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First-principles study of atomic ordering in fcc Ni-Cr alloys
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We investigate atomic ordering in fcc Ni-rich Ni-Cr alloys using first-principles techniques and statistical
mechanics simulations based on the Ising Hamiltonian with effective cluster interactions computed by the screened
generalized perturbation method (SGPM) and projector augmented wave (PAW) method. We demonstrate that
effective chemical interactions in this system are quite sensitive to alloy composition and in fact to the specific
configurational state. The chemical interactions for the high-temperature random state produce the atomic
short-range order (SRO) with intensity maximum close to the ( 2

3
2
3 0) point of the reciprocal space in agreement

with the previous first-principles investigation. A consistent with diffuse neutron scattering data maximum at the
(1 1

2 0) position is obtained only when we take into consideration relatively small strain-induced interactions, which
solves a long-standing inconsistency between theory and experiment in this system. The calculated transition
temperature of order-disorder transition of Ni2Cr alloy, 880 K, is in good agreement with the experimental value
of 863 K.
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I. INTRODUCTION

Ni-Cr alloys form solid solutions over a wide range of
composition and temperature on the fcc lattice [1]. They
have an excellent combination of mechanical strength and
high-corrosion resistance at elevated temperature, which
makes them attractive in a variety of applications such as
aircraft gas turbines, steam turbine power plants, chemical and
petrochemical industries [2]. At the same time, it is established
that some properties, for instance, electrical resistivity and
ductility are connected to atomic ordering in this system [3–6],
which exhibits quite unusual behavior.

At low temperatures, fcc Ni-rich random alloys become
unstable and a first-order phase transition occurs to the Pt2Mo-
type ordered structure [7–11] with the highest transition
temperature of 863 K at the stoichiometric alloy composition,
Ni2Cr. It is characterized by superstructure vector ( 2

3
2
3 0) [or

4
3 (1 1

2 0)] in the reciprocal space. The fact that the latter is shifted
from the fcc (1 1

2 0) special point where the diffuse scattering
SRO maxima of random Ni-Cr alloys is observed, has attracted
much attention to the mechanism of the phase transformation
in Ni-Cr and other similar systems [12–15].

The atomic SRO in fcc Ni-Cr random alloys has been
extensively studied experimentally. Diffuse neutron scattering
technique was used by Vintaykin et al. [16,17] for Ni0.67Cr0.33

alloys and by Caudron et al. [18,19] for Ni0.67Cr0.33 and
Ni0.75Cr0.25. Schönfeld et al. [20,21] and Schweika and
Haubold [22] studied the atomic SRO and static atomic
displacements in Ni0.8Cr0.2 and Ni0.89Cr0.11 using the diffuse
neutron scattering and synchrotron radiation. They also eval-
uated effective pair interactions in this system using both the
Krivoglaz-Clapp-Moss equations and the inverse Monte Carlo
method.

As for theoretical investigations, there exist two ab initio
studies of the SRO in Ni-Cr alloys [23,24]. However, their
results are quite controversial. Turchi et al. [23] calculated
effective cluster interactions (ECI) by the generalized per-

turbation method (GPM) implemented in the first-principles
framework of the Korringa-Kohn-Rostocker (KKR) method
and the coherent potential approximation (CPA). They got
negative nearest-neighbor effective pair interaction, which lead
to a phase separation instead of ordering.

Staunton et al. [24] using the S(2) formalism within
the same KKR-CPA method for the effective interactions
and a mean-filed method within an Onsager cavity-field
approach, demonstrated that the problem with interactions in
the calculations by Turchi et al. [23] was related to the neglect
of charge transfer in the GPM calculations. At the same time,
although the problem with a phase separation trend was solved
in Ref. [24], the resulting theoretical diffuse intensity map
in the reciprocal space had additional maxima at ( 2

3
2
3 0) at

variance with the existing experimental data.
In this work, we study atomic ordering in Ni-rich Ni-

Cr alloys using several different ab initio techniques. In
particular, we use the SGPM [25,26], which is a GPM method
adopted to the density functional theory (DFT) first-principles
calculations by including a contribution from the screened
Coulomb interactions [25,27] and the full-potential PAW
method [28] for calculating strain-induced interactions. The
statistical modeling is done by the Monte Carlo (MC) method.

II. METHODOLOGY

A. Configurational Hamiltonian

We use an Ising Hamiltonian for a statistical thermody-
namic description of alloy energetics on a lattice, which
presents the configurational energy of an alloy in terms
effective cluster interactions:

Econf = 1

2

∑
p

V (2)
p

∑
i,j∈p

δciδcj + 1

3

∑
t

V
(3)
t

∑
i,j,k∈t

δciδcj δck

+ 1

4

∑
q

V (4)
q

∑
ijk�∈q

δciδcj δckδc�. (1)
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Here, V (n)
s are the n-site ECI for the cluster of an s type,

δci are the concentration fluctuations at sites i: δci = ci − c,
where ci is the occupation number at site i, taking on values 1
or 0 if the site i is occupied by Ni or Cr atom, respectively, and
c is the concentration of Ni. The summation in (1) is carried
out over all sites.

The ordering energy, i.e., the difference of the energies of
the ordered and random alloys for a fixed lattice constant in
terms of the ECI is expressed as

�Eord = 1

2
c(1 − c)

∑
p

zpV (2)
p αp + h.o.t. (2)

Here, the first term is the contribution from effective pair
interactions (EPI) expressed using the Warren-Cowley SRO
parameters: αp = (〈cicj 〉 − c2)[c(1 − c)]−1; for the pth co-
ordination shell, zp is the coordination number for the pth
coordination shell and h.o.t. stands for the contribution from
the higher-order or multisite interactions.

B. Static concentration wave method

In the static concentration wave method [29], the contribu-
tion from the EPI to the ordering energy is determined as

�Eord = 1

2
c(1 − c)

�0

(2π )3

∫
BZ

dqVqαq

= 1

2

�0

(2π )3

∫
BZ

dqVq|cq|2, (3)

where �0 is the volume of primitive unit cell, Vq, αq, and cq are
the Fourier transforms of the EPI, short-range order parameter,
and concentration fluctuations, respectively:

Vq =
∑

p

∑
i∈p

V (2)
p e−iqRi ,

αq =
∑

p

∑
i∈p

αpe−iqRi , (4)

cq =
∑

i

δcie
−iqRi .

It is clear from (4) that αq = |cq|2. Both of them satisfy the
sum rule:

�0

(2π )3

∫
BZ

dqαq = 1

c(1 − c)

�0

(2π )3

∫
BZ

dq|cq|2 = 1, (5)

which plays an important role in the statistical theory of
ordering.

The alloy configuration in this formalism is given by a su-
perposition of the static concentration waves with amplitudes,
cq, or Fourier transforms of the SRO parameters, αq. At finite
temperature, the latter can be found from a minimization of
the corresponding free energy functional, which leads to the
Krivoglaz-Clapp-Moss type equation [30–32] connecting the
Fourier transforms of the EPIs, Vq and SRO parameters αq,
which, for instance, in the ring mean-field approximation of
the thermodynamic fluctuation method is [33]

αq =
[

1 + c(1 − c)

kBT
(μ + Vq)

]−1

, (6)

FIG. 1. (Color online) The ordered structure of Ni2Cr with pro-
jection of atoms on the (001) plane.

where, μ is the chemical potential is determined from the sum
rule (5).

It follows from Eq. (6) that the positions of the maximum of
the Fourier transform of the SRO parameters and the minimum
of Vq should coincide. Therefore, just knowing Vq, one can
predict the type of the atomic SRO in the random state. As has
been already mentioned, the maximum of αq in the Ni-rich
Ni-Cr alloys is observed at the fcc special (1 1

2 0) point, so this
should be also the position of the minimum of the Fourier
transform of the EPI.

The formation of the long-range ordered structure happens
in a somewhat different way. In this case, the alloy composition
and crystal structure impose additional boundary conditions
and therefore the ground state structure can be presented by
the concentration wave(s) with wave vectors q different from
the position of the minimum of Vq. This is the case of the
Ni2Cr phase where the static concentration wave is formed by
superstructure vector ( 2

3
2
3 0) [or equivalently 4

3 (1 1
2 0)], which is

different from (1 1
2 0).

In Fig. 1, we show the Ni2Cr ordered structure as the
“Cr-Ni-Ni-Cr” stacking sequence of either the (420) or (220)
planes with every third plane containing only Cr and two
others only Ni atoms. In the completely ordered state, the
site occupation in the Ni2Cr structure is determined by the
following concentration wave [29]:

c(R) = 1

3
+ 2

3
cos

[
4π

3
(2x + y)

]

= 1

3
+ 2

3
cos

[
4π

3
(x + y)

]
, (7)

where R is the fcc lattice vector, and x and y are x− and
y−components of R in units of the lattice constant.
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C. First-principles calculations

Ab initio calculations have been done by the exact muffin-tin
orbitals (EMTO) [34–36] and PAW [28,37] methods using
DFT [38]. The PAW method [28] has been used as is
implemented in the Vienna ab initio simulation package
(VASP) [37], in the calculations of the enthalpies of formation
of ordered alloys, relaxation energies, forces and local lattice
displacements using the generalized gradient approximation
(GGA) [39]. The energy cutoff was 300 eV.

In all the calculations presented here, we have neglected the
spin-polarization, since the main focus is on the description of
the alloy configuration at temperatures above 800 K, although
magnetic phase transition in Ni is at about 660 K and it disap-
pears together with low-temperature local magnetic moment
already when concentration of Cr is about 11 at.% [40]. The
local magnetic moment on Ni and Cr atoms can exist at high
temperatures due to longitudinal spin fluctuations, however,
its effect upon the chemical bonding related to ordering is
supposed to be small and will be neglected here.

The local density approximation (LDA) [41] has been
used for the exchange-correlation potential in the EMTO
DFT self-consistent calculations, while the total energy has
been obtained in the GGA [39]. All the EMTO calculations
were performed using an orbital momentum cutoff of lmax =
3 for partial waves. The ECI has been calculated at the
corresponding experimental lattice parameters [1,11,42–44].

The electronic structure of random alloys has been calcu-
lated within the CPA [45,46]. In the CPA-DFT calculations,
the contribution of the screened Coulomb interactions to the
one-electron potential of alloy components, V i

scr, and to the
total energy, Escr, has been taken into consideration [25]:

V i
scr = −e2αscr

qi

S
,

(8)

Ei
scr = −e2 1

2
αscrβscr

q2
i

S
.

Here, qi is the net charge of the atomic sphere of the ith alloy
component, S is the Wigner-Seitz radius, αscr and βscr are the
on-site screening constants.

The screening parameters, α and β, were evaluated from
864-atom supercell calculations of random NixCr1−x alloys
using the locally self-consistent Green’s function (LSGF)
method [47], which has also been used to study local
environment effects in the electronic structure and effec-
tive interactions in Ni-Cr alloys. Their values are αscr =
0.794,0.785,0.773 and βscr = 1.15,1.147,1.144, for random
Ni0.67Cr0.33, Ni0.75Cr0.25, and Ni0.8Cr0.2 alloys, respectively.

The integration over the Brillouin zone for NixCr1−x

random alloys has been performed using a 31 × 31 × 31 grid
of special k points determined according to the Monkhorst-
Pack scheme [48]. In the case of ordered alloys, an equivalent
grid of k points has been used in the corresponding integration
over the Brillouin zone.

D. Effective cluster interactions: chemical contribution

The ECI of the Ising Hamiltonian have been calculated by
the SGPM [25–27]. The SGPM yields only the “chemical”
part of the effective interactions, i.e., the ECI on the fixed
(unrelaxed) underlying crystal lattice. The contribution from

the strain-induced interactions due to local lattice relaxations
has been considered separately within the framework of the
microscopic elastic theory as is described below.

The SGPM EPI for the pth coordination shell is defined
as [25,26]

V (2)−ch
p = V one-el

p + V scr
p , (9)

where V (2)−ch
p is the total effective interaction, V one-el

p the
one electron contribution, or GPM interaction, and V scr

p the
contribution from the screened Coulomb interaction, which
can be determined as

V scr
p = e2αscr

p

q2
eff

S
, (10)

where qeff = qA − qB is the effective charge transfer. The
intersite screening constants αscr

p have been determined in the
supercell calculations by the LSGF method as described in
Ref. [25]. There is no electrostatic contribution in the case of
multisite ECI.

E. Strain-induced interactions

To obtain an additional contribution to the ECI due to local
lattice relaxations, we have used a microscopic elastic theory
formalism for the strain-induced interactions [49–51]. Within
this method it is assumed that elastic and vibrational properties
of an alloy can be described by the homogeneous single-site
effective medium, so the interactions of alloy components are
considered as its perturbation. It is also assumed that atomic
lattice displacements are relatively small so that the harmonic
approximation is valid.

Then, the minimization of the elastic energy with respect
to the local lattice displacements leads to the following
expression for the Fourier transform of the pair stain-induced
interactions [49,50]:

V si(q) = u(q)F ∗(q), (11)

where u(q) and F (q) are the Fourier transforms of local lattice
displacements ui and Kanzaki forces Fi at site i, respectively.
Then the pair strain-induced interactions in the real space
are

V si(Rp) = 1

Nq

∑
q

V si(q) exp(iqRp), (12)

where Nq is the number of q points in the summation. Alter-
natively, but equivalently, the strain-induced interactions can
be directly calculated in the real space from the displacements
and Kanzaki forces as described in Ref. [52]. So, in the end,
the total EPI at the pth coordination shell, V (2)

p , is

V (2)
p = V (2)−ch

p + V si(Rp). (13)

Since it is a highly nontrivial task to use this formalism
within first-principles calculations for concentrated alloys,
we have determined the strain-induced interactions in the
dilute limit of Cr in Ni. In this case, a single-impurity
calculation allows one to determine the Kanzaki (or Hellmann-
Feynman in this particular case) forces Fi (before relaxation)
and local displacements ui (after relaxation) of the host
atoms.
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FIG. 2. Strain-induced interactions obtained in the dilute limit of
Cr in Ni using Eq. (12).

The PAW method [28,37] was employed to obtain the forces
and local atomic displacements around Cr impurity in a 256-
atom fcc supercell built upon four-atom fcc cubic unit cell
[4 × 4 × 4(×4)] of Ni. The integration over the Brillouin zone
has been done using the 4 × 4 × 4 Monkhorst-Pack grid [48].
In Fig. 2, we show the calculated strain-induced interactions.

Let us note that although it is less accurate method
compared to their direct calculations, as has been done, for
instance, in Ref. [53], it allows to get a long-range tail of the
strain-induced interactions, which is important in this case.
In fact, due to a small size mismatch of Ni and Cr atoms,
the strain-induced interactions are relatively weak compared
with the chemical ones. However, their contribution is very
important for a correct description of ordering in NiCr.

III. RESULTS AND DISCUSSION

A. Electronic structure of random NiCr alloys

Being based on the single-site approximation, the CPA
suffers from various limitations, such as its inability to account
for the effects of SRO and the effect of many-site statistical
fluctuations. The latter are usually important in systems
where partial bands of alloy components have a restricted
overlapping, which is just the case of Ni and Cr d-bands in
NiCr alloys. Therefore, in order to test the accuracy of the
CPA for Ni-Cr alloys, we have calculated the density of states
(DOS) of a random Ni0.67Cr0.33 alloy using the CPA and the
LSGF method.

The LSGF method is an accurate first-principles tool for the
total energy and electronic structure calculations of random
alloys. Using a big enough supercell, one can take care of
the most important atomic distribution correlation functions
within the needed range and then calculate its electronic
structure. The local interaction zone (LIZ) in the LSGF
method allows one effectively to cut the long-range (infinite
in fact) interactions thereby retaining the correct properties
of electronic spectrum of random alloys. On the other hand,
all the local environment effects are taken into consideration

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
E-EF (Ry)

0

10

20

30

40

D
O

S 
(1

/R
y)

LSGF
CPA
Ni (d-states)
Cr (d-states) EF

FIG. 3. (Color online) Density of states in the Ni0.67Cr0.33 random
alloy obtained using the CPA and in the 864-atom supercell LSGF
calculations. Ni and Cr partial density of states are shown by dashed
and dashed-dotted lines, respectively.

within the LIZ, which also allows one to consider systems with
atomic SRO.

In Fig. 3, we compare the DOS of the Ni0.67Cr0.33 random
alloy obtained in the CPA and 864-atom LSGF calculations
with LIZ = 3, which means that the electronic correlations
within the first two coordination shells are taken into account.
The experimental lattice parameter, 3.566 Å [1,42], was used
for the calculation of the DOS. As can be seen in Fig. 3, the
local environment effects are indeed quit important in Ni-Cr
alloys: the DOS obtained within the CPA and using the LSGF
differ in the energy range close to the Fermi energy.

The origin of the local environment effects, as has been
mentioned above, is a quite distant position of the Ni and
Cr d-states, as one can see in Fig. 3. Local fluctuations of
composition in such a case lead to the appearance of new
features in the DOS, which are not properly presented in
the single-site approximation, where the local environment
is fixed to the average one. Nevertheless, we proceed with
calculations of the effective interactions within the CPA, since
the CPA DOS deviates insignificantly from the accurate one,
and besides, although the local environment effect can be
important for interactions as we will be shown below, the
effective interactions are quite accurate on average.

Finally, we would like to demonstrate the effect of the
atomic SRO on the DOS. For that purpose we calculate the
DOS of the Ni0.67Cr0.33 random alloy with nonzero Warren-
Cowley SRO parameters at the first two coordination shells,
which are approximately equal to −0.1 and 0.1 using the LSGF
method with LIZ = 3. The latter corresponds to the atomic
SRO in this alloy at about 1000 K [18]. As one can see in
Fig. 4, such an atomic SRO leads to a more pronounced peak
close to the Fermi level, however, the effect of the SRO on the
DOS is relatively small.
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FIG. 4. (Color online) Density of states in the Ni0.67Cr0.33 random
alloy obtained from the LSGF with and without atomic SRO. See text
for details.

B. Effective chemical interactions in NiCr

The difference in the occupation of the d states in Ni and Cr
means that the ECI in this system can strongly depend on the
alloy composition. To demonstrate that it is indeed the case,
we calculate the Fourier transforms of the effective chemical
pair interactions, V (q), on the fcc lattice for three different
alloy compositions: Ni0.2Cr0.8, Ni0.5Cr0.5, and Ni0.8Cr0.2. The
results are shown in Figs. 5–7. As one can see, not only the
value of V (q) differs in all three cases, but, more importantly,

FIG. 5. (Color online) Fourier transform of the effective chemi-
cal pair interactions in Ni0.2Cr0.8 alloy in the (001) plane.

FIG. 6. (Color online) Fourier transform of the effective chemi-
cal pair interactions in Ni0.5Cr0.5 alloy in the (001) plane.

the minimum of V (q) changes its position. This means that
the type of the ordering should also be changing with the
alloy composition: in the Cr-rich and equiatomic alloys, the
chemical EPI should prompt the (100) type of ordering, while
in the Ni-rich alloys, the ordering associated with the (0.7,
0.7, 0) point of the fcc Brillouin zone. In fact, the transition
between these two types of ordering occurs somewhere close
to 45 at.% of Cr.

The latter result is obviously at variance with the existing
experimental data, where the (1 1

2 0) type of ordering is observed
in the random state. However, it is consistent with the results of
Staunton et al. [24], who found an additional peak close to the
( 2

3
2
3 0) position in the S(2)(q), which has the same meaning as

V (q), as well as in the diffuse scattering calculations for alloy
compositions within concentration range of 11–33 at.% Cr.
The fact that our and Ref. [24] results agree is not surprising
since the methods of calculations are similar.

FIG. 7. (Color online) Fourier transform of the effective chemi-
cal pair interactions in Ni0.8Cr0.2 alloy in the (001) plane.
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FIG. 8. (Color online) Some of the strongest three-site interac-
tions in Ni0.8Cr0.2 alloy.

Another consequence of the large difference of the d-band
filling is the existence of strong multisite interactions. In Figs. 8
and 9, we show three- and four-site interactions in Ni0.8Cr0.2

obtained in the corresponding SGPM calculations [54]. One
can see that especially strong multisite interactions are for
the clusters on a line along the closed-packed [110] direction,
with the sides consisting of the first, (110), fourth,(220), ninth,
(330), and so on coordination shells. In particular, the strongest
three-site interaction is V

(3)
1−1−4, (−4.7 mRy) and the strongest
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FIG. 9. (Color online) Some of the strongest four-site interac-
tions in Ni0.8Cr0.2 alloy.

TABLE I. Ordering energies (in mRy/at) of NixCr1−x alloys. In
the case of SGPM results, we also show the contributions from pair,
three-site, and four-site interactions.

SGPM

x Structure EMTO Total two-site three-site four-site

0.50 A2B2 1.61 −0.4 −3.4 0.0 3.00
L10 −1.58 −4.14 −4.18 0.0 0.04

0.67 Pt2Mo −5.45 −6.18 −3.29 −3.30 0.41
L12 5.99 0.97 −2.01 2.51 0.47

0.75 DO22 −1.89 −3.21 −2.82 −0.10 −0.21
DO60 −3.03 −3.92 −2.31 −1.44 −0.18

0.80 D1a −2.12 −3.11 −2.14 −0.65 −0.32

four-site interaction is V
(4)

1−4−9−1−4−1 (4.04 mRy). Let us note
that this is a very general feature of the ECI in transition metal
alloys, which is discussed in Ref. [55].

C. Ordering energies and trends from the ECI in Ni-Cr

To demonstrate the impact of multisite interactions upon the
configurational energetics, we calculate the ordering energy of
some fcc based structures with the (001) and x(1 1

2 0) types of
ordering. In Table I, we show the ordering energies of the
A2B2 [27], L10, Pt2Mo, L12, DO22, DO60 [53], and D1a

structures obtained using the strongest ECIs, which include
the first 30 coordination shells, 75 three-site, and 26 four-site
SGPM interactions and determined in the direct total energy
calculations, as the energy difference of these structures and
the corresponding random alloys on the ideal fcc underlying
lattice.

The multisite interactions have been chosen for the clusters
within of a certain range, with the exception for those,
which are on the line in the closed-packed direction (like
V

(4)
1−4−9−1−4−1). Of course, it does not guarantee that we have

chosen all the most important interactions [56], nevertheless,
we believe that our choice is good enough to reproduce
qualitative picture of ordering in the system.

As one can see in Table I, the L10 structure, which is of the
(100) type, is more stable than A2B2, which is of the (1 1

2 0)
type, for equiatomic alloy composition, Ni0.5Cr0.5. One can
also notice that the four-site interactions yield practically the
same contribution as the pair interactions, but with the opposite
sign in the case of A2B2 structure, practically compensating
it. Although the ordering energy obtained from the ECI is in a
large error for both structures, the energy difference of these
two ordered structures is reproduced reasonably well by the
SGPM interactions: 3.74 mRy in the SGPM calculation and
3.14 mRy in the total energy calculations.

With increasing concentration of Ni, the type of ordering
changes and in the case of an Ni0.75Cr0.25 alloy, the L12

structure, which is of the (100) type, becomes unstable. The
DO22 structure, which is usually considered as (1 1

2 0) type, but
in fact it has a bit of the (100) type too, is substantially more
stable than the L12. However, even more stable is the DO60

structure, which is of pure (1 1
2 0) type [53]. One can notice

that the three-site interactions yield a substantial contribution
to the ordering energies of Ni3Cr alloys in fact stabilizing the
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DO60 against the DO22 and making L12 structure completely
unstable.

There is a similar strong stabilizing contribution from the
three-site interactions in the case of D1a structure, which is of
the 4

5 (1 1
2 0) type. The most interesting result is, however, for the

ordering energy of the Pt2Mo structure, which is of the 4
3 (1 1

2 0),
or, equivalently, ( 2

3
2
3 0) type. It has the lowest ordering energy

among all the presented above structures, almost twice as low
as that of the DO60 structure. In this case, the EPI and three-site
interactions produce equally large contribution to the ordering
energy. The strong stabilization of this structure is consistent
with the fact that the global minimum of the Fourier transform
of the effective chemical pair interactions, V (q), for this alloy
composition is at (0.71, 0.71, 0) position, which is very close
to ( 2

3
2
3 0), similar to V (q) in Ni0.8Cr0.2 alloy.

D. Enthalpies of formation of Ni-rich Ni-Cr alloys

In order to determine which of those phases presented in
Table I structures can be stable, we have also calculated their
enthalpies of formation in the nonmagnetic state relative to bcc
Cr and fcc Ni using the PAW method, as described above. The
results are presented in Fig. 10. Let us note that there exist a
number of first-principles results for the formation enthalpy of
Ni2Cr in the Pt2Mo structure, which are scattered from −6.62
to −11.59 [57] kJ/mole, and which are collected in Ref. [58].
The experimental enthalpy at 773 K is expected to be higher
than that at 0 K due to incomplete long-range order.

The interesting point is that it seems that D1a structure
should be stable in this system for alloy compositions close to
20 at.% Cr, at least above the Curie temperature. This is very

0.6 0.7 0.8 0.9 1
cNi
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FIG. 10. (Color online) Calculated 0 K enthalpies of formation
of ordered (by the PAW method) and random (by the EMTO-CPA
method) of Ni-Cr alloys. The experimental data for Pt2Mo at 773 K
are taken from Ref. [59] and for random alloys at 1538 K from
Ref. [60].

similar to the Ni-Mo system, which is isoelectronic to Ni-Cr.
However, the ordering transition temperatures are much lower
in the Ni-Cr alloys and this can be the reason why D1a phase
is not observed in this system.

In Fig. 10, we also show the enthalpy of formation of
random Ni-Cr alloys at 0K determined in the EMTO-CPA
calculations. They do not include the contribution from local
lattice relaxations. However, in separate 64-atom supercell
calculations for random alloy configurations up to the 8th
coordination shell by the PAW method we have found that
they are −0.5 kJ/mole for Ni0.75Cr0.25 and −1.11 kJ/mole
for Ni0.5Cr0.5. In other words, they produce just a little
correction to the CPA results. In this figure, we also show
the experimental data from Ref. [60]. However, they are for
quite high temperature of about 1500 K, and thus it is expected
that they can different from theoretical results.

The important message here is that the enthalpy of forma-
tion of random Ni-Cr alloys deviates quite strongly from the
usual paraboliclike behavior with minimum (or maximum) at
the equiatomic composition. The shift of the minimum to high
Ni concentrations explains the relatively high stability of the
D1a structure. At the same time, being almost as stable as
Ni2Cr, it has substantially weaker driving force for atomic
ordering. This means that although the D1a-Ni4Cr phase
should be stable at low temperatures, the mechanism of the
phase transition, i.e., whether it is directly formed from random
alloy or from some intermediate ordered phase, is unclear.

E. Configurational dependence of the ECI in Ni-Cr

As has been shown above, the SGPM interactions provide a
qualitatively correct picture of ordering tendencies. However,
they somehow overestimate the ordering energy by about 1–
2 mRy, and they fail in the case of the ordering energy of the
L12-Ni3Cr. Therefore there is an important question: to which
extent the results obtained by the SGPM can be trusted and
what is the reason for the disagreement.

The first and main reason is, of course, the fact that the CPA,
which is used in the SGPM calculations, has some problems as
has been demonstrated above. However, the local environment
effects, which are not properly described by the CPA in
this system, can effect only nearest-neighbor interactions. In
general, it is quite difficult to check such effects because the
SGPM is built upon the CPA. However, the LSGF method
allows one not only to test the effect of the local environment
effects on the electronic structure, but also to obtain the ECI for
atoms with a specific local environment in the random alloy.

In the isomorphous model of a random alloy, which is the
case of the usual CPA, all the Ni and all the Cr atoms are
identical since their local environment is exactly the same,
given by the CPA effective medium. In real life, however, all
the atoms of the same component are different (in terms of
their local electronic structure) due to the difference of their
local chemical environment. This can be modeled in supercell
LSGF calculations, using a polymorphous model of a random
alloy. Choosing different atoms in the supercell then one can
check the effect of the local environment effects on the ECI.
If the ECI depend on the choice of the atoms, there exists not
only the the problem with the CPA but also with the Ising type
statistical modeling in general.
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FIG. 11. (Color online) One-electron contribution to the EPI at
the first coordination shell in random Ni0.75Cr0.25 alloy as a function
of the number of Ni nearest neighbors. The CPA result is shown by
filled circle.

In Fig. 11, we show the one-electron contribution to the
chemical EPI at the first coordination shell, V one-el

1 in a random
Ni0.75Cr0.25 alloy obtained in the LSGF calculations of 256-
atom supercell as a function of the number of the nearest
neighbors of Cr and Ni atoms. As one can see, the interactions
show strong dependence on the local environment. On the other
hand, it is also clear that the ordinary CPA calculations work
quite well: they produce the result very close to that for the
average number of the Ni nearest neighbors in the completely
random Ni0.75Cr0.25 alloy, which is nine.

Now, taking into consideration the fact that the number
of the Ni nearest neighbors in the L12-Ni3Cr is 12 for Cr
and 4 for Ni, one can see that there should be a substantial
reduction of the nearest-neighbor interaction in this structure,
and thus a substantial increase of the ordering energy. In other
words, to obtain the correct ordering energy for the completely
ordered phase from the SGPM interactions one should take into
consideration their renormalization due to local environment
effects in the ordered state. This is beyond the aim of this
investigation, since it requires a reformulation of the whole
atomic configurational part.

However, if we restrict our investigation to the ordering
effects in random alloys at high temperature, we can still
use the usual Ising-type Hamiltonian and the SGPM. As has
been demonstrated in Fig. 11, the CPA or isomorphous model
still works reasonable well on average. Therefore although
the ECI can fluctuate in real alloy due to the effect of the
local environment on the local electronic structure of Ni
and Cr atoms, the contribution of such fluctuations to the
thermodynamics should be small.

F. Effect of the strain-induced interactions upon EPI

The total and SPGM EPI for Ni0.8Cr0.2 are shown in
Fig. 12. Interactions are determined for the lattice constant of
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FIG. 12. (Color online) EPIs in Ni0.8Cr0.2 obtained in this work,
in earlier calculations by Turchi et al. [23] and fitted to the
experimental ASRO by Schönfeld et al. [20].

3.565 Å, which corresponds to the temperature of 828 K for this
alloy composition [11,43,44]. The contribution from electronic
excitations is included via the Fermi-Dirac distribution [61].
As one can see the contribution from the strain-induced
interactions is indeed small, however, it shifts the position
of the minimum of the Fourier transform of the EPI, Vq to
q = (1 1

2 0) in accordance with the neutron diffuse scattering
data.

This can be seen in Fig. 13 where we show the Fourier
transform of the total EPIs for Ni0.2Cr0.8 alloy in the (001)
plane. Exactly the same shift of the minimum of V (q) due to
the strain-induced interaction is also observed for Ni0.67Cr0.33

and Ni0.75Cr0.25 alloys. It is worth mentioning that we could
not identify a single strain-induced interaction, which is
responsible for the observed shift of the minimum of Vq. One of
the important contributions from the strain-induced interaction
is at the seventh coordination shell. If it would change the sign
of the total interaction from positive to negative, the minimum

FIG. 13. (Color online) Fourier transform of the total EPI in
Ni0.2Cr0.8 alloy in the (001) plane.
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of Vq will be at q = (1 1
2 0). However, it does not, although

it greatly reduces the enough strong positive chemical EPI
at this coordination shell. So, the contributions from other
coordination shells are also important.

Another remark concerns the fact that we use concentration
independent strain-induced interactions. This is of course
an approximation, but we believe that if there exists some
concentration dependence of the strain-induced interactions, it
should be relatively small in contrast to the one of the chemical
interactions, since it is mostly related to size effect, but not
to the type of the chemical bonding and complex electronic
structure effects.

In Fig. 12, we also show the EPI obtained in the
other GPM calculations [23] and deduced from experimental
ASRO [20,21]. The agreement is quite good between all the
results, except for the nearest-neighbor pair interaction in the
earlier GPM calculations [23], which is quite underestimated
due to the missing electrostatic contribution, as has been
discussed in Ref. [24]. Note, however, that we have chosen
one set of “experimental” values, although there is quite a
substantial scattering of the experimental EPI for different
samples [20] and also due to differences in the approximations
and models used in the fitting [21].

G. Atomic SRO

The statistical thermodynamic simulations have been done
by the MC method using an 18 × 18 × 18 simulation box of
the fcc unit cell, and a set of the ECIs consisted of the EPI at
the first 25 coordination shells, 15 strongest three-site, and 13
strongest four-site interactions. We have performed 6000 MC
steps per atom with 3000 steps for thermodynamic averaging
to equilibrate the alloy configuration at the corresponding
temperature.

In Fig. 14, we show our results for the atomic SRO
in Ni0.80Cr0.20 random alloy at 828 K obtained in the MC
simulations and in the diffuse scattering experiment [20].
The agreement between theory and experiment is very good,
and as shown in Fig. 15, in both cases the diffuse scattering
maximum is at the (1 1

2 0) special point. The diffuse peaks are
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FIG. 14. (Color online) Calculated SRO parameters in Ni0.8Cr0.2

random alloy compared with experimental data from Schönfeld
et al. [20].

FIG. 15. (Color online) Calculated SRO diffuse intensity map,
α(q), of Ni0.80Cr0.20 at 828 K in the (001) plane.

roughly triangular shaped with the edges extending towards
the neighboring D1a superlattice 4

5 (1 1
2 0) positions. Thus this

structure could potentially be formed at lower temperatures
during the first-order phase transition.

However, it is a quite nontrivial task to study such a
transition using just the MC simulations, although it could
take place according to our results for the formation enthalpies
presented in Fig. 10. In fact, in our MC calculations, we
observe actually a formation of the Pt2Mo ordered structure.
However, only a configurational part of the energy of an alloy
is taken into consideration in our MC simulations. At the
same time, as we have demonstrated above, the relatively low
enthalpy of formation the D1a phase, compared to the Ni2Cr
phase is mainly due to the low enthalpy of formation of a
random Ni0.8Cr0.2.

We have also calculated the atomic SRO and order-disorder
phase transition in Ni0.67Cr0.33. The ECI for these calculations
have been determined for the lattice constant of 3.596 Å, which
corresponds to 1073 K [11,43,44]. In Fig. 16, we show the
SRO parameters of Ni0.67Cr0.33 at 1073 K obtained in the
MC calculations and determined in the neutron diffraction
experiments [18]. One can see that the agreement between
theoretical results and experimental data is very good, although
the theoretical SRO parameters at the first two coordination
shells are larger in absolute value, which also leads to a larger
variations of their Fourier transform as one can see in Fig. 17
where we show α(q) in the (001) plane.

Again, as in the case of Ni0.8Cr0.2 alloy, theory correctly
reproduces the position of the scattering maximum or α(q),
which is (1 1

2 0). After the first-order phase transition to the
Pt2Mo structure, the minimum is going to be in the ( 2

3
2
3 0)

point. However, such a shift most probably originates from
simple geometrical rules, as the only way to have the (420)
stacking for this particular alloy composition (for a thorough
discussion see Refs. [12–15,62–65]).

Using these ECI, we have determined the order-disorder
transition temperature in the MC simulations by cooling
the system from high temperatures and monitoring the
discontinuity in the average energy and peak in the heat
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FIG. 16. (Color online) Calculated SRO parameters in
Ni0.67Cr0.33 random alloy compared with experimental data
from Caudron et al. [18].

capacity. The theoretical result 880 K is in very good
agreement with the experimental value of 863 K [1,7–11]. Let
us note that in spite of good agreement we believe a further
investigation is needed to include possible contributions from
thermal magnetic excitations and lattice vibrations. The latter,
however, is quite nontrivial task especially if they should be
considered together.

Finally, we calculate ASRO in Ni0.75Cr0.25 at 993 K
using the ECI determined for the corresponding experimental
lattice parameter of 3.578 Å [11,43,44]. The calculated SRO
parameters are presented in Fig. 18 [18]. Again, as in the
case of Ni0.67Cr0.33, the theoretical SRO parameters, have a
larger amplitude at the first two coordination shells. At the
same time, it is worth mentioning that α000 in the experiment
are 0.935 [18], 0.843 [18], and 0.9274 [20] in Ni0.67Cr0.33,
Ni0.75Cr0.25, and Ni0.8Cr0.2 alloys, respectively, which is
noticeably less than 1, which is required by normalization
condition (5). The later indicates that the experimental values

FIG. 17. (Color online) Calculated SRO diffuse intensity map,
α(q), of Ni0.67Cr0.33 at 1073 K in the (001) plane.

1-
(1

10
)

2-
(2

00
)

3-
(2

11
)

4-
(2

20
)

5-
(3

10
)

6-
(2

22
)

7-
(3

21
)

8-
(4

00
)

9-
(4

11
)

Coordination shell

-0.2

-0.1

0

0.1

0.2

α

MC
Exp.

Ni0.75Cr0.25: T=993K

lm
n

FIG. 18. (Color online) Calculated SRO parameters in
Ni0.75Cr0.25 random alloy compared with experimental data
from Caudron et al. [18].

of α(q) could be underestimated. Of course, the errors or
unaccounted contributions in theoretical calculations cannot
be excluded either.

IV. CONCLUSIONS

We have investigated the atomic ordering in the Ni-rich Ni-
Cr alloys using different ab initio techniques and MC method.
We demonstrate that the phase stability and ordering effects
are quite nontrivial in this system, which is related to quite
different d-band filling of Ni and Cr. In particular, the effective
chemical interactions in this system are not only strongly
concentration dependent with large multisite interactions, but
they also exhibit pronounced local environment dependence,
which is unusual for nonmagnetic systems.

At the same time, we have demonstrated that keeping
a mean-field character of the effective interactions makes
possible to obtain quantitatively accurate description of the
atom ordering at high temperatures in the random state. Our
effective chemical interactions turned out to be very close to
those obtained long time ago by Turchi et al. [23] and Staunton
et al. [24]. Although they yield the strongest and dominating
contribution to the total EPI, it has turned out that the correct
qualitative picture of the ASRO in the Ni-rich Ni-Cr alloys is
restored only when relatively small strain-induced interactions
are taken into consideration.

In spite of the fact that our results in good agreement
with diffuse scattering experiment for these alloys, a further,
more elaborate, first-principles investigation of this system is
needed in order to address the questions related to the phase
equilibrium at lower temperatures as well as to find out what is
the effect of thermal magnetic and lattice vibration excitations
at higher temperature. The latter is a highly nontrivial task,
which cannot be efficiently addressed at the present time.
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