
PHYSICAL REVIEW B 89, 064107 (2014)
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We study the interplay of structural distortions in double perovskites Sr2MWO6 (M = Zn, Ca, Mg) by means
of first-principles calculations and group theoretical analysis. Structure relaxations of the cubic, tetragonal,
and monoclinic phases show that the ground states of the three compounds are monoclinic, although the energy
difference between the monoclinic and tetragonal structures is very small in the case of Sr2MgWO6. The symmetry
analysis of the distortions involved in the experimental and calculated low-temperature structures shows that the
amplitude of two primary distortions associated to rigid rotations of the MX6 and WO6 octahedra are dominant,
although the amplitude of a third mode related to deformations of the MX6 groups can not be neglected. The
energy maps of the space spanned by the three relevant modes are calculated, and the couplings among the modes
are evaluated, showing that the role of a hard secondary mode (in the Landau sense) coupled trilinearly to the
two primary instabilities is crucial to stabilize the monoclinic ground state. Results suggest that the key role of
the trilinear coupling among three modes could be rather common. A phenomenological theory including the
effects of the chemical pressure is also developed. We find that the evolution of the stiffness constants in terms
of the atomic substitution follows an accurate linear dependence and that the influence of quantum saturation of
the order parameters could stabilize the tetragonal phase of Sr2MgWO6.
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I. INTRODUCTION

Several decades of in-depth research have not been enough
to reduce the interest in perovskite oxides. On the contrary,
new theoretical challenges arise and the potential impact
of new technological applications is explored intensively.
Both theoretical and practical interests make the study of
these materials extremely active nowadays. The ideal cubic
(Pm3̄m, No. 225) structure of the simple ABX3 perovskites
can be described in terms of a single variable: the lattice
parameter ap. However, the usual structure of perovskites
is a more complex low-symmetry modification and must be
described as a distorted structure with respect to the ideal
cubic prototype. By far the most common distortion consists of
rigid-unit modes (RUMs), in which the BX6 octahedral units
remain almost rigid and the rotations of the corner-linked units
generate an antiferrodistortive distortion. The second type of
distortion is ferroelectric, in which the A or B cations are
displaced with respect to the rigid oxygen octahedra. The third
type of distortion involves deformation of the X6 octahedral
units, being the amplitude of the associated displacements
very small. Nevertheless, ferroelectric and antiferrodistortive
distortions are not usually present in the same structure because
the condensation of one mode inhibits the condensation of the
other one due to a positive and strong biquadratic coupling.
BaTiO3, KNbO3, or PbTiO3 are typical examples of this
behavior: the cubic phase is unstable with respect to both
types of distortions [1,2], but once the ferroelectric mode
condensates the structures are stable down to low temperatures.

More intricate scenarios appear in complex perovskite
structures, where several distortions are needed to ex-
plain the symmetry lowering. Recent studies [3] show that
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ferroelectricity can be active in a scenario where the trilinear
coupling of three modes, two rotational and one ferroelectric,
plays a fundamental role. Similar mechanisms have been found
in proper ferroelectrics such as the Aurivillius compound
SrBi2Ta2O9 (SBT) [4], improper ferroelectrics such as the
Ruddlesden-Popper Ca2Mn2O7 [5], the double perovskite
NaLaMnWO6 [6], and PbTiO3/SrTiO3 superlattices [7]. This
trilinear coupling could also be responsible for the “avalanche”
phase transitions, where several modes condense simultane-
ously [8,9] and could give a key in the field of material
engineering in order to design new compounds with the
appropriate properties [3,5,7,10].

The double perovskites Sr2MWO6 (M = Zn, Ca, Mg),
subject of this work, do not present ferroelectricity, but the
structure of the ground state, expressed as a distortion of
the high-temperature cubic phase, allows the existence of
a trilinear coupling among unstable modes that transform
according to different irreducible representations. The same
physical mechanism, the stabilization of the ground state
through the coupling of three modes, could be active in these
materials, and the evaluation of its role is a reasonable test
to extend its applicability and confirm the relevance of the
trilinear coupling whenever the phase transition involves the
condensation of several modes.

II. EXPERIMENTAL STRUCTURES, PHASE
TRANSITIONS, AND SYMMETRY ANALYSIS

The high-temperature structure of Sr2MWO6 (M = Ca,
Cd, Mn, Zn, Co, Mg, and Ni) double perovskites is cubic
with space group Fm3̄m (No. 225). At lower temperatures,
they are tetragonal I4/m (No. 87) and most of them (M =
Ca, Cd, Mn, Zn, and Co) undergo another phase transition
to a monoclinic structure with space group (P 21/n, No.14,
nonstandard setting) [11–15]. The intermediate tetragonal
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phase of the Mg and Ni double perovskites is stable down
to the lowest temperatures [13,14]. The range of stability of
the three phases is related to the size of the M cation: the larger
the M cation, the higher all the transition temperatures and the
narrower the stability of the tetragonal phase. For smaller M

cations, the temperatures of the two phase transitions decrease,
the range of stability of the tetragonal phase increases, and
the monoclinic phase is stable in a narrower interval until
it disappears. The three compounds studied in this work are
representatives of the complete behavior of the family. In the
Ca compound, the range of stability of the monoclinic phase is
very wide (0–1150 K) and the tetragonal structure appears only
in a very small temperature range between 1150 and 1250 K.
The intermediate case corresponds to the Zn compound, where
the tetragonal phase is stable between 340 and 770 K with a
much narrower monoclinic phase (0–340 K). In the case of the
Mg compound, the monoclinic phase has not been reported
and the tetragonal phase remains stable from 570 down to
26 K [13].

Tetragonal (I4/m) and monoclinic (P 21/n) space groups
are subgroups of the parent Fm3̄m cubic phase, but there is
no group-subgroup relation between both. In consequence,
and according to Landau theory, the cubic-to-tetragonal
transition can be continuous, but the tetragonal-to-monoclinic
phase transition must have a first-order character. The group-
subgroup relation of the monoclinic and tetragonal space
groups with respect to the cubic space group allows the
description of the intermediate- and low-temperature phases
as distortions of the parent cubic structure. With the aid of
AMPLIMODES (www.cryst.ehu.es) [16], the distorted structures
can be expressed in terms of symmetry-adapted modes, and
a hierarchy can be established among them according to
their amplitudes. Table I shows the amplitudes of the two
symmetry-adapted distortions that break the cubic symmetry,
being compatible with the tetragonal intermediate phase. The
isotropy subgroup of the �+

4 irreducible representation is I4/m

and its amplitude is much larger than the other distortion,
indicating that it corresponds to the primary order parameter
of the cubic-to-tetragonal phase transitions, the �+

3 distortion
being a secondary effect. A similar symmetry analysis of the
monoclinic structures is shown in Table II. The irreducible
representations �+

4 and �+
3 are the same as in Table I, but

due to the different directions of the �+
4 irreps [(0,0,a) and

(0,a,a)], the associated distortions are different. In order to
avoid confusion, we will denote by �+

4T and �+
4M the tetragonal

TABLE I. Summary of the mode decomposition with respect to
the Fm3̄m parent phase of the experimental and calculated I4/m

structures. In the three cases, the ac parameter of the cubic structure
is the same used in the calculations. There are not experimental data
for the tetragonal structure of Sr2CaWO6.

Amplitude (Å)

Isotropy Ca Zn Mg

Irrep Direction subgroup Calc. Expt. Calc. Expt. Calc.

�+
4 (0,0,a) I4/m 1.04 0.71 0.72 0.48 0.61

�+
3 (a,0) I4/mmm 0.06 0.06 0.03 0.04 0.02

TABLE II. Summary of the mode decomposition with respect to
the Fm3̄m parent phase of the experimental and calculated P 21/n

structures in order of decreasing amplitudes. The X+
5 and �+

5 distor-
tions involve several degrees of freedom; in these cases, the scalar
product of the normalized experimental and calculated polarization
vectors are given in parentheses. Although ab initio calculations give
a stable monoclinic structure, there is not experimental evidence of
the existence of such a phase for Sr2MgWO6.

Amplitude (Å)

Isotropy Ca Zn Mg

Irrep Direction subgroup Expt. Calc. Expt. Calc. Calc.

�+
4 (a,a,0) C2/m 1.37 1.46 0.75 0.97 0.84

X+
3 (0,a,0) P 4/mnc 0.95 0.98 0.40 0.64 0.49

X+
5 (a,a,0,0,a, − a) Pnnm 0.52 0.58 0.15 0.28 0.19

(0.99) (0.82)

�+
5 (−b,a, − a) C2/m 0.24 0.12 0.07 0.05 0.04

(0.57) (0.74)

X+
2 (0,a,0) P 42/mnm 0.05 0.02 0.06 0.00 0.00

�+
3 (a,0) I4/mmm 0.00 0.01 0.03 0.00 0.00

and monoclinic distortions, respectively. Although there is
no experimental evidence of the existence of the monoclinic
low-temperature structure of Sr2MgWO6, it is included in the
table because, as it will be explained in the next section,
according to calculations the structure of its ground state is
monoclinic. Table II shows that the amplitudes of the �+

4
and X+

3 distortions are dominant. The isotropy subgroups
of �+

4 and X+
3 are C2/m and P 4/mnc, respectively; as

the intersection of these two groups is the observed P 21/n

symmetry, the presence of these two distortion modes is
sufficient to lower the symmetry from Fm3̄m to the one of
the monoclinic phase, and both can be considered primary
order parameters. The amplitude of the X+

5 is not negligible,
this distortion does not break the symmetry further, and it
should be considered as a secondary order parameter coupled
to the primary ones.

As usual in perovskites, the deformation of the MO6 and
WO6 octahedra is small and the dominant distortions can be
described by rigid unit modes (RUMs). The �+

4T mode involves
rotations of the corner-linked octahedra with respect to the z

axis, with antiphase rotation of successive octahedra along the
axis [Fig. 1(a)]. It corresponds to the a0a0c− rotation according
to the Glazer notation [17,18] and it is analogous to the R+

4
mode of the simple perovskites [19,20]. The �+

4M distortion
presents a similar scheme with the octahedra rotating around
the (1,1,0) axis; it is shown in Fig. 1(b) and corresponds to
a0b−b− tilts. The X+

3 mode is related to the M+
3 representation

of the simple perovskites [19,20] and is composed by in-phase
rotations of successive octahedra along the z axis (a+b0b0) as
shown in Fig. 1(c) [17,18]. Finally, the secondary X+

5 distortion
is not a RUM. The WO6 octahedra remain almost rigid, they
rotate around the (1,1,0) axis, and consecutive octahedra along
the axis rotate in phase. However, the closest WO6 octahedra
in the plane perpendicular to the axis rotate in antiphase and,
as a consequence, the MO6 octahedra are distorted and can
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FIG. 1. (Color online) Schematic view in different projections
with respect to the cubic axes of the rotations and slight deformations
of the octahedral groups (WO6 in blue and ZnO6 in yellow) associated
to the dominant distortions: (a) projection along the [0, 0,1]c direction
of the �+

4T RUM, (b) [1, 1,0]c projection of the �+
4M , (c) [0, 0,1]c

projection of the X+
3 RUM, and (d) [1, 1,0]c projection of the X+

5

distortion, where the WO6 units remain rigid but the ZnO6 octahedra
are distorted. The magnitude of the distortions has been exaggerated
for clarity.

not be considered rigid bodies [Fig. 1(d)]. These rotations
are accompanied by displacements of the Sr ions in the xy

plane.

III. COMPUTATIONAL DETAILS

The structures of the three compounds were relaxed by
ab initio calculations to study the energy landscape in the
space of the relevant distortions. Calculations were done
for the cubic, tetragonal, and monoclinic structures using
the WIEN2K code, based on the full-potential (L)APW+lo
method. Exchange and correlation effects were treated within
the GGA approximation with the Perdew-Burke-Ernzerhof
parametrization. The radii of the atomic spheres were chosen
as 1.86 (W), 2.02 (Zn), 2.29 (Sr), and 1.65 (O) bohrs for
Sr2ZnWO6, 1.91 (W), 1.95 (Ca), 2.15 (Sr), and 1.69 (O) bohrs
for Sr2CaWO6, and 1.90 (W), 1.89 (Mg), 2.18 (Sr), and 1.68
(O) bohrs in the case of Sr2MgWO6. The RmtKmax parameter
was chosen to be 7.5 for all the compounds and calculations.
A Monkhorst-Pack k-mesh of 4 × 6 × 4 was used for the
monoclinic calculations, which represents 24 independent k
points in the irreducible Brillouin zone. In order to maintain
the k-point density for all the calculations as constant as
possible, a k-mesh of 7 × 7 × 7 was used for the tetragonal
and cubic cells. The choice of the parameters was preceded
by energy difference convergence tests which confirmed

their validity. The self-consistency convergence criterion was
typically 0.0001 Ry for energy and 0.01 mRy/bohr for forces.
In order to calculate the energies of distorted structures,
force minimization calculations for all three compounds were
performed at monoclinic, tetragonal, and cubic symmetries.
Cubic and tetragonal structures accepted a high accuracy, of
the order of 0.01 mRy/bohr. For relaxation of the monoclinic
structure, forces below 0.4 mRy/bohr were obtained for M =
Zn and Mg. The highest force was below 0.7 mRy/bohr
in the Ca compound. The influence of strain was neglected
and the volume of the cell was fixed in all the calculations.
If ac, bc, and cc (|ac| = |bc| = |cc| = ac) are the lattice
vectors of the cubic structure, the tetragonal and monoclinic
lattice vectors were fixed to at = am = (ac − bc)/2, bt =
bm = (bc + ac)/2, and ct = cm = cc. Therefore, the density
of each compound remains constant for the different sym-
metries. The ac lattice parameter was chosen to reproduce
the experimental density at the lowest temperature measured,
monoclinic phase for Sr2CaWO6 and Sr2ZnWO6, and tetrag-
onal phase for Sr2MgWO6 [13,14], giving ac = 8.2076 Å,
7.9382 Å, and 7.9088 Å for the Ca, Zn, and Mg compounds,
respectively.

IV. RESULTS

First, the relaxed structure under cubic symmetry was
obtained for the three compounds to provide a reference
that allows the analysis of the symmetry-breaking distortions.
Then, the structures were relaxed under tetragonal symmetry.
Tables I and III show the analysis of the symmetry-breaking
distortions and the depth of the energy well of the tetragonal
phase with respect to the cubic one. For the Zn and Mg
compounds, the calculated and experimental amplitudes are
similar, showing the very secondary role of the �+

3 distortion.
The calculated amplitudes of the �+

4 mode for the Ca
compound (there is no experimental structure determination)
show the same trend with a significantly larger �+

4 distortion.
As expected, the higher the tetragonal-to-cubic transition tem-
perature, the larger the amplitude and depth of the tetragonal
energy well. As can be seen in Table III, the energy difference
between the cubic and tetragonal structures is mainly due to the
primary distortion, and the �+

3 mode plays a very secondary
role.

TABLE III. Depths of the energy wells per formula unit (in mRy)
of several distortions with respect to the cubic phase: tetragonal
phase with all the symmetry-allowed distortions included (Abs.
tetra.), �+

4T distortion alone, monoclinic phase with all the possible
symmetry-allowed included (Abs. mono.), �+

4M distortion alone and
X+

3 distortion alone.

Ca Zn Mg

Abs. tetra. 42.0 13.0 6.7

�+
4T 34.4 11.0 6.0

Abs. mono. 60.5 16.1 7.8

�+
4M 38.9 11.8 6.7

X+
3 30.0 7.5 3.3
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TABLE IV. Calculated (first row) and experimental (second row)
atomic positions of the monoclinic structures in relative units for
M = Zn, Ca, and Mg. The W atoms are fixed by symmetry at the
(0, 0, 0) positions and the Ca, Zn, and Mg atoms at (0, 0, 0.5). For
the Sr2MgWO6, only the calculated values are shown.

x y z

M = Ca

Sr 0.009 0.541 0.248
0.009 0.537 0.249

O1 − 0.087 − 0.027 0.227
− 0.071 − 0.025 0.222

O2 0.269 − 0.189 0.043
0.262 − 0.177 0.046

O3 0.183 0.272 0.049
0.185 0.263 0.050

M = Zn

Sr 0.004 0.523 0.249
0.002 0.508 0.250

O1 − 0.060 − 0.009 0.239
− 0.045 − 0.008 0.236

O2 0.267 − 0.212 0.030
0.251 − 0.220 0.021

O3 0.210 0.269 0.031
0.220 0.261 0.028

M = Mg

Sr 0.003 0.516 0.250
O1 − 0.052 − 0.006 0.241
O2 0.263 − 0.220 0.027
O3 0.219 0.264 0.027

Table II shows the amplitudes of the distortions obtained
from similar calculations in the monoclinic phases. The X+

5
and �+

5 distortions include three and four degrees of freedom,
respectively, and the amplitude alone is not enough to give
a complete description of the modes. For these distortions,
the scalar product of the normalized experimental and cal-
culated polarization vectors are also given. The hierarchy of
the amplitudes is correctly reproduced being the calculated
values systematically larger since they correspond to the
0-K structure. As usual, the worst agreement corresponds to
the distortions with small amplitudes that do not contribute
significantly to the description of the low-temperature phase.
The comparison between the experimental and calculated
structures is shown in Table IV, and the agreement in the case
of the Ca and Mg compounds is extremely good. Sr2MgWO6

is tetragonal at 29 K and, although there is no experimental
evidence for the existence of a monoclinic low-temperature
phase, the present calculations give a P 21/n structure which
lowers the energy of the tetragonal phase. Energies for different
amplitudes of the dominant distortions with respect to the
relaxed cubic phase are plotted in Fig. 2. The three compounds
show the same general behavior: �+

4M and X+
3 distortions are

unstable while X+
5 is hard. This fact reinforces the picture that

the X+
5 distortion plays a secondary role and becomes active

through the coupling with the two primary order parameters.
The scenario is very similar to that of SrBi2Ta2O9 (SBT) [4]
and Ca3Mn2O7 [5], where a hard secondary mode becomes
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FIG. 2. (Color online) Energy per formula unit relative to the
cubic relaxed structure in terms of the amplitudes (Q) of the �+

4M ,
X+

3 , and X+
5 distortions for the three compounds.

spontaneous due to a trilinear coupling with other two relevant
modes. The depths of the energy wells are shown in Table III.
The energy differences between the tetragonal and monoclinic
phases are 18.8 (Ca), 3.3 (Zn), and 1.0 (Mg) mRy per formula
unit. The tiny energy gain of the monoclinic phase of the Mg
compound with respect to the tetragonal configuration and, as
will be shown later, quantum fluctuations may be responsible
for the stabilization of the tetragonal phase at low temperatures,
and even at 0 K due to zero-point fluctuations. Nevertheless,
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although the experimental strain is small for the Mg compound,
it can not be discarded that optimization of the lattice constants
for each symmetry could give a different phase stability.

The energies of the frozen pure-symmetry modes shown in
Fig. 2 give an incomplete description as they are restricted to
special directions of the energy map in the three-dimensional
space spanned by the relevant modes. The energy of a general
distortion and the quantification of the couplings among the
modes can be studied by determining the polynomial that
describes the energy variations around the cubic configuration
in terms of the amplitudes of �+

4M , X+
3 , and X+

5 distortions.
The energy difference between the cubic reference and the
distorted structures can be expressed up to fourth order by

�E
(
Q�+

4
,QX+

3
,QX+

5

) = E�+
4

+ EX+
3

+ EX+
5

+ E�+
4 X+

3

+E�+
4 X+

5
+ EX+

3 X+
5

+ E�+
4 X+

3 X+
5
.

The energy for the pure modes depicted in Fig. 2 is given by

E�+
4

= 1
2κ�+

4
Q2

�+
4

+ β�+
4
Q4

�+
4
,

EX+
3

= 1
2κX+

3
Q2

X+
3

+ βX+
3
Q4

X+
3
,

EX+
5

= 1
2κX+

5
Q2

X+
5

+ βX+
5
Q4

X+
5
.

The pair interactions are

E�+
4 X+

3
= δ�+

4 X+
3
Q2

�+
4
Q2

X+
3
,

E�+
4 X+

5
= δ�+

4 X+
5
Q2

�+
4
Q2

X+
5
,

EX+
3 X+

5
= δX+

3 X+
5
Q2

X+
3
Q2

X+
5

and the symmetry-allowed trilinear coupling is

E�+
4 X+

3 X+
5

= t�+
4 X+

3 X+
5
Q�+

4
QX+

3
QX+

5
.

The polynomial coefficients have been determined by
least-squares fits of the energies of more that 60 configurations
for each compound obtained by ab initio calculations with
different sets of amplitudes for the three distortions. The

TABLE V. Polynomial coefficients of the energy expansion
obtained by least-squares fits for M = Ca, Zn, and Mg.

Ca Zn Mg

κ�+
4M

(mRy/bohr2) − 23.59 − 13.95 − 10.17
κX+

3
(mRy/bohr2) − 19.48 − 10.60 − 7.19

κX+
5

(mRy/bohr2) 6.72 21.91 26.56

β�+
4M

(mRy/bohr4) 0.89 1.03 1.00
βX+

3
(mRy/bohr4) 0.80 0.95 0.99

βX+
5

(mRy/bohr4) 3.75 3.85 3.84

δ�+
4M

X+
3

(mRy/bohr4) 1.58 1.82 1.81
δ�+

4M
X+

5
(mRy/bohr4) 0.49 0.50 0.54

δX+
3 X+

5
(mRy/bohr4) 1.07 0.91 1.09

t�+
4M

X+
3 X+

5
(mRy/bohr3) − 7.12 − 7.48 − 7.94

inclusion of sixth-order terms in the energy expansion did
not provide a significant improvement in the fit and, in
consequence, they have not been considered in the model.
Table V shows the values of the coefficients that can be used
to explore the energy landscape at any direction and any section
to obtain more detailed information about the role that each
mode plays in the phase transition.

The monoclinic ground state corresponds to a mixed
configuration with the three modes frozen, but, as stated above,
the presence of two main order parameters �+

4M and X+
3 is

enough to break the symmetry to the observed one. Figure 3(a)
shows the energy of the X+

3 mode alone, and with the amplitude
of �+

4M distortion fixed to 1.0 Å for the Zn compound. The
presence of the nonzero �+

4M distortion stabilizes the X+
3

configuration due to the strong positive biquadratic coupling
δ�+

4MX+
3

. Figure 4(a) shows the energy contour map of the
(Q�+

4M
,QX+

3
) section for the Ca compound, and again, the

biquadratic coupling penalizes the freezing of the two main
modes simultaneously as usual [4,8]. In addition, the minimum
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FIG. 3. (Color online) (a) Energy of the Zn compound as a function of the amplitude of the pure X+
3 mode (squares), and with the amplitude

of the �+
4M distortion fixed to 1 Å (circles). (b) Energy of the Zn compound in terms of the amplitude of the pure secondary X+

5 mode (circles),
and with the amplitude of the �+

4M and X+
3 distortions fixed to 1 and 0.6 Å, respectively (squares). The pure X+

5 mode is hard but it becomes
unstable when the other two distortions are switched on due to the trilinear coupling. The plots have been shifted vertically to fix a common
origin.
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FIG. 4. (Color online) (a) Energy contour map of the (Q�+
4M

,QX+
3

) section for the Ca compound with QX+
5

= 0.0. The minimum corresponds

to the pure Q�+
4M

mode. (b) The same section with QX+
5

= 0.6 Å. The minimum corresponds to the experimentally observed mixed configuration.
The units of the color bars are mRy per formula unit.

energy in this section is found at Q�+
4M

≈ 1.3,QX+
3

= QX+
5

= 0
which corresponds to the C2/m space group.

The inclusion of the X+
5 distortion is essential to explain

the stability of the experimental ground state. Figure 3(b)
corresponds to the Zn compound, and it shows the energy
versus the amplitude of the QX+

5
mode alone, and with a

mixed �+
4M , X+

3 distortion with amplitudes 1.0 and 0.6 Å,
respectively. The hard X+

5 pure distortion becomes unstable
when the other two modes condense. The strong trilinear
coupling, independently of its sign, is the critical ingredient to
stabilize the monoclinic phase. In Fig. 4(b), the (Q�+

4M
,QX+

3
)

section of the Ca compound is plotted when the X+
5 mode

is frozen with an amplitude of 0.6 Å, and the absolute
minimum which corresponds to a mixed configuration is
clearly observed. The same general trend is observed for the
three compounds, and the scenario is very similar to that of
SBT [4] and Ca2MnO7 [5] where the role of an apparently
secondary symmetry mode becomes critical to explain the
existence and symmetry of the ground state.

V. PHASE DIAGRAM

A detailed analysis of the numerical values in Table V
reveals that, apart from the second-order terms, the values of
the rest of the coefficients, including the trilinear coupling,
are very similar for the three compounds. As shown above, the
trilinear terms stabilize the ground states, but the differences in
the range of stability of the cubic, tetragonal, and monoclinic
phases are governed almost exclusively by the stiffness
constants (κ).

The calculated polynomial expansions of the energies can
be considered as free energies at 0 K and, according to
Landau theory, the free energies at finite temperatures can
be approximated by taking into account the renormalization of
the quadratic terms by thermal effects. In first approximation,
the stiffness constants follow a linear law κ(T ) = a(T − T0)
and the rest of coefficients can be considered constant. Figure 5
shows the stability ranges of the different phases of Sr2ZnWO6

in terms of the stiffness constants of the two unstable modes:

κ�+
4M

and κX+
3

. The κX+
5

coefficient has been assumed to
vary in such a way that its difference with the κX+

3
stiffness

remains constant. The arrow corresponds to the path that
crosses the ground state of Sr2ZnWO6 with a homogeneous
renormalization of the stiffness constants of the three modes.
The fact that Ca and Mg compounds lie on the same path
indicates a linear relation among the stiffness constants of the
three compounds. As the radius of the M cation decreases

-30

-20

-10

0

10

-30 -20 -10 0 10

Ca

Zn

Mg

FIG. 5. (Color online) Phase diagram according to the poly-
nomial expansion of Sr2ZnWO6 but with varying values of the
quadratic coefficients κ�+

4M
and κX+

3
. The dotted lines are second-order

phase transitions and the solid lines first order. The arrow shows
a hypothetical path along which the renormalization of the three
stiffness constants is homogeneous and passes through the ground
state of Sr2ZnWO6. The location of the ground states of the other two
compounds is also shown.
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from Ca to Zn and Mg, the stiffness constants of the three
modes increase and this hardening of the three modes seems
to be responsible for the main features of the phase diagram
in terms of temperature and radius of the M cations [12]. The
change in volume of the M cation corresponds to a chemical
pressure (z) that in the lowest order is coupled to the order
parameter as ∝ zQ2 and produces a renormalization of the
quadratic coefficients similar to the thermal renormalization
[22]. Both thermal and pressure renormalization can be taken
into account by the following quadratic terms in the free
energy:

�F = a�+
4

2
(T − T0,�+

4
+ k�+

4
z)Q2

�+
4

+ aX+
3

2
(T − T0,X3 + kX+

3
z)Q2

X+
3

+ aX+
5

2
(T − T0,X5 + kX+

5
z)Q2

X+
5
. (1)

By fixing the origin and rescaling the chemical pressure, we
have chosen zCa = 0 and zMg = 1 without loss of generality.
We have used the nine values of the κ stiffness constants
of Table V and the five known experimental transition
temperatures to obtain the coefficients of the quadratic terms
of the free energy and the value of zZn by a least-squares
fitting. Results are shown in Table VI and Fig. 6. According to
Fig. 6(a), the dependence of the stiffness constants with respect
to the chemical pressure follows very faithfully the linear
ansatz, and up to our knowledge this is the first quantitative
verification of such a behavior by first-principles calculations.
Although experimentally Sr2MgWO6 remains tetragonal at
low temperatures, this model gives a tetragonal-to-monoclinic
phase transition at T = 157 K [Fig. 6(b)].

Quantum effects can be included in this phenomenological
approach by applying the following quantum correction to the

TABLE VI. a, T0, and k: coefficients of the quadratic term of free
energy according to the classic behavior of Eq. (1). The fitted value
of the chemical pressure for the Zn compound is zZn = 0.706. a′, T ′

0 ,
and k′: coefficients including the quantum correction for X+

3 with
θX+

3
= 170K [Eq. (2)]; the coefficients for �+

4 are the same in both
cases.

�+
4 X+

3 X+
5

a (mRy bohr−2 K−1) 0.01856 0.01562 0.1264
T0 (K) 1250 1244 −55
k (K) 680 790 159
a′ (mRy bohr−2 K−1) 0.01856 0.01566 0.0942
T ′

0 (K) 1250 1241 −74
k′ (K) 680 788 214

quadratic terms [21–23]:

a′

2
θ

(
coth

θ

T
− coth

θ

T ′
0

+ k′

θ
z

)
Q2, (2)

where the saturation temperature θ characterizes the tempera-
ture of the crossover between classical and quantum behavior.
We have performed again a least-squares fit of the known
data using the quantum model for the X+

3 order parameter
with a new constraint to force the tetragonal-to-monoclinic
phase transitions to be at 0 K for the Mg compound. As
listed in Table VI, zZn and the coefficients of the �+

4 mode
remain unchanged and the obtained value for the saturation
temperature (θX+

3
= 170 K) is comparable to the values found

in the literature [22]. The dotted line of Fig. 6(b) shows that the
classical and quantum phase diagrams are indistinguishable for
low chemical pressures and that the quantum saturation of one
of the modes is enough to suppress the low-temperature phase
transition in the Sr2MgWO6 compound.
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FIG. 6. (a) Linear behavior of the stiffness constants according to the least-squares fit with zZn = 0.705. (b) Transition temperatures of the
classic (solid line) model and and quantum correction (dotted line) with θX+

3
= 170 K.
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VI. CONCLUSIONS

First-principles calculations for the double perovskites
Sr2MWO6 (M = Zn, Ca, Mg) show that the ground states of
the three compounds are monoclinic (P 21/n, No.14). Experi-
ments report that the low-temperature phase of Sr2MgWO6

is tetragonal, however, present calculations show a small
energy difference per formula unit of ∼1 mRy in favor of
the monoclinic phase when the density of each compound
remains constant for the different symmetries.

Symmetry analysis of the distortions involved in the
experimental and calculated low-temperature structures shows
the primary role of two distortions associated to RUMs of
symmetry �+

4M and X+
3 . Energy calculations show that the

cubic reference structure is unstable with respect to the two
primary distortions, but the strong biquadratic coupling in-
hibits the simultaneous condensation of both. A third distortion
of symmetry X+

5 associated to deformations of the MX6

octahedra must be taken into account to justify the existence
of a monoclinic ground state. Although the stiffness constant
of the third mode is positive, a strong trilinear coupling among
the three modes is the ultimate cause of the stabilization of
the observed ground state. This mechanism has been already

observed in several ferroelectrics, and present results suggest
that the presence and relevance of a trilinear coupling could
be almost universal when the symmetry breaking at the phase
transition involves several modes.

A phenomenological approach in terms of the chemical
pressure associated to the change of the radius of the M cation
shows a very accurate linear behavior of the quadratic terms of
the Landau expansion with respect to the chemical pressure,
while higher-order terms remain essentially constant. Finally,
the inclusion of quantum corrections in the model reveals
that quantum effects can be responsible of the stabilization
of the monoclinic phase in the case of Sr2MgWO6, solving the
discrepancy with the experimental phase diagram.
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