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Molecular dynamics simulations of shock-compressed single-crystal silicon
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We present molecular dynamics simulations using a Tersoff-like potential of single crystals of silicon shock
compressed along the 〈001〉 direction. We find an elastic response up to a critical stress, above which the shear
stress is relieved by an inelastic response associated with a partial transformation to a new high-pressure phase,
where both the new phase (Imma) and the original cubic diamond phase are under close to hydrostatic conditions.
We study how the fraction of the two phases is related to both their geometry and their enthalpy, and discuss the
relevance of the results to previous experimental measurements of the response of silicon to shock compression.
We note that the simulations are consistent with shear stress relief provided directly by the shock-induced phase
transition itself, without an intermediate state of plastic deformation of the cubic diamond phase, but that the onset
of inelastic behavior within the simulations still occurs at considerably higher stresses than found in experiments.
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I. INTRODUCTION

The response of single crystals of silicon to shock com-
pression has been the subject of study for many years since
the seminal work of Gust and Royce [1,2]. The behavior of
crystals such as silicon, germanium, and diamond to dynamic
loading is of interest for a number of reasons, not least of which
is that they can be grown with very high purity. Consequently,
it might be thought that the mechanisms (and their thresholds)
that underlie their ability to relieve the high shear stresses
generated by rapid uniaxial compression would be readily
amenable to understanding. However, despite decades of
research, this is not the case, and to date detailed knowledge
of what occurs at the lattice level when pure cubic diamond
(cd) materials yield under shock compression remains elusive.
The lack of progress in determining the underlying physical
processes under shock conditions is in stark contrast to our
knowledge of the phase diagram of silicon compressed slowly
under hydrostatic conditions: Overall, silicon is now known
to exhibit a plethora of 11 distinct stable and metastable
crystalline phases at high pressures [3,4]. A tabulation of
their crystal properties and pressure ranges over which they
exist can be found in Refs. [5,6], and in the references cited
therein.

In the shock-wave experiments of Gust and Royce [1,2],
the authors observed multiple waves traversing the sample.
The first wave corresponds to purely elastic response—the
so-called Hugoniot elastic limit (HEL). The second wave was
assumed to mark the onset of plastic deformation, allowing the
material to relax from an initial state of uniaxial compression
(due to the elastic wave), back towards the hydrostat. For the
case of the 〈100〉 shock orientation, the HEL was measured
to be at a stress of 92 ± 10 kbar. A third, higher pressure
wave at 140 ± 4 kbar was identified as probably being due
to a polymorphic phase transition to a higher pressure phase.
With wave profile measurements alone, a definitive structural
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identification cannot be made, although the possibility of a
β-Sn structure (which occurs under static hydrostatic loading
at around 120 kbar [5,6]) was still deemed implausible on the
grounds of density estimations performed on the recovered
sample [1,2]. These findings were then independently extended
by later extensive investigations [7–9].

Furthermore, a series of time-resolved measurements on the
electrical response of the material during the shock-loading
process [10–12] revealed a steep monotonic increase in the
electrical conductivity, with an onset of metallic-type behavior
at pressures close to the HEL, which might conceivably be
consistent with a phase transition, given that the first new
phase seen under hydrostatic compression (the β-Sn phase)
is metallic. Single-crystal silicon has also been the object
of a comprehensive set of laser-based experiments [13–23],
which made use of in situ time-resolved x-ray diffraction
(TXRD) [24] from samples undergoing laser-induced shock
compression. Within the subset of these TXRD experiments
in which laser-induced pressures exceeding the nominal value
of the HEL were achieved, the silicon target appeared to
exhibit a purely elastic response, with no observable shifts in
the diffraction signals corresponding to the interplanar lattice
spacings transverse to the shock propagation direction which
would have marked the onset of some form of inelastic or
plastic deformation [16,18,20,25]. This “anomalous” elastic
response was rationalized [16,18] in terms of the characteristic
time scales for the propagation of dislocations in Si, which
were estimated to be of order of microseconds, in marked
contrast with the nanosecond and picosecond duration of
laser-induced shock waves and the rapid deformation response
of copper crystals which contain highly mobile dislocations. In
addition, the residual structure of recovered samples of laser-
shocked single-crystal silicon was itself investigated [26,27].
Similarly to the aforementioned TXRD experiments, these
studies proved unsuccessful in detecting evidence for the
formation of stable high-pressure phases, suggesting that any
phase transition that could have possibly taken place during
the loading process was only temporary and was consequently
followed upon pressure release by a rapid transformation
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back to the original cd structure in a highly compressed,
polycrystalline state.

On the theoretical front, the shock compression of crystals
with the diamond cubic structure has been investigated in
a number of classical molecular dynamics (MD) studies.
Oleynik and co-workers [28] reported four different regimes
of material response as the shock strength increased: simple
elastic compression below the HEL, a second plastic wave, an
anomalous elastic response above the HEL justified in terms
of a nonmonotonic dependence of shear stress on uniaxial
compression of the material, and a single overdriven plastic
wave inducing amorphization or chemical reactions. On the
other hand, Lane and Thompson [29] performed a similar set
of simulations of germanium, in which this time they identified
the onset of the phase transition to a new body-centered
tetragonal structure without an intermediate state of plastic
deformation. Similar results were reported by Lin, Perriot,
and co-workers [30,31] for the case of diamond.

In the work discussed here we extend certain of the
results outlined above. We present MD simulations of single-
crystal silicon shock compressed along the 〈001〉 direction.
In agreement with other work on germanium and diamond
[29–31] we find elastic response up until a critical stress, above
which the shear stress is relieved by a fraction of the material
undergoing a phase transformation. As in the germanium case
described by Lane and Thompson [29], in our simulations of
shock-compressed silicon we also identify a body-centered
lattice in the new phase. However, a reciprocal space analysis
of the sample provides more detailed information, and allows
us to identify the new phase predicted by this potential to
be Imma, rather than β-Sn. We demonstrate that the shock
conditions under which the transformation occurs within the
simulations can be readily understood in terms of the relative
enthalpy of the sample when compressed uniaxially, to that
within the mixed-phase region, assuming the material in the
mixed phase is close to being in a hydrostatic condition.
Furthermore, as the transition is inelastic rather than plastic
(in the sense that the shear stress is not relieved by defect
generation and motion), not only can the fractions of the
phases in the mixed-phase region be readily predicted, but the
morphology of the banding structure between the two phases
can be understood by considering the lattice parameters of the
two phases in the mixed-phase region and the condition of
zero transverse strain. However, while our analysis provides a
more detailed picture of what occurs at the atomic level within
the simulations of shock-compressed silicon, it is the case, as
with previous simulations, that the predicted onset of inelastic
behavior occurs at stresses considerably higher than those seen
in experiment. This may indicate that the potentials being used
are still not yet capable of capturing the full pertinent physics,
even if the mechanisms being revealed may be hinting at the
underlying physics that occurs within such materials under
shock compression.

II. MOLECULAR DYNAMICS SIMULATIONS

The computational technique of classical MD has proven
to be an invaluable tool for modeling the response of solids
under shock compression [32–34], affording insight at an
atomistic level on physical processes that occur under such

conditions, such as shock-induced phase transitions [35,36],
the nucleation and propagation of dislocations and stacking
faults in face-centered cubic materials [37–40], and shock-
induced melting [41].

In the work we present here we use the readily available
LAMMPS code [42] to perform two sets of MD simulations of
uniaxial shock-wave propagation along the 〈001〉 direction in
single-crystal silicon. Propagation along the two other main
symmetry directions in the sample, 〈011〉 and 〈111〉, has not
been considered in the context of the research presented in
this paper, and is indeed worthy of future investigation. The
first set of smaller simulations, which we shall henceforth
refer to as set I, was used for those tasks in which the final
results sought were deemed to be relatively size independent,
and therefore the speed of the simulation was of high
priority, whereas the second set (set II) were much larger
simulations, employed when the overall stability of the wave
profiles was the most important criterion. In both sets, shock
waves with propagation velocity US were launched into the
system by the impact of a piston only a few unit cells wide
and with constant atomic velocity Up, following the initial
thermalization of the bulk sample at 300 K for 3 ps. Periodic
boundary conditions were imposed on the two dimensions
transverse to the shock-propagation direction. The interatomic
interactions in the sample were modeled with a modified
semiempirical bond-order Tersoff-like potential [43–45], as
parametrized by Erhart and Albe [46], which has in the
past been compared with alternative potentials [47–49] and
has proven successful in describing various properties of
crystalline silicon including elastic constants [50] and general
thermodynamic properties [51], as well as the properties of the
cd to β-Sn phase transition under both hydrostatic and uniaxial
compression [52–54]. In set I, the sample cross section was
30 × 30 unit cells, and 390 unit cells along the shock-wave
propagation direction (the z axis), corresponding to a total of
2 809 800 atoms. For all values of Up, the elastic shock front
reached the rear end of the sample and underwent reflection
just after 23 ps from the start of the simulations, and unless
otherwise stated 23 ps is the time when results from the set I
simulations are presented in everything that follows. In set II,
the sample dimension was of 100 × 100 × 1500 unit cells,
corresponding to 120 020 000 atoms in total. Piston velocities
between Up = 1.4 km s−1 and Up = 2.5 km s−1 in steps
of 0.1 km s−1 were explored in both cases. Finally, it is worth
emphasizing that all samples considered in this work have been
modeled as perfect defect-free crystals, given that silicon can
be manufactured with essentially zero defect density [55].

A typical simulation from set I for a particle velocity of
1.6 km s−1 is shown in Fig. 1, where the atoms have been
color coded according to their centro-symmetry parameter
(CSP) [56]. An elastic precursor is observed, followed by a
region of bands of interlocking parallelepipeds composed (as
we demonstrate below) of material in the Imma phase, and
lying inclined at an angle relative to the sides of the simulation
box across the (111) crystallographic plane of the compressed
sample. Only two such planes of the banding structure are
activated in the set I simulations due to the deliberately
restrictive size of the cross-sectional area, whereas in the
larger set II simulations all four planes have been observed
to be activated. The set I simulations therefore afford for a
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FIG. 1. (Color online) Example of a set I simulation of shock-
wave propagation (from right to left) in single-crystal Si at a particle
velocity of 1.6 km s−1, and 23 ps after the start of the simulation. The
atoms are color coded according to their CSP [56]. The CSP is higher
for the material in the cd phase depicted in light orange (around
11.5 Å2) than for the remaining Imma phase shown in darker red
(around 6 Å2). Note that at the points where the bands of Imma phase
intersect the value of CSP drops to nearly zero (colored in black),
possibly as a result of stress-concentration effects. The structure of
intersecting parallelepipeds of Imma material that constitutes the
mixed-phase region is clearly visible, together with the region of
elastic compression that precedes it.

cleaner and simpler picture of the banding structure, and for
this reason much of the ensuing analysis of the microstructure
of the phase transition presented in the remainder of this paper
will be performed on these smaller simulations. The larger
set II simulations on the other hand are not readily amenable
for structural analysis due to the complicated nature of the
banding structure observed there. Qualitatively however, the
same phenomena are observed to occur in the two sets of
simulations, including the shock-induced phase transition and
the ensuing relief of shear stress, and both sets therefore offer
the same degree of physical insight into these phenomena. The
onset of the mixed-phase banding structure was first detected
at a particle velocity of 1.6 km s−1 in the set I simulations,
and slightly lower at 1.5 km s−1 in the set II simulations. It
was then observed to dominate the response of the sample up
to around 2.1 km s−1, at which point it started to be gradually
eroded by shock-induced melting (which was confirmed by
the onset of considerable diffusion of individual atoms). In
most of the results that follow (unless otherwise stated) we
will therefore restrict the analysis to values of Up below
2.3 km s−1, before melting becomes significant. The two-wave
profile in the stress due to the phase transformation is shown
in Fig. 2, together with the evolution of the residual shear
stress as a function of distance, for a shock of particle velocity
1.9 km s−1. We find that the degree of relief of the shear
stress increases as a function of particle velocity Up, as shown
in Fig. 3, until it eventually vanishes altogether at the onset
of the shock-induced melting. As explained earlier, the set I
simulations were used to perform most of the analysis on the
microstructure due to the simplicity of the banding structure
there. In particular, the region of the simulations encompassing
the stable part of the pressure and particle velocity profiles,
with a typical width of 300 Å, was considered for performing
this analysis. Longer simulations were used to confirm that
the final states reached were indeed stable on the time scales
accessible to simulation. We have also made a spot check
of the normal component of the pressure on either side the
interface between the two phases and found that they agree

FIG. 2. (Color online) Wave profiles as a function of position in
the sample of the pressure components Px and Pz, together with
those of the total pressure Ptot = 1

3 (Px + Py + Pz) and the shear stress
Pz − Px , for the set II simulation at Up = 1.9 km s−1. The positions
of the elastic precursor front and the ensuing phase transition wave
are indicated.

within 3%, further confirming that the mixed-phase system is
close to equilibrium

As noted above, we identify the mixed-phase region to
be composed of close-to-hydrostatically compressed cd and
Imma phases. The identity of the two phases was confirmed
by separating them by internal energy per atom (they can
also be readily separated by CSP), calculating the Fourier
transform (FT) of the atomic coordinates, and analyzing the
resulting diffraction pattern [57]. The lifting of symmetry in
the basis of Imma leads to a reappearance of peaks in the FT
which are forbidden by the cubic diamond (and by extension
β-Sn) structure factor. The presence of these peaks in the FT,

FIG. 3. (Color online) Values from the set II simulations of the
pressure component Pz and of the residual shear stress Pz − Px

across the stable part of the phase transition wave. The magnitude
of the shear stress at the end of the phase transformation process
gradually decreases from the first occurrence of the phase transition
at 1.5 km s−1, until it is essentially fully relieved by Up = 2.0 km s−1

as a result of the onset of the new liquid phase.
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FIG. 4. (Color online) Four-atom unit cell of the orthorhombic
Imma phase, where a, b, and c are the lattice parameters and � is the
degree of freedom in the atomic position of the second atom in the
two-atom basis at (0, 1

2 ,�).

along with analysis of the real space structure, confirm that the
transformed material lies in the Imma phase, not the closely
related β-Sn.

An analysis of reciprocal space therefore confirms that
the mixed-phase region, following the region of elastic com-
pression, is comprised of nearly hydrostatically compressed
silicon in a high-pressure cd structure and of material in the
high-pressure Imma phase [58,59]. This new phase has a body-
centered orthorhombic (bco) Bravais lattice, with a two-atom
basis with atoms at the origin (0,0,0) and at atomic position
(0, 1

2 ,�), where � ranges between 0.25 and 0.5. The signif-
icance of this � parameter relative to the conventional four-
atom unit cell of the Imma phase is shown in Fig. 4. A summary
of the special values that the four parameters of this cell, a, b,
c, and �, take in each of the phases is presented in Table I.

The overall appearance of the banding of this mixed-phase
region is qualitatively very similar to the results reported
by Lane and Thompson [29] in their simulations of shock-
compressed germanium. In agreement with their results, we
find that rather than defect-mediated plasticity, it is the phase
transition itself that relieves the shear stress in the uniaxially
compressed lattice—what might be termed an inelastic, rather
than plastic response. Indeed, an analysis of the mixed-phase
region in reciprocal space shows its usefulness in distinguish-
ing between defect-mediated plasticity, and inelastic behavior.
As the material is compressed under conditions of uniaxial
strain, the total strain transverse to the shock propagation
direction is zero. For any general material response, this means
that the total strain transverse to the shock (εT

Tot) composed
in principle of both elastic strain εT

e and plastic strain εT
p is

zero. That is to say ε
T =εT

e +εT =0
p

Tot . In the case of defect-mediated

TABLE I. Crystallographic structural parameters of the four-atom
unit cell for the three phases considered in this work.

Structure b/a c/a � Space Group

Cubic Diamond 1
√

2 0.25 Fd 3̄m

β-Sn 1 free 0.25 I41/amd

Imma free free free Imma

plasticity in the absence of a phase transition, it is the finite
plastic strain εT

p caused by the generation and motion of defects
that gives rise to a negative elastic strain transverse to the shock
propagation (i.e., a compression of the mean spacing of the
lattice in this direction). As the lattice is already compressed
along the direction parallel to the shock propagation, this
results, for an initially cubic material, in the average unit cell
changing from being tetragonal (under elastic compression)
back to cubic yet further compressed—and thus the material is
closer to the hydrostat. As with x-ray diffraction, an FT of the
material reveals the elastic strain (owing to the random nature
of the defects, which thus do not contribute in large amplitude
to the FT signal).

The mechanism behind the inelastic behavior observed
here is qualitatively different. In this case, there is no defect
mediated plasticity, and thus εT

p , and hence εT
e , are both

zero. The relief of the shear stress occurs directly due to
the phase transition. The new phase (in this case Imma)
has a lattice spacing in the transverse direction which is
larger than the lattice spacing of the unshocked cd phase,
and thus the transformation of material to the Imma phase
necessitates a reduction in the lattice spacing of the cd phase,
driving it towards the hydrostat. We can decompose the total
elastic strain in the transverse direction into the elastic strain
within the Imma and cd phases, εT

e,Imma and εT
e,cd , where now

εT
e,Imma + εT

e,cd = 0.
This interpretation is readily borne out by an analysis of the

mixed-phase region in reciprocal space. Figure 5 shows a slice
through reciprocal space (k space) across the kz = 0 plane.

FIG. 5. (Color online) Fourier transform image of the real-space
atomic positions in the mixed-phase region. The region shown is the
kz = 0 plane between the kx ± 3 and ky ± 3 limits (the k axes of the
reciprocal plane are in units of 2π/ao, where ao is the lattice constant
of the uncompressed cubic diamond structure). The equilibrium
positions of the {220} diffraction spots are highlighted. The signals
corresponding to the two phases on both sides of each of these spots
are also labeled.
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Note that each of the original (220) reflections has split in two,
and are located either side of the position of the (220) reflection
of the unshocked material (which we have confirmed is also
the position of the peak for the material in the region which
is elastically compressed). The generation of this FT using
only atoms in the Imma, and then cd, phase, confirms that the
intensity in reciprocal space further from the origin is due to
the atoms in the cd phase (their lattice spacing has reduced
in real space, thus increased in reciprocal space), whereas the
intensity closer to the origin is due to the Imma phase. Inelastic
behavior, as discussed above, is confirmed by the fact that the
weighted mean of the intensity remains at the original (220)
position, which would not be the case in a situation of defect-
mediated plasticity (as observed by Bringa and co-workers for
Cu [37]).

III. MORPHOLOGY OF THE MIXED-PHASE REGION

As noted above, we find that the shear stress in the mixed-
phase region is relieved due to the phase transformation: A con-
traction of the lattice parameter of the cd material transverse to
the shock is accommodated by the larger lattice parameter in
this direction of the Imma phase, with the total number of unit
cells transverse to the shock propagation direction remaining
constant. In this model, a greater fraction of the new phase will
allow for a larger accommodation of shear strain, and as such,
the fraction of Imma will increase with pressure.

We now establish the relation between the condition of
relief of shear stress within the mixed-phase region and its
microstructure. We will refer to the coordinate system shown
in Fig. 6 to describe the orientation of the planar surfaces
of a single representative parallelepiped of Imma phase in

FIG. 6. (Color online) Reference system employed in this study
to describe the orientation of a parallelepiped of Imma material
(shown in dark gray): x, y, z are the orthogonal Cartesian axes, θ

and φ are the angles that the parallelepiped makes to the sides of the
simulation box containing it, W is the thickness of the parallelepiped,
and L is the square cross-sectional dimension of the box. The inset
below the figure shows how the individual Imma unit cells are stacked
on top and next to each other. Only one parallelepiped is shown here
for representative purposes, but in the actual simulations the box, of
length lz along the z axis, contains the volume of exactly four such
parallelepipeds.

the mixed-phase banding structure. We will also assume for
simplicity that all individual unit cells have their sides aligned
with the axes of this coordinate system. The angles θ and
φ, which describe the inclination of the parallelepipeds, are
therefore related to the lattice parameters a, b, and c of the
orthorhombic unit cell of the Imma phase according to the
following equations:

tan θ = bI

cI

, tan φ = aI

cI

,

(1)

sin θ = bI√
b2

I + c2
I

, cos θ = cI√
b2

I + c2
I

.

Let us assume full relief of shear stress within the cubic
diamond phase, i.e., that acd = bcd (note that henceforth,
cd should be understood to refer to the high-pressure cubic
diamond material unless otherwise stated). At this stage
we are left with three degrees of freedom which the par-
allelepipeds can adopt to accommodate the relief of shear
stress: angles θ and φ, and the band width W , as defined
by Fig. 6. As the shock is uniaxial, we impose conservation
of the transverse dimension of the sample, and conservation
of transverse number of unit cells. Being limited to the
x-y transverse plane, the model presented here does not
provide any information about the z dimension of the sample.
The first condition of conservation of transverse length
between the initial unshocked lattice in the equilibrium cd

structure and the final mixed-phase state can be expressed as

NIaI + Ncdacd = N0a0 ⇒ LI + Lcd = L0. (2)

NI , Ncd, N0 and aI , acd, a0 are, respectively, the number of
unit cells and lattice parameter for the Imma phase, cd phase,
and the unshocked material, along either the x or y direction.
The second constraint, namely that the number of unit cells
along these directions transverse to the shock is conserved,
implies

N0 = NI + Ncd. (3)

Considering these two constraints simultaneously we find

L0

a0
= LI (acd − aI ) + L0aI

acdaI

, (4)

where

LI = W

2

1√
a2

I + c2
I

√
2a2

I + a4
I

c2
I

, (5)

where by symmetry we have assumed aI = bI . However, even
with aI = bI the Imma unit cell remains different from that of
β-Sn due to the � factor described in Fig. 4.

The prediction that aI = bI is supported by the MD
simulations, in that we find the values of aI and bI extracted
directly from the position of the (220) diffraction spot in the
FT of the Imma phase to be in excellent agreement at a value of
around 6.7 Å in all simulations. Moreover, the angles θ and φ

are found to agree very closely. If the Imma phase lay precisely
on the hydrostat, then cI /aI ≈ 0.55 for all piston velocities,
and we would predict that θ = φ ≈ 62◦ according to Eq. (1).
In practice, we find that owing to the finite residual shear stress
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present in the simulations, θ and φ range from around 55◦ to
around 60◦ as the particle velocity is increased from 1.6 to
2.1 km s−1.

As well as the angles that the bands make, the assumption of
inelastic deformation allows us to predict the volume fractions
f V

I and f V
cd of Imma and cd phases, respectively, in the mixed-

phase region. We first require an expression for f V
I in terms

of the lattice parameters of the Imma unit cell. The volume of
a single parallelepiped is in general given by L2

0W . Hence the
volume fraction of a parallelepiped of Imma material relative
to the volume of the box enclosing it (of length lz), as defined
in Fig. 6, is

f V
I = VI

VTot
= W

lz
. (6)

We thus find that the Imma volume fraction of a single
parallelepiped within the volume of the box of Fig. 6 is given
by

f V
I = (a0 − acd )aI

2(aI − acd )a0

√
a2

I + c2
I√

2c2
I + a2

I

. (7)

Each box of this size contains the volume of exactly four
parallelepipeds. An expression for f V

I accounting for this is
given by

(
f V

I

)
Tot = 2(a0 − acd )aI

(aI − acd )a0

√
a2

I + c2
I√

2c2
I + a2

I

. (8)

A value for the number (rather than volume) fraction of each
phase is easily extracted from the MD simulation by binning
according to internal energy. Once plotted, the distribution
of internal energy appears as a well defined double-peaked
distribution, with each peak corresponding to one of the two
phases. Also present at the highest values of the internal
energy in the overall profile is a smooth distribution of atoms
identified as lying at the boundaries between the two phases.
These atoms have the highest energy because they are in the
most highly strained environments. In counting the number
fraction of the Imma phase, the number of atoms under the
corresponding peak was divided by the total number of atoms
across the entire internal energy profile, including therefore
the number of atoms at the boundaries, due to these atoms
being non-negligible in number. The upper limit in the value
of the number fraction for each piston velocity was estimated
by assuming that all atoms at the boundaries belong to the
Imma phase, whereas the lower limit was obtained conversely
by assuming that all boundary atoms lie in the cd phase.
Furthermore, the expression for the volume fraction of Eq. (8)
can be converted to a number fraction of atoms in the Imma
phase f N

I by noting that

f N
I = f V

I Vcd

VI − f V
I VI + f V

I Vcd

. (9)

In Fig. 7 we compare the number fractions derived from
MD with those calculated from Eq. (9). The lattice parameters
used in Eq. (9) were derived from an analysis of the reciprocal
space plots for the two phases. By considering a sample of

FIG. 7. (Color online) Comparison between the number fraction
of the Imma phase f N

I predicted by Eq. (9), with those derived
from the set I simulations. MD number fractions were calculated
by separating the two phases according to their internal energy.

around 20 diffraction spots in reciprocal space for each phase, a
statistical analysis on the values of these lattice parameters was
performed, with the error bars shown representing the derived
standard deviation in number fraction. It can be seen that the
values obtained from the model and the MD simulations are
consistent for all values of Up.

Despite the consistency between the model and the sim-
ulations, it should be noted that the arguments put forward
above do not take into account a number of factors. First, we
have neglected the effects of lattice rotations, which have been
observed in the FT of both phases. These rotations amount
to roughly 10◦ about the y axis for the cd phase, and up to
around 18◦ in the opposite sense for the Imma phase. We
also neglect the effects of interfacial strains occurring at the
boundary between cd and Imma phases. The mismatch in
lattice parameters of these two phases will necessarily lead to
an incommensurate boundary which could lead to distortion of
the simple structures discussed above. However, the highly dis-
ordered nature of this boundary material (typically accounting
for around 10%-15% of the atoms) makes characterization of
these regions highly challenging. In addition, similar issues are
encountered at intersections between bands, where once again
detailed analysis is hindered by the small number of atoms
(rendering reciprocal space analysis ineffective), as well as
inherent disorder and strain gradients. We therefore conclude
that although quantitative agreement is not to be expected,
the qualitative trend exhibited is indicative of the underlying
mechanisms conforming to those forming the basis of Eq. (9).

IV. THERMODYNAMICS OF THE MIXED-PHASE REGION

Under the conditions of constant temperature and pressure
such as those predicted to be found in shock-induced mixed-
phase regions [60,61], the condition of relative stability
between phases is given by the minimization of the Gibbs
free energy G of the material

G = E + PV − T S, (10)
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where E is the internal energy, P is the pressure, V is
the volume, T is the temperature, and finally S is the
entropy. The same considerations apply when comparing the
mixed-phase region with the state of elastic compression,
except that the definition of G under uniaxial compression
is given by [61]

Guniaxial = E + PzV − T S. (11)

In what follows, we shall neglect the entropic contributions to
the Gibbs free energies embodied by the term T S, so that G

reduces to another thermodynamic potential function, that is
the enthalpy:

H = E + PV, (12)

or equivalently

H = E + PzV, (13)

for the case of uniaxial compression. We find this assumption
to be reasonable given the high stiffness of both the cd

and Imma phases. Within the approximation that the thermal
contribution to the entropy can be reasonably evaluated by
assigning an Einstein frequency to each phase, and then using
the Einstein model, the change in the T S term was found to be
of order 25 meV for the cd phase and around 40 meV for Imma,
and therefore small compared with �H in both cases. The
configurational entropy due to the banding is clearly negligible.
The T S term in the Gibbs free energy is consequently also
negligible despite the considerable magnitude of the shock-
induced rise in temperature, which is of order 103 K. The
effects of temperature are not however completely left out of
the enthalpy calculation, since they still significantly contribute
to both the internal energy E and pressure P terms.

A complete thermodynamical analysis of the shock-loading
process as seen in the MD simulations also requires knowledge
of the state variables of the system. These are given by
the Rankine-Hugoniot equations embodying the principles of
conservation of mass, energy, and momentum across a shock
discontinuity:

ρ0(US − U0) = ρ(US − Up),

ρ0(US − U0)(Up − U0) = P − P0, (14)

e − e0 = PUp − P0U0

ρ0(US − U0)
− 1

2

(
U 2

p − U 2
0

)
,

where P is the external pressure exerted on the material by
the shock, ρ is the density, T is the temperature, Up is the
particle velocity, US is the shock velocity, U0 is the upstream
flow velocity, e is the specific internal energy, and subscript 0
denotes the initial value of each of these variables in the region
ahead of the shock front. In addition to the Rankine-Hugoniot
equations, the material behavior under shock compression is
described by its equation of state (EOS), from which one can
derive a US-Up relation for the material. For most materials
we can employ a linear US-Up relation of the form

US = C0 + C
′
Up. (15)

The Rankine-Hugoniot equations lead to the following ex-
pression for the jump in specific enthalpy across the shock
wave from the equilibrium state, known as the Hugoniot

relation [62]:

�h = 1
2 (Up − U0)(2US − Up − U0). (16)

In the case of a two wave shock we consider each waves’
enthalpy contribution in turn. For the leading elastic wave,
which is found to travel at velocity Ue

S = 9.064 km s−1

regardless of pressure, and for which the upstream flow
velocity is zero, we can express the enthalpy jump as

�he = Ue
p

2

(
2U0 − Ue

p

)
, (17)

where Ue
p is the particle velocity in the elastically compressed

region. Note that this quantity is distinct from, and lower than,
the applied piston velocity Up, which will dictate the particle
velocity in the phase-changed region behind the second wave.
It is found that in the set II simulations these velocities obey
the linearity of the US-Up relation.

The enthalpy change due to the phase transformation wave
can be calculated by noting that the second wave now travels
into the elastically compressed region where the flow velocity
U0 = Ue

p. This leads to an enthalpy change of

�hp = 1
2

(
Up − Ue

p

)(
2U

p

S − Up − Ue
p

)
, (18)

where we again fit the set II data to find a linear relation
between shock and piston velocity for the phase transformation
wave. The total enthalpy change for the two wave shock is
therefore �h = �he + �hp. A summary of the parameters in
the US-Up relation of the two waves, the elastic and phase
transition waves, is offered in Table II.

Finally, a further estimate of the enthalpies for each of the
two phases in the mixed-phase region was obtained by directly
computing the total average energy and pressure from the MD
simulations, and by estimating the atomic volume from the FT
patterns. When calculating the enthalpies of the two phases,
the pressure in each phase was assumed to be hydrostatic, such
that the elementary definition of enthalpy H = U + PV could
be used. The individual enthalpies of the cd and Imma phases
were finally weighted by their number fraction predicted from
the corresponding lattice parameters according to Eq. (8) for
calculating f V

I , together with Eq. (9) for converting from f V
I

to f N
I (with f N

cd−hp given by 1 − f N
I ). The total high-pressure

mixed-phase enthalpy is consequently given by

H HP
Tot = f N

cd−hpHcd−hp + f N
I HI , (19)

where Hi = Ei + PiVi for a general phase i. The final outcome
of the two approaches for calculating the total enthalpy jump

TABLE II. Particle and shock velocities Up and US across the
elastic and phase transition waves according to the linear US-Up

relation US = C0 + C
′
Up . The top value in the column of C0

parameters corresponds to the sound velocity in the material at zero
pressure.

C0 (km s−1) C
′

Ue
p 9.064 0

Ue
S 1.1983 0.0899

Up
p 0 1

U
p

S 2.8401 2.048
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FIG. 8. (Color online) Enthalpy change �H from equilibrium
per unit atom as a function of Up predicted by the various enthalpy
extraction methods. The data above Up = 2.0 km s−1 is included for
completeness but should be treated with caution due to the onset of
shock-induced melting in the sample.

across the phase transition from the initial equilibrium state,
namely the US-Up relation method based on Eq. (16) and
the method based on the direct extraction of data from the
simulations, is presented in Fig. 8. It can be seen that the overall
enthalpy increase predicted by the two different methods are
in excellent agreement, confirming that our MD simulations
of shock waves obey the Hugoniot relation.

Furthermore, when extrapolating the enthalpy to lower
particle velocities, both methods suggest that the shock-
induced phase transition to Imma should first occur in the range
of Up between 1.3 and 1.4 km s−1, where the enthalpy of the
mixed-phase region first becomes lower and therefore more
thermodynamically favorable than that of the state of elastic
uniaxial compression. The first hints of the phase transition
were seen at 1.6 km s−1 in set I, and at 1.5 km s−1 in the larger
set II simulations—that is to say in reasonable agreement with
the enthalpy analysis. The slightly higher values of Up found
in practice could be linked to the enthalpy barrier between the
two regions, which has not been explored here.

Although we find good agreement between the enthalpy
determined by the Hugoniot relation and the wave velocities,
and that found by directly determining U , P , and V from
the MD simulations, we caution that there remain aspects of
the simulations that are still not understood. Most noticeably,
we find that the pressures within the two phases are not the
same—with the pressure in the cd phase being considerably
lower than that in the Imma phase. Indeed, it is for this reason
that the enthalpy of the cd phase, shown in Fig. 8, is the
lower of the two phases—if the pressures were the same,
we would expect the new Imma phase to have the lower
enthalpy.

We also note that the Hugoniot relation for the shock
does provide some modest insight into a potential synergy
between the inelastic behavior—in terms of the stress relief
being provided by the partial phase transformation—and the
minimization of the enthalpy. We see that the Hugoniot relation
[Eq. (16)] determines that if the two phases in the mixed-phase

region are at the same hydrostatic pressure, then at the first
point where the transformation can occur—where we expect
the enthalpy per atom of each phase to be identical—we predict
that the volume fraction of each phase should be proportional
to the enthalpy increase in that phase.

V. CONCLUSIONS

We have conducted an investigation into the mechanism
underpinning the relief of shear stress in shock-compressed
single-crystal silicon. Multimillion atom simulations of shock-
wave propagation in a single-crystal sample of silicon predict
the onset of a high-pressure mixed-phase region following
directly after the initial elastic response, consisting of nearly
hydrostatically compressed cubic diamond crystal structure
and of phase-transformed material lying in the Imma high-
pressure phase. This mixed-phase state manifests itself in an
inclined banding structure of Imma phase, and persists from
piston velocities of around 1.5 km s−1 up to around 2.1 km s−1,
at which point the structure becomes very disordered indicat-
ing shock melting of the sample. By extracting the lattice
parameters of the various phases from the Fourier transform
images of the real-space atomic positions, and interpreting the
banding structure in terms of the relief of shear stress across
the plane perpendicular to the shock propagation direction,
we are able to predict the volume fraction of the Imma
phase. Furthermore, an analysis of the relative thermodynamic
stability of the two phases by computing their enthalpies
from the overall US-Up relation deduced from the shock
velocities, and from directly recording U , P , and V within
the simulations, are in good mutual agreement, predicting
that the mixed-phase region first becomes thermodynamically
advantageous in the range of Up between 1.3 and 1.4 km s−1,
slightly less than the point of onset detected in the MD
simulations.

However, despite the insight that these simulations might
afford, we note that it is still the case that our prediction
for the value of Up, and hence stress, for the onset of the
inelastic behavior, is still considerably higher than that found
in experiments [1] (≈1.4 km s−1 as opposed to ≈0.8 km s−1,
respectively), and the reasons for this discrepancy remain
elusive. It is unlikely that experimental samples have an initial
defect density that is sufficiently high to influence the material
response, although clearly simulations including initial defects
may provide further insight. Alternatively it is conceivable
that the Erhart-Albe potential [46] is not fully capturing
the material response under shock conditions, and some
modifications to the potential may be required. We recall that
it is not unknown for other types of potentials that faithfully
encapsulate certain aspects of material behavior under ambient
conditions, to then fail to reproduce known shock response at
higher pressures—a classic example being the potential by
Ackland et al. for iron [63] that provides a good match to the
phonon dispersion curves at ambient pressure and temperature,
but cannot capture the α-ε transition at 130 kbar, whereas the
Voter-Chen potential [64,65], while having a poorer match at
ambient conditions, reproduces the phase transition. Finally,
we note that with the advent of the DC-CAT facility at the
Advanced Photon Source (APS) synchrotron facility [66], and
the MEC experimental station at the Light Coherent Light
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Source (LCLS) free-electron laser facility [67], there are good
prospects for more sophisticated laser-based in situ x-ray
diffraction experiments that could further our understanding
of the shock response of matter at the lattice level.
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