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Femtosecond laser-induced optical anisotropy in a two-dimensional lattice of magnetic dots

I. Razdolski,1 V. L. Krutyanskiy,2 T. V. Murzina,2 Th. Rasing,1 and A. V. Kimel1
1Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

2Department of Physics, Moscow State University, 119991 Moscow, Russia
(Received 20 November 2013; revised manuscript received 30 January 2014; published 21 February 2014)

Using pump-probe optical polarimetry we demonstrate that femtosecond laser excitation of a 2D regular
lattice of magnetic nanodots effectively changes the optical anisotropy of the array. Study of the dynamics
of the femtosecond laser-induced anisotropy reveals four main mechanisms occurring in the electronic, spin,
and lattice subsystems. Below 1 ps, a strong Kerr-like nonlinearity causes linear birefringence, with its axis
directed along the electric field of the linearly polarized femtosecond laser pump pulse. In addition, a long-living
linear birefringence is also induced due to slowly relaxing excitations. Also below 1 ps, ultrafast laser-induced
demagnetization of Co leads to a partial breakdown of the circular birefringence of the magnetic nanodots. On
the timescale up to 300 ps, optically triggered acoustic modes of the dots drive oscillations of the linear optical
birefringence. During this process, the oscillations damp while transferring their energy into acoustic modes of
the substrate. On the nanosecond timescale, the signal is dominated by acoustic oscillations at the surface of the
substrate.
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I. INTRODUCTION

The optical properties of regular arrays of nanosized objects
demonstrate a large variety of interesting effects, involving
entangled underlying physical processes [1–5]. There are
a number of papers in this field tackling the problems of
magneto-optics [6–8], opto-acoustics [9,10], and plasmonics
[11–13], often extending the experimental approaches into the
nonlinear domain [14] or employing time-resolved techniques
[15–19].

A conventional approach to studying arrays of nanoobjects
deals with optical reflectivity [20,21] or nonlinear-optical
conversion [22–24], allowing us to find such interesting
phenomena as coherent control of optical transmission [25],
enhancement of the up-conversion luminescence intensity
[26], and periodicity-induced pulse splitting [27]. On the other
hand, much less attention is drawn towards polarization effects
which are capable of revealing the dynamics of the optical
anisotropy induced by a fs laser pulse.

In this paper, we rigorously study polarization effects in
a rectangular array of Co nanodots by means of a pump-
probe technique. Our analysis of the transient dynamics
reveals several mechanisms responsible for the polarization
rotation of the probe beam. At subpicosecond delay times
a Kerr-type nonlinearity, together with a rapid laser-induced
demagnetization, plays a dominant role in the polarization
rotation. Later on, the excess heat in the nanodots triggers
their acoustic eigenmodes, which decay while the heat is
transferred into the substrate. On an even longer timescale,
phononic eigenmodes of the periodic array of the dots are
excited, modulating the polarization rotation of the probe beam
with frequencies in the GHz range.

The paper is organized as follows. After briefly mentioning
experimental methods and setup (Sec. II), we discuss a typical
dynamical curve of polarization rotation of the probe beam
and break it into three main time regions. We examine each of
this regions closely in Section III, where we also discuss the
main features of the effects observed on their various relevant
timescales and analyze our experimental findings using a

phenomenological description of the dynamical birefringence
observed at longer time delays. The Appendix section con-
cludes the paper, providing some mathematical steps necessary
to back up our phenomenology.

II. SAMPLES AND EXPERIMENTAL PROCEDURE

Two-dimensional square lattices of 30-nm-thick cobalt dots
were fabricated by electron beam lithography and lift-off
technique on a glass plate. The experimental procedure is
described in more detail elsewhere [28]. The period a of the
lattice was 1.4 μm and the typical size of the dots d was about
0.6 μm.

The time-resolved experiments were performed employing
a pump-probe technique where the powerful pump pulses
(wavelength 800 nm, pulse duration 80 fs, fluence 2.6 ±
0.3 mJ/cm2) excited the sample, and about 100 times less
intense probe pulses at 500 nm were used to study polarization
effects in the sample at a certain time delay. The angles of
incidence were 0◦ for the pump and 15◦ for the probe beam.
The pump and probe beams were focused at the surface of the
sample into overlapping spots of approximately 60 μm and
30 μm in diameter, respectively. An external magnetic field
of about 2 kOe was applied in the longitudinal Kerr geometry
(see Fig. 1), enough to saturate the sample.

In order to study pump-induced optical anisotropy in the
magnetic lattice, we have measured the polarization rotation
of the probe beam transmitted or reflected from the sample.
Consider an isotropic medium, the optical properties of which
are described by the dielectric permittivity tensor ε̂. For such
a medium one can always choose the coordinate system such
that the dielectric permittivity tensor ε̂ acquires a diagonal
form. For the XOY plane, which coincides with the surface of
the sample (see Fig. 1), one can write (where εxx = εyy):

ε̂ =
(

εxx 0

0 εxx

)
. (1)
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FIG. 1. (Color online) Schematic of the pump-probe experiment.
The (XOY) plane corresponds to the surface of the sample, a dc

magnetic field is applied in the longitudinal Kerr geometry along
the (OX) axis; θ is the angle between the polarization plane of the
incident probe beam and the (OY) axis, and ψ is the angle between
the polarization planes of the incident and transmitted (reflected)
probe beams. Co nanodots of a diameter d in the array are spatially
separated by a lattice period a. An acoustic wave with the wave
vector �kac propagates at an angle α to the (OX) axis. On the right
hand side the polarization difference angle δ between the pump and
probe beams is shown.

Assume the pump excitation results in a photoinduced
change of the optical properties leading to the anisotropy. This
can happen in two ways, namely, the off-diagonal components
εxy = εyx can arise, or, alternatively, the degeneracy between
OX and OY directions can be lifted, so that εxx �= εyy . If
the probe beam at a small angle of incidence is polarized at an
arbitrary angle θ with respect to the main axes (see Fig. 1), such
an anisotropy will result in polarization rotation of the reflected
or transmitted beam. The general equation (see Appendix) is
bulky and can be obtained by means of analyzing the boundary
conditions for the electric field and magnetic induction at the
interface of the two media. After the linearization, in the most
important particular cases of θ = 0◦,45◦,90◦, one gets for the
polarization rotation ψ :

ψ(θ = 0◦) ≈ εxy

εxx

√
εxx

(εxx − 1)

ψ(θ = 45◦) ≈ εxx − εyy

εxx

√
εxx

2(εxx − 1)
(2)

ψ(θ = 90◦) ≈ −εxy

εxx

√
εxx

(εxx − 1)
.

Note that as soon as the aforementioned anisotropy is induced,
even a subsequent isotropic excitation modifying εxx and εyy

in the same way can lead to a rotation of the polarization plane.
The polarization plane rotation of the probe beam, in

reflection or in transmission, was measured by means of a
compensation scheme based on a split-diode detector and a
Wollastone prism, employing a standard modulation technique
with a mechanically chopped pump beam and a lock-in
amplifier. We were unable to see any systematic difference
between the reflection and transmission geometries, other than
the signal-to-noise ratio. The latter was noticeably better for

the measurements in reflection, which can be understood from
the following considerations. Most of the effects discussed
below are related to the top surface of the sample, be it the Co
dots or the surface of the glass substrate. When measuring in
reflection, the signal is collected from the thin top interface of
the sample, thus the relative weight of the interface effects is
increased. In contrast, for the transmission geometry, the whole
bulk contributes to the registered signal, which can smear out
surface effects if they are relatively small.

III. EXPERIMENTAL RESULTS

A typical result for the polarization rotation ψ of the
probe beam is presented in Fig. 2 for the polarizations of
both pump and probe beams shown in the inset. In the short
time range (ST), the polarization rotation demonstrates an
ultrafast increase and a partial recovery. The increase and the
recovery are followed by a strongly damped oscillation in the
middle time range (MT). Later on another oscillatory mode
emerges, exhibiting a different frequency from the previous
one, which defines the long time range (LT). The time axis is
broken into three distinctly outlined regions shown by colored
backgrounds. We shall refer to these regions as the short
(delays τ < few ps), the middle (delays of a few hundreds
of ps), and the long (τ > 500–600 ps) time ranges. We shall
consequently discuss all these ranges in more details in the
following subsections.

A. Short time range

The probe polarization dynamics on the ultrafast timescale
(below 20 ps) is presented in Fig. 3(a). The rotation ψ

exhibits a quick increase around zero time delay followed
by a slower relaxation process. Moreover, both seem to
be dependent on the polarizations of the beams. The data
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FIG. 2. (Color online) The typical dynamics of the polarization
rotation of the probe beam as a function of the time delay between
the pump and probe pulses. Colored background outlines three main
regions in the plot, short term (ST), middle term (MT), and long term
(LT) ranges. The inset shows the polarizations of both pump and
probe beams with respect to the axes of the nanodots array.
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FIG. 3. (Color online) (a) Dynamics of the rotation of the po-
larization plane of the reflected radiation measured for different
angles between the polarization planes of the probe and pump beams
δ for delay times up to 20 ps. (b) The ultrafast pump-induced
rotation of the polarization plane of the probe beam as a function
of the angle δ between polarizations of the incident pump and probe
beams. Different input probe polarizations are shown in open squares
(θ = 45◦), diamonds (θ = 90◦), circles and triangles (θ = 0◦). (c)
The ultrafast pump-induced rotation of the polarization plane of the
probe beam as a function of the pump laser fluence. The solid line is
the linear fit to the data.

plotted here correspond to the p-polarized input probe beam,
whereas the polarization of the pump beam was varied. Similar
measurements performed for various polarizations of both
beams have shown that the important parameter here is the
angle δ between the polarizations of the two beams. Figure 3(b)
illustrates the 180◦ periodicity in the rotation ψ as a function
of δ. Here the peak value of ψ is plotted for a few different
input probe polarizations.

It can be seen that ψ vanishes for parallel or perpendicular
orientations of the pump and probe polarizations (δ = 0◦, 90◦,
respectively). At the same time, the largest rotation on the short
timescale roughly corresponds to the cases when δ = +45◦
or δ = −45◦. This observation can be explained in terms of
the nonlinear-optical Kerr effect, where the pump radiation
induces linear birefringence with the optical axis in the direc-
tion of the pump polarization. However, when considering the
ultrafast Kerr nonlinearity, one should remember it is often
referred to as instantaneous as it gives rise to a polarization
rotation of the probe beam until the optical coherence is lost,
i.e., during the excitation of the electrons. For instance, typical
lifetimes for the transient nonlinear Kerr effect in metallic
films and particles was found to lie in the subpicosecond range
[29–32]. In our case, the effect can be separated into two
contributions, one of them being ultrafast, with a characteristic
time of less than a picosecond, and the other living much
longer [Fig. 3(a)]. It seems natural to attribute the ultrafast
part of the signal to the nonlinear-optical Kerr effect in the

Co nanodots, as free electrons there can exhibit very short
response times, down to a few femtoseconds. It is generally
believed that in transition metals, both interband and intraband
transitions contribute to the ultrafast Kerr effect [32,33]. On
this timescale the nanodots act as independent light absorbers.

For an isotropic medium, as discussed in Ref. [33], a
Kerr-induced polarization rotation of a linearly polarized
probe beam in the case of a linearly polarized pump beam is
given by

ψ = −32π2Ipump

c|1 + n|2 χ∗ × sin 2δ, (3)

where Ipump is the intensity of the pump beam, c is the
speed of light, n is the complex refractive index of the
material, χ∗ is the effective third-order susceptibility, χ∗ =
Re(χxxyy + χyxxy)/n(1 − n2), and δ is the angle between
polarizations of the pump and probe beams. Estimations of
the effective susceptibility χ (3) neglecting the ellipticity of the
probe beam give a value of the order of 10−6 cm3 erg−1 rad−1.
The measured dependence of the probe polarization rotation
on the pump intensity given by Eq. (3) is shown in Fig. 3(c),
where a clear linear trend can be seen.

Concerning the long-living tail of the signal, it is likely to
have a different physical origin than the ultrafast contribution
[32,33], but instead has to do with the dielectric substrate.
For instance, dislocations and defects in the substrate can
be responsible for light-induced electric dipoles exhibiting
a much longer lifetime than those in metals and thus can
give rise to the observed effects. These dipoles sustain the
initial anisotropy of the photoexcitation, thus allowing for the
polarization rotation. For instance, long-living pump-induced
dipole moments excited via the electrostrictive mechanism
[34,35] were found to govern the transient nonlinear-optical
response in various dielectric media on the sub- and nanosec-
ond timescale [36–38]. This suggestion is further confirmed
by the fact that for some measurements the initial offset of the
rotation ψ remains for delay times of 1 ns and even longer, see
for instance Fig. 5.

B. Middle time range

1. Nonmagnetic effects

Under the middle time range we shall understand relatively
large time delays between 20 and 400 ps where no coherent
ultrafast optical effects can be expected. In Fig. 4(a) the
dynamics of the rotation ψ is shown for the case when the
incident probe radiation was polarized at 45◦ with respect to
the main axes of the nanodots array. Similar measurements
were performed for other polarizations of both pump and
probe beams. For all the cases, about two oscillation periods
with slightly varying amplitudes are accompanied by a strong
damping, indicating a poor quality factor of the oscillator.

It was found that although the amplitude of the oscillations
varies with polarization in a way similar to that observed on
the short timescale, both the phase and the frequency do not
depend on the angle δ between the polarizations of the pump
and probe beams. Note that the polarization of the probe was
kept fixed at θ = 45◦. Experimental curves were fitted using a
function of exponentially decaying oscillations superimposed
on a steplike ultrafast increase with an exponential relaxation.
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FIG. 4. (Color online) (a) Dynamics of the rotation of the po-
larization plane of the reflected probe radiation for different angles
between the polarization planes of the probe and pump beams for the
delay times up to 300 ps. Dashed lines are the exponentially decaying
contribution to the transient birefringence. (b)–(d) Excitation of the
eigenmodes of Co nanodots: (b) optical pulse hits the nanodots
array and is absorbed in the metal; (c) ultrafast heating leads to
nonequilibrium expansion of the dots. After being driven out of
equilibrium, the dots start to oscillate in-plane; (d) the excess heat
sinks down to the substrate where the acoustic phonons are excited.

This exponentially decaying contribution to the transient
birefringence is shown in Fig. 4 by dashed lines. The average
period Tm of the oscillations was found to be (127 ± 19)
ps, corresponding to the frequency of 7.9 GHz, whereas the
lifetime of the oscillations was (139 ± 42) ps.

In order to explain the observed dynamics of the optical
signal, the following mechanism can be suggested [see
Figs. 4(b)–4(d)]. Since the substrate is transparent for the
800 nm pump radiation, the energy is absorbed only in the
Co nanodots [Fig. 4(b)]. This will lead to an instantaneous
heating of the electrons to very high temperatures that will
subsequently equilibrate with the Co lattice on the ps timescale.
Because the fused quartz substrate forms a thermal bottleneck,
the Co dots will be heated far above room temperature and the
energy will be transferred into acoustic eigenmodes of the dots
[see Fig. 4(c)]. A quantitative analysis, assuming the speed of
sound in Co c = λ/Tm ≈ 4.7 km/s, yields the wavelength of
the excited phonons of 0.6 μm, which perfectly matches the
diameter of the dots [39].

This excitation corresponds to the lowest eigenmode, where
the Co dots experience homogeneous in-plane expansion and
contraction. In other words, a phonon with a k number equal
to the inverse size of the dot is excited due to the heat-driven

expansion. The quantitative estimations based on the average
laser fluence and specific heat capacity of Co yield the
temperature increase of about 210 K, thus not allowing the dots
to overcome their Curie temperature. This heating corresponds
to the lateral thermal expansion of the dots of about 1.5 nm, or
0.25% of their size.

After the dots find themselves out of equilibrium [Fig. 4(c)],
both coherent (eigenmode) and incoherent (thermal) phonons
are excited, but only the former change the topology of
the structure and thus the effective dielectric permittivity.
As such, the optical response from the birefringent medium
which stems from the slowly decaying long-living tail of the
optically-induced anisotropy (see Sec. III A) turns out to be
modulated with the frequency of the acoustic eigenmode of
the Co dots. Note that the eigenmode itself does not induce
any anisotropy and is not capable of rotating the polarization
plane of the probe beam. Instead, it periodically modulates the
effective εxx , thus inducing oscillations of the magnitude of
the linear birefringence which already exists in the sample. No
oscillations have been detected in the reflectivity signal within
the experimental noise level. Instead, the transient reflectivity
demonstrated a fast decrease of the 10−4 order of magnitude
around the zero delay, followed by the subsequent slow
recovery on the timescale of a few hundred picoseconds. This
behavior is probably related to the electrostrictive excitation
of the long-living dipoles in the substrate, as discussed in
Sec. III A.

When the eigenmode decays, it means that the coherence
is lost, and the energy of the eigenmode is transferred into
heat and subsequently disappears into the substrate. Eventually
all the excitation energy from the dots reaches the substrate
[Fig. 4(d)]. This occurs at time delays of about 300 ps, where
the aforementioned oscillations are followed by a flat window
where no periodic dynamics of the polarization rotation is
observed.

Note that on the timescale below 600 ps the dynamics of
the polarization of the reflected probe beam is determined by
single nanodots and not by the collective properties of their
array. We shall refer to the excitation modes of a single nanodot
as intradot phonons, whereas the collective modes relying on
the periodicity of the nanodots will be addressed as interdot
phonons. Now, at time delays of about 300 ps the excitation
energy is transferred into the substrate, and intradot phonons
have already decayed. In turn, collective interdot phonons with
all possible k are excited, propagating with the speed of sound
c. As such, it should take at least �τ = a/c for the nanodots
to feel the presence of their neighbors, where a is the period of
the array. For the longitudinal sound wave (which is faster than
the transversal) and shortest distance between the neighbors it
gives the smallest �τ of about 250 ps. This explains the late
onset of the long range dynamics determined by the interdot
phonons, which is discussed in Sec. III C.

2. Magnetic effects

In this subsection we shall discuss the magnetic contribu-
tion to the observed rotation of the polarization of the probe
beam. Figure 5(a) shows the dependencies ψ(τ ) measured
for opposite directions of the longitudinal magnetic field
H = ±2 kOe, strong enough to saturate the magnetization.
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FIG. 5. (Color online) (a) Polarization rotation dynamics for two
opposite directions of the longitudinal magnetic field of ±2 kOe (full
red and open blue circles) together with their difference (black open
squares). The solid line is an exponential fit to the experimental data.
(b) Three-temperature model with characteristic times of interaction
between each of the three reservoirs.

For long time delays, the dependencies ψ(τ ) are very similar
and demonstrate oscillations of the polarization rotation that
are nearly of the same amplitude and phase, independently
on the magnetic field. Thus we assume these oscillations are
of a nonmagnetic nature. In contrast, magnetic field-induced
modulations can be distinguished in the ψ(τ ) dependencies in
the short and middle delay ranges.

The purely magnetic contribution shown in the same figure
with open black squares is the difference between the time
dependencies measured in two magnetic fields of opposite
polarities. After its initial breakdown it demonstrates an
exponential relaxation with a characteristic time of 100 ps.
This behavior was found to be independent on the strength of
the external magnetic field which was varied in the range from
2 kOe up to 5 kOe. The origin of the magnetic contribution
to the rotation of the polarization plane is magnetic circular
birefringence, which represents the magnetization dynamics
of the nanodots.

Figure 5(b) illustrates the typical three-temperature model
[40] conventionally used to describe the magnetization dynam-
ics in ferromagnetic metals. The laser pulse hits the sample
and within a few femtoseconds the electronic temperature
rises significantly, leading to a nonequilibrium distribution of
the electrons. The latter start to interact with the two other
reservoirs, namely, the phonons and spins, relaxing back to
their equilibrium state. These relaxation rates are material
specific, which can lead to various scenarios of magnetization
dynamics [41]. It was shown that in 3d transition metals
such as Co, the electron-spin thermalization occurs on a
subpicosecond timescale leading to ultrafast demagnetization
[see the quick drop in the signal right after the overlap,
Fig 5(a)]. Subsequently, both electron and spin reservoirs
with elevated temperatures transfer their energy to the lattice
reservoir, which happens on a much longer timescale. This
process is accompanied by the magnetization recovery, as the
spin reservoir cools down.

Interestingly, the relaxation of the magnetization and the
decay of the coherent phonon dynamics in the Co nanodots
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FIG. 6. (Color online) (a) Dynamics of the rotation ψ of the
polarization plane of the reflected radiation (long timescale) for
θ = 0◦ and θ = 45◦. (b) Corresponding acoustic waves excited in
the array of nanodots at α = 45◦ (k1) and α = 90◦ (k2).

share the same timescale. It is seen that when the oscillations
of the nanodots have decayed completely [Fig. 5(a), the vertical
dashed line], the magnetization is already restored to its initial
value. The fit procedure demonstrated that the dynamics of
both magnetization and eigenmode of a single nanodot exhibits
very similar relaxation times of about 120 ps. Both processes
are related to the speed of energy transfer from Co to the
substrate.

C. Long time range

The long time range here indicates time delays longer than
400 ps, corresponding to the conditions where the dots and
the substrate reach thermal equilibrium. Experimental time
dependencies of the polarization rotation ψ(τ ) in this range
[Fig. 6(a)] demonstrate oscillations for delay times τ > 500 ps
with frequencies of 4–6 GHz, as derived from a Fourier
analysis.

Two characteristic eigenmodes with distinct frequencies f1

and f2 and the same phases are observed in a square lattice
of the dots upon changing the input probe polarization, (4.1 ±
0.4) GHz and (6.3 ± 0.5) GHz, respectively. The phase and
the frequency appeared to be independent of the magnetic
field direction and strength. Also, no dependence on the pump
polarization was found in the experiments. The ratio of the
two frequencies is close to

√
2. Moreover, the frequency of

the oscillations demonstrates a π/2 periodicity with respect to
the input polarization, consistent with the array symmetry.

To reveal the origin of this dynamics, we note that the
pump-induced oscillations are usually related to the excitation
of quasiparticles [42–46], for instance, magnons or phonons.
However, our experiments have shown that neither the phase
of the oscillations changes upon switching the magnetic
field, nor their frequency shifts when the magnetic field
strength is changed (see Sec. III B). Thus we have to
exclude the magnetic nature of the oscillations. Similarly, we
have to exclude the excitation of optical phonons from the
consideration, as these phonons usually have much higher
frequencies [47,48]. In the same way plasmonic excitations
can not be responsible for the observed oscillations, firstly
due to their higher frequency [49,50] and secondly, due to the
extremely short lifetime of a localized plasmon which can
be down to a few femtoseconds [51–54]. Also, additional
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experiments with various wavelengths of the probe beam
demonstrated no significant difference in the magnitude of
the effect. It turns out that the only possible explanation for
the observed dynamics is the excitation of acoustic phonons
which induce birefringence in the substrate. The source of this
excitation is the energy of the pump beam, which is quickly
(within a few femtoseconds) absorbed by the metallic nanodots
and is transferred to the substrate. Generally speaking, both
transversal and longitudinal acoustic waves may be generated
incoherently, however, only the eigenmodes given by the array
can survive long enough to contribute to the experimentally
observed effects. Other excited phonons are incoherent and
decay quickly.

In order to study the acoustic excitations responsible for
the polarization rotation in more detail, we shall consider
changes of the local optical properties of a medium induced
by propagating acoustic waves. As the relevant acoustic waves
propagate in the substrate, we shall consider an isotropic
medium, whereas the 4m symmetry of the nanodots array plays
a role in the selection of possible phonon eigenmodes only.

The optical properties of a medium are described [55] by
the permittivity tensor ε̂ or by the inverse tensor B̂, ε̂ = B̂−1.
As we consider pump-induced effects to be small and our
medium isotropic, after linearization one gets (see Appendix)
�εij ∼ �Bij , which simplifies the consideration significantly.
Further, �B̂ can be obtained from the acoustic displacement �u
and deformation tensor Sij = 1

2 ( ∂ui

∂xj
+ ∂uj

∂xi
). After writing the

tensors Ŝ and B̂ in a short form (see Appendix), the latter
can be expressed by means of the photoelastic tensor pαβ :
�Bα = pαβSβ .

As such, for an acoustic wave �u with a given wave vector
�k propagating at an angle α to the x axis [see Fig. 6(b)] we
can calculate �ε and thus link up the acoustic wave to the
polarization rotation of the probe beam, as briefly discussed in
Sec. II. Table I summarizes the results for both longitudinal and
transversal waves [see also Eqs. (2), (A3), and (A4) for details].

Note that α = 0◦ (or 90◦) means that the wave propagates
along the main axis of the nanodots array, whereas α = 45◦
corresponds to the diagonal of the elementary array cell. As
such, the spatial period of the array a for α = 0◦ is shorter than
that of α = 45◦, hence the k vector is longer and the frequency
is higher. This allows us to establish the type of acoustic waves
which manifest themselves in our experiments. For the probe
beam polarized along the main axes of the array of nanodots
(θ = 0◦,90◦), oscillations with the higher frequency f2 are
excited [see Fig. 6(a)], which corresponds to the wave with the

TABLE I. Dielectric permittivity ε components responsible for
the polarization rotation of the probe beam with various input
polarizations θ and corresponding contributions from the acoustic
waves propagating at an angle α with respect to the main axes of
the array. TW and LW stand for transversal waves and longitudinal
waves, respectively.

θ Rotation ψ TW LW

0◦ �εxy cos 2α sin 2α

45◦ �εyy − �εxx sin 2α cos 2α

90◦ �εxy cos 2α sin 2α

larger wave vector k2. The latter thus should be directed along
one of the main axes of the array [Fig. 6(b)], which brings the
α angle to 0◦ (or 90◦) thus leading to sin 2α = 0. As such, only
transversal acoustic waves can contribute to this polarization
rotation. Obviously, similar considerations apply to the case
when the incident probe beam is polarized with θ = 45◦.

We can estimate the velocity with which an acoustic wave
has to propagate to be able to induce the observed effects: c =
f2a(= f1a

√
2) = 8.8 km/s. This value is much higher than

those known for the longitudinal (5.98 km/s) and transversal
(3.77 km/s) waves in fused silica [56]. For a surface (Rayleigh)
acoustic wave, its frequency is given by [57] f = ξc⊥k, where
ξ < 1 is a parameter which depends on the material properties
only (for fused silica the Poisson ratio [58] σ = 0.164, and
thus ξ ≈ 0.9) [57], and c⊥ is the speed of the transversal sound
wave. As ξ < 1, the discrepancy between the experimental and
theoretical values becomes even greater. This indicates that we
are probably observing a higher harmonic of the acoustic wave,
whereas the speed of sound on the silica interface appears to
be modified by the Co nanodots load [20,59].

The reason why the fundamental frequency is not observed
in our experiments is probably the following. When the energy
from the laser pulse reaches the substrate, phonon waves with
all possible wave vectors are excited. Among those which
survive in the array long enough are, of course, waves with
opposite values of k, i.e., propagating in opposite directions.
Let us consider these waves propagating along the x axis.
According to Eq. (A3), the total phonon-induced �B corre-
sponds to the standing wave, thus yielding zero contribution to
the total anisotropy when averaged over a relatively large area
of the laser spot. As such, the odd-order terms in the expansion
ε(B) can be excluded from consideration, and one should
consider even ones only. The lowest one is the second-order
term proportional to B2 which matches the observed frequency
within the 20% margin. The latter can be readily explained by
the aforementioned load effect.

IV. CONCLUSIONS

Summarizing, we have studied the dynamics of the polar-
ization plane rotation induced by an intense pump laser radia-
tion in a square lattice of magnetic nanodots. We demonstrate
that the temporary behavior of the pump-induced birefringence
in this structure is affected by four distinct effects. Namely, a
fast Kerr nonlinear-optical effect plays the main role on the
subpicosecond timescale, while at delay times of hundreds
of picoseconds acoustic eigenmodes of the nanodots induce
birefringence in the sample. Heat slowly diffusing down into
the substrate is responsible for the late onset of the array
eigenmodes, whereas transversal acoustic waves modulate the
polarization of the probe beam via dynamical birefringence in
the initially isotropic substrate. On top of all that, an ultrafast
breakdown (<1 ps) and relatively slow recovery (�100 ps) of
the magnetization in the nanodots contributes to the observed
effects via Faraday or Kerr rotation.
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APPENDIX A: FROM ACOUSTIC WAVES TO DIELECTRIC
PERMITTIVITY

Consider an acoustic wave propagating with the wave
vector �kac in the sample plane [see the reference frame in
Fig. 6(b) in its general form:

�u = (u0x �ex + u0y �ey)ei(kxx+kyy), (A1)

where �ei is a unit vector along the i direction, i = x,y,z. This
wave can be regarded as a superposition of both longitudinal
and transversal waves, whereas the case of a Rayleigh surface
wave will be discussed below. Assume the wave is propagating
at an angle α to the x axis. Now, in the case of a transversal
acoustic wave (�u ⊥ �kac):

u0x = −u0 sin α, u0y = u0 cos α

kx = k cos α, ky = k sin α.

Similarly, for a longitudinal wave (�u ‖ �kac):

u0x = u0 cos α, u0y = u0 sin α

kx = k cos α, ky = k sin α.

Acoustic waves create deformation Sij = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
), which

can also be calculated. For the transversal wave one gets:

Ŝ⊥

= iu0kei�k�r

⎛
⎜⎝

− sin α cos α 1
2 (cos2 α − sin2 α) 0

1
2 (cos2 α − sin2 α) sin α cos α 0

0 0 0

⎞
⎟⎠.

And for the longitudinal one:

Ŝ‖ = iu0kei�k�r

⎛
⎝ cos2 α sin α cos α 0

sin α cos α sin2 α 0
0 0 0

⎞
⎠.

The deformation-induced change of the inverse dielectric
permittivity �B̂ can be expressed as �Bα = pαβSβ , where
pαβ is the photoelastic tensor, and we write the symmetric
tensors B̂ and Ŝ in a short way:

S1 = Sxx, S2 = Syy, S3 = Szz

S4 = 2Sxy, S5 = 2Sxz, S6 = 2Syz.

The photoelastic tensor of an isotropic medium can be used
for our purposes [55]:

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

As such, from (A2) we can find �B:

�B1 = p11Sxx + p12Syy + P12Szz

�B2 = p12Sxx + p11Syy + P12Szz

�B3 = p12Sxx + p12Syy + P11Szz

�B4 = 2p44Sxy

�B5 = 2p44Sxz

�B6 = 2p44Syz.

Thus, for the transversal acoustic wave the induced change of
the inverse dielectric permittivity �B̂ can be calculated:

�B̂⊥ = 1

2
iu0kei�k�r

⎛
⎝sin 2α(p12 − p11) 2p44 cos 2α 0

2p44 cos(2α) − sin 2α(p12 − p11) 0
0 0 0

⎞
⎠ , (A3)

and for the longitudinal wave:

�B̂‖ = 1

2
iu0kei�k�r

⎛
⎝p11 cos2 α + p12 sin2 α p44 sin 2α 0

p44 sin 2α p11 sin2 α + p12 cos2 α 0
0 0 p12

⎞
⎠. (A4)

Optical properties of a medium are described by the
permittivity tensor ε or by the inverse tensor B [55]:

εijBjk = δik

ε̂ = B̂−1. (A5)

Mechanical deformations result in modulations of the tensor
B, which we denote as �B:

B = B0 + �B.

Thus the required permittivity tensor can be written as

ε̂ = (ε−1 + �B)−1, (A6)
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where ε is the permittivity in the absence of deformation.
For a small �B, we can employ (A5) to simplify (A6) and
obtain [55]:

�εil = −εij�Bjkεkl .

Here εij is the dielectric permittivity of the isotropic substrate,
εij = εδij . As such, for the further analysis we may use:

�εij ∼ �Bij . (A7)

APPENDIX B: POLARIZATION ROTATION IN
A BIREFRINGENT MEDIUM

From Appendix A we see that the excitation of both
transversal and longitudinal waves in a isotropic medium
results in the modification of the dielectric permittivity ε̂. The
latter thus obtains the following form:

ε̂ =
⎛
⎝ εxx + �εxx �εxy 0

�εxy εxx + �εyy 0
0 0 εzz + �εzz

⎞
⎠. (B1)

This means the medium becomes birefringent and thus allows
for the polarization rotation of the reflected probe beam. In
order to obtain the polarization rotation ψ in such a medium,
we should consider boundary conditions for the electric and
magnetic fields of light [60].

We start from the normally incident beam polarized at an
arbitrary angle θ with respect to the OY axis (see Fig. 1), so
that �Ein = {Ex,Ey,0}. On the boundary between air and the
birefringent medium there are three waves, namely incident,
transmitted, and reflected ones. The requirements of continuity
of electric and magnetic fields at the interface give:

�Ein + �Er = �Etr, (B2)

[�kin × �Ein] + [�kr × �Er ] = n̂[�ktr × �Etr], (B3)

where we have introduced the wave vectors of all three waves,
and n̂ is the effective matrix showing the nonorthogonality
of the electric and magnetic fields of light in a birefringent
medium. Its physical meaning is n̂2 = ε̂, and in an isotropic
medium n̂ acquires a diagonal form and reduces to the
refractive index n.

Assuming the normal incidence of light and symmetric
n̂ (nxy = nyx), we get four equations (two for each x and
y components of the fields) which can be combined in the
following way:

�Ein
x + �Er

x = nxx

( �Ein
x − �Er

x

) − nxy

( �Ein
y − �Er

y

)
(B4)

�Ein
y + �Er

y = nyy

( �Ein
y − �Er

y

) − nxy

( �Ein
x − �Er

x

)
. (B5)

Now we introduce the angle of polarization rotation ψ ,
as �Ein = Ein{sin θ, cos θ,0}, and, similarly, �Er = Er{sin(θ +
ψ), cos(θ + ψ),0}, and the reflectivity r = Er/Ein, thus ob-
taining:

sin θ + r sin(θ + ψ) = nxx( sin θ − r sin(θ + ψ))

−nxy( cos θ − r cos(θ + ψ)) (B6)

cos θ + r cos(θ + ψ) = nyy( cos θ − r sin(θ + ψ))

−nxy( sin θ − r sin(θ + ψ)). (B7)

After expanding the trigonometrical functions and assum-
ing small angles ψ (so that sin ψ = ψ , cos ψ = 1), one can
solve the system of equations and obtain the final result:

ψ = 2

Z
[(nyy − nxx) tan θ + nxy(1 − tan2 θ )], (B8)

where

Z = −4nxy tan θ + γ (1 + tan2 θ ),

γ = nxxnyy − n2
xy + nyy − nxx − 1.

Since the laser-induced modifications are small, the compo-
nents of the new ε̂ij are related to the nij in the following
way:

εxx = n2
xx

εxy = 2
√

εxxnxy

εyy = εxx + 2
√

εxx(nyy − nxx).

Together with (B8), this yields, after omitting small terms:

ψ = (εyy − εxx) tan θ + εxy(1 − tan2 θ )√
εxx(εxx − 1)(1 + tan2 θ )

,

or, in a shorter form:

ψ = √
εxx

β1 tan θ + β2(1 − tan2 θ )

(εxx − 1)(1 + tan2 θ )
, (B9)

where we have introduced parameters β1 = εyy−εxx

εxx
, β2 = εxy

εxx

responsible for the nondegeneracy of the principal axes and
their in-plane rotation, respectively.

From (B9) we can consider important particular cases and
obtain the rotation for the incident polarizations of θ = 0◦,
45◦, 90◦ [see Eq. (2) in Sec. II]. When the incident light
polarization coincides with one of the original principal axes
(θ = 0◦, 90◦), the rotation stems from the εxy component,
whereas for the case of θ = 45◦, the rotation is induced by the
nonzero difference εyy − εxx .
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