,
respectively. The black (red) curves stand for real (imaginary) parts
in (a) and (c). In (b), the black curve denotes the amplitude, whereas,
the red curve denotes the phase. The band gaps are shaded in gray,
whereas, the pass bands are left blank.

be understood as follows. At frequencies lower than the
eigenfrequency, the structure response is always positive (in
phase). As the rigid translational eigenmode at zero frequency
makes no contribution to the membrane’s response, the static
limit behavior is dominated by the first eigenmode at w;, . The
static surface-averaged displacement (W (0)) is thereby finite
and in the same direction as the external forces. According
to Newton’s second law, the membrane would appear to
have a divergent negative effective-mass density due to its
infinitesimal but negative acceleration (W(0)) = —w?(W(0))
asw — 0.

Within the frequency regime of interest, the two surface
responses are usually different in their magnitudes, i.e., G|} <
Go, except within the very narrow frequency range around
the antiresonance @;, = 2830Hz. At the antiresonance, the
monopolar G approaches zero and becomes comparable with
G11. According to the discussion at the end of Sec. IIB, a
divergent imaginary effective wave vector can be expected
when Goy = G here [as shown in Fig. 11(a)]. This indicates
an evanescent effective wave with infinitesimal decay distance
in the membrane region. A very sharp dip in the transmission
spectrum results as a consequence (Fig. 12). This is, indeed,
observed.

The transmission and reflection for an airborne sound have
been calculated (solid curves) from the effective parameters
(shown in Fig. 11) based on the transfer-matrix method.
The comparisons with the experimental measurements (open
circles) are shown in Fig. 12 where the area of one unit cell
is 50.3 cm?. Excellent agreement confirms the validity of
our homogenization scheme. Notice a transmission dip can
be found close to the antiresonance frequency @, in which
Im(k) = oo if dissipation is ignored.
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FIG. 12. (a) and (b) The reflection coefficient R and (c) and (d)
the transmission coefficient 7' of the decorated-membrane structure
for the airborne sound. The open circles are the experimental results
obtained using the impedance tube measurements, whereas, the
solid curves are calculated from the effective parameters shown in
Fig. 11. The band gaps are shaded in gray, and the pass bands are
without shading. Notice that the area of one unit cell is 50.3 cm?.
Notice that the frequency here is the angular frequency w = 2w x f.
Excellent agreement is seen between the homogenization theory and
the experimental results.

IV. CONCLUDING REMARKS

We have developed a homogenization scheme for acoustic
metamaterials based on reproducing the resonant scatterings
of metamaterials rather than on minimizing scatterings. In
our formalism, a finite volume of homogenized medium is
described by the effective-mass density and modulus as func-
tions of frequencies p = p(w) and C = C(w). This scheme
provides an effective description for the macro/mesoscopic
behaviors of the heterogeneous structures by exactly matching
the motions at the boundaries between neighboring unit cells
while ignoring the microscopic details inside. Employing
the eigenmode’s expansion for the SU, evaluation of its
surface motions is facilitated by the resonance features of the
metamaterials. This scheme demonstrates a broader validity
compared to the traditional approaches. We have illustrated
our scheme through its application to three examples. It is
shown that the relevant effective description provided by this
homogenization scheme is accurate for all frequencies for
the 1D metamaterials and has excellent accuracy in the 2D
case—easily extending to the regime near the Brillouin-zone
boundaries. Application to the membrane-type metamaterials
also has yielded excellent agreement.

Although our homogenization is based on matching the
lowest two orders of resonant scatterings, applying it to the
nonresonant metamaterials [18,30] is equally straightforward,
although the number of eigenmodes to be included might be
large to attain the same accuracy.

Due to the similarity between the acoustic and the electro-
magnetic waves, one can easily apply the conclusions of this
paper to EM problems through the simple translation,

displacement - E,, p —¢, and C — ;fl,

PHYSICAL REVIEW B 89, 064309 (2014)

where E, is the polarized electric field perpendicular to the
plane under considerations, ¢ is the dielectric permittivity, and
W is the magnetic permeability.
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APPENDIX A: ONE-DIMENSIONAL SURFACE
RESPONSES FOR A HOMOGENEOUS SAMPLE

Consider a piece of homogeneous 1D material with length
2a, characterized by parameters k and Z. The governing
equations for the scalar wave ¢(x) are given by

2 .\
— + k& )p(x) =0, (Ala)
9x2
accompanied by the boundary condition,
V() = wZ 9¢(x)/d(kx) - il . (Alb)

Here, 7 is the surface normal unit vector pointing outward, and
k and Z are the relevant wave vector and impedance.

To calculate its monopolar surface response parameter Gy,
we introduce a set of monopolar surface tractions at its two
ends,

V(@) i =—y(—a)- i =1/V2. (A2)
The consequent wave field inside is then
- cos(kx)
P(x) = — (A3)

V2wZ sin(ka)
In accordance with its definition Eq. (3), the surface response
Gy is given by

cot(ka)

Goo = [(a) + p(—a))/V2 = ——= (A4)
w”Z

Similarly, for the dipolar surface responses G;; with the
surface tractions,

Vi@ i =v(=a)-i =1/V2, (AS)
the field is given by
- sin(kx)
P(x) = m, (A6)
and the surface response G, is, therefore, G| =

[p(a) — d(—a)]/~/2 = tan(ka)/wZ.

APPENDIX B: TWO-DIMENSIONAL SURFACE
RESPONSES FOR A HOMOGENEOUS SAMPLE

The 2D scalar wave equation for ¢ in an isotropic
homogeneous material is given by
7 1o 139 )\
ST T 2 0) =0, Bl
<8r2+r8r+r2892+ >¢(r ) (B)
where r and 6 are the radial and angular coordinates,
respectively, and k is the relevant wave vector. If the geometry
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of the domain under consideration is circular, the relevant
surface normal vector 71 is always along the radial direction,
and the boundary condition (16b) is given by

¥ (a,0) = wZ 3¢(r,0)/(kr)|;=a, (B2)

with a being the radius of the domain and Z being the relevant
impedance. B
The general solution ¢(r,0) for Eq. (B1) may be written as

$(r0) =Y Ay Ju(kr)cos(nd), (B3a)

with the relevant radial traction v,(r,0) given by

¥, (n0) = wZ 06(r,0)/3(kr)
Z T —_
= 223 Al ) = Jy (Rl os(ne),

(B3b)

Under a normal surface traction 1/7(a,0) = cos(af) - i on the
circular boundary, the continuity of forces v, (a,0) = cos(af)
at the boundary leads to the solution for coefficient A, in the

PHYSICAL REVIEW B 89, 064309 (2014)

general solution as
An = 28,”1/{(1)2[.]0(,1(];61) - JotJrl(Ea)]}- (B4)

Substitution of Eq. (B4) into Eq. (B3) gives the resultant wave
fields inside as

(r,0) = Ay Jy(kr)cos(af). (BS)

In accordance with its definition Eq. (3), the relevant nontrivial
surface responses G, are then

1 (% -
Goo = —/ cos(abB)p(a,0)do
T Jo

= A, Ja(lza)
2J,(k
- Julka) (B6)
wZ[Jo_1(ka) — Joyi(ka)]
Specifically, for Gog and G1; we have
Goo = —Jotka)/[wZ Ji(ka)], (B7a)
- kaJ,(k
G = a/ika) (B7b)

wZlkaJo(ka) — Jy(ka)l’
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