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Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis
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A Monte Carlo simulation method is used to study the energetics and configuration of binary alloys when
grain boundary states are included as potential equilibrium features. For certain sets of alloy properties, a
nanostructured grain assembly is found to be the most energetically favorable state, and is stabilized by grain
boundary segregation of solute. The conditions for stability against grain coarsening and the “grain boundary
energy” requirement are clarified, with emphasis on the closed system conditions that prevail in nanostructured
alloys. Two thermodynamic parameters, the grain boundary area potential and the grain boundary formation
energy, are quantitatively disentangled and shown to differently reflect grain stability and the energy state of
interfaces. These discussions provide insights on how alloying can be used to actively manipulate nanocrystalline
grain sizes.
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I. INTRODUCTION

Even though nanoscale grain sizes can be fairly easily
achieved in many polycrystalline materials, nanostructure
stability is a primary concern for subsequent processing and
usage. Because of their high volume fraction of high-energy
grain boundaries, nanocrystalline materials are generally
unstable against grain coarsening. Alloying has been identified
as a means of stabilizing the structure, and not only in a kinetic,
grain boundary pinning sense, but also from a perspective of
thermodynamic energy minimization. Following Weissmuller
[1,2], the free energy G of a polycrystal at constant pressure
and temperature can be written as a sum of chemical potential
and interface terms,

G = �μiNi + γA, (1)

where N is the number of atoms of chemical type “i” with
the chemical potential μi, and A is the total grain boundary
area with the associated grain boundary formation energy of
γ per unit area. The stability of a grain structure is evaluated
by considering the derivative of the free energy with respect
to the change in total grain boundary area:

dG

dA
= d(�μiNi)

dA
+ A

dγ

dA
+ γ. (2)

For pure materials, the free energy is G = μN + γ0A, and
the derivative is simply dG

dA
= γ0. As a result, the system free

energy can be lowered by decreasing the total grain boundary
area until the grain structure is completely coarsened to a
single-crystal ground state. On the other hand, for alloyed
materials the derivative can be further expanded to

dG

dA
= d(�μiNi)

dXc

dXc

dA
+ A

dγ

dXc

dXc

dA
+ γ, (3)

where Xc is the solute concentration in crystal, or the grain
interior.

The derivative dG
dA

evaluates differently in open and closed
systems. For open systems, the grain interior concentration Xc
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is kept constant and therefore dG
dA

= γ . Both of these terms,
dG
dA

and γ , have units of energy per unit area, and both have
been called “grain boundary energy” in the literature. For open
systems, this is appropriate given their equivalence. However,
for closed systems, these quantities are not equal, and thus
different nomenclature is required. Terms such as “open-
system grain boundary energy” or “grain boundary formation
energy” are appropriate for γ , and in a closed system it has been
pointed out that this quantity can even be negative for some
grain boundary solute segregation states [1–7]. The quantity
dG
dA

is the more important term for identifying an equilibrium
grain size, which occurs when dG

dA
= 0 but not necessarily

when γ = 0. We call dG
dA

the “grain boundary area potential.”
In the dilute limit of McLean-type grain boundary segrega-

tion, an alloying element can lower the energy penalty of grain
boundaries via

γ (X) = γ0 − �(�H seg + kT lnX), (4)

where � is the specific solute excess at the grain boundaries,
�H seg is the dilute-limit enthalpy of grain boundary segrega-
tion, k is the Boltzmann constant, T is the absolute system
temperature, and X is the global solute content. According to
Eq. (4), grain boundary energetics, and therefore nanostructure
stability, can be modified via alloying and the effective grain
boundary formation energy after alloying is dictated by the
added solute content. Accordingly, the grain boundary area
potential of a dilute polycrystalline alloy can be expressed
as a function of solute characteristics and concentration by
combining Eqs. (2) and (4) as

dG

dA
= d(�μiNi)

dA
+ γ0 −

(
� + A

d�

dA

)
(�H seg + kT ln X).

(5)

For alloy systems with positive grain boundary adsorption,
dG
dA

can be suppressed to zero or a negative value by maintaining
a sufficient solute excess at the grain boundaries with respect
to the change in grain size (� > −Ad�

dA
), and a free energy

minimum at dG
dA

= 0 can be accessed with a specific grain
boundary segregation-grain size state (�,A).
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Early discussions of this concept include those by
Weissmuller [1,2] and Kirchheim [8–10], among others
[5,6,11–15], and focus exclusively on the ability of grain
boundary segregation to stabilize a nanocrystalline alloy
against grain growth, i.e., dG

dA
= 0 is the only consideration

of equilibrium. More recently, we have proposed that solid
solutions with solute segregation to grain boundaries can,
moreover, constitute formal ground-state structures for the
alloy system, making some nanostructured alloys not only sta-
ble against grain growth, but against phase separation as well
[16]. Following that first report, Murdoch and Schuh [17] used
analytical thermodynamic free energy functions to evaluate a
variety of possible stable nanostructures. They identified some
sets of alloy energetic parameters for which a stable, single-
phase solid solution with a nanocrystalline structure could
be the system ground state, with solute segregation at grain
boundaries. They also proposed that several new stable nanos-
tructures may be possible in systems with a propensity for grain
boundary segregation, including dual-phase nanocrystalline
structures, amorphous structures (comprising all “intergranu-
lar” alloy matter), metastable nanocrystalline structures that
resist grain growth but not phase separation, and also regimes
where more than one of the above states may coexist.

In this paper, we take another step to elucidate nanostruc-
tural alloy ground states, in systems where alloy configuration
and grain boundary content are both treated as variables.
Specifically, we develop a lattice Monte Carlo approach in
which both features of the problem are included, offering
insight on the accessible ground states and complex alloy con-
figurations that may be expected in nanostructured systems.
These simulation results also provide some clarification on the
grain boundary energy requirement for grain stability, which
for a closed system has nuances that can run against intuition
in some cases.

II. SIMULATION PROCEDURE

Lattice-based Monte Carlo (MC) methods have been widely
applied to both alloying thermodynamics and grain structure
problems [18–34]. To capture the interaction between solute
and solvent in a polycrystalline environment and their effects
on stabilizing nanostructured grains, we use a lattice MC
method that tracks both atomic chemical identity and grain
allegiance at every lattice point. As a simplifying first step,
only phase separating binary alloys (i.e., those with positive
enthalpies of mixing) are considered, and a body centered
cubic (BCC) lattice, as in Fig. 1 is used. Each atomic site is
assigned an atom type, which denotes the chemical identity
of the atom as solvent (A) or solute (B), and a grain number,
which differentiates atoms in the same grain from those that
are neighbors across grain boundaries. Periodic boundary
conditions are applied on all three principal axes. For ease of
viewing in what follows, we present two-dimensional sections
viewed along the [001] direction, with atoms in both the
sectioning plane and first subsurface plane visible.

A. Bond energy calculation

Our simulation is based on nearest-neighbor interactions
only, with six unique bond types: between each pairing of
the atomic types (A and B) and lying either in the grain

FIG. 1. (Color online) Representative lattice of a polycrystalline
structure produced by the Monte Carlo simulation. (a) A three-
dimensional view of a BCC lattice with 12 × 12 × 12 atoms is shown
with (b) the top down view along the [001] direction, revealing the
top two atomic planes. The atoms with the same color belong to the
same grain.

interior or across a grain boundary (i.e., matched or unmatched
grain numbers, respectively). The total internal energy U is
calculated by summing the bond energy between all atoms:

U =
∑

all bonds

[(
NAA

c EAA
c + NBB

c EBB
c + NAB

c EAB
c

)

+ (
NAA

gb EAA
gb + NBB

gb EBB
gb + NAB

gb EAB
gb

)]
, (6)

where N is the number of bonds and E is the bond energy.
The subscript denotes whether the bond is in a crystal (or
grain interior, denoted by c) or across a grain boundary
(denoted by gb), and the superscript denotes the chemical
pairings involved. The internal energy can also be expressed
as U = �μiNi + γA − PV + T S, and at constant pressure
P , volume V , temperature T , and entropy S, its derivative
with respect to the change in total grain boundary area,
dU
dA

= d(�μiNi+γA)
dA

, is equivalent to the grain boundary area
potential as defined earlier in Introduction.

There are six independent bond energy inputs to our model
or five if one of the bond types is regarded as the reference
state that sets the temperature scale. This multidimensional
parameter space offers great flexibility for modeling various
alloy systems, but its breadth is too large to consider sys-
tematically in detail here. For purposes of simplifying the
parameter space, it is useful to connect the bond energies to
more routine macroscopic material parameters. These include
the pure component A grain boundary formation energy:

γ A
0 = zt

2�A

(
EAA

gb − EAA
c

)
, (7)

and an equivalent expression for the pure component B grain
boundary formation energy, as well as the alloy enthalpy of
mixing:

�H mix = zωcX(1 − X), (8)

and the dilute-limit enthalpy of grain boundary segregation:

�H seg = z

[
ωc − ωgb

2
− 1

2zt

(
�Bγ B

0 − �Aγ A
0

)]
, (9)

which inherently incorporates various effects such as chemical
interactions, difference in interface energies, and solute-
solvent size mismatch (elastic energy), as described by the
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linear combination of subcontributions:

�H seg = �Echemical + �Einterface + �Eelastic. (10)

Although in what follows we will exercise the model in
its most general form, without considering the details of these
various contributions, it is important to note that the connection
to these classical views of grain boundary segregation is
seamless. The model can be provided inputs by beginning
with a specific alloy system for which the chemical energies,
surface energies, size mismatch, etc., are known, and using
Eq. (10) to evaluate the required input value of �H seg.

In these equations, ωc = EAB
c − (EAA

c +EBB
c

2 ), is the regular

solution grain interaction energy, ωgb = EAB
gb − (

EAA
gb +EBB

gb

2 ), is
the grain boundary interaction energy, z is the coordination
number, t is the grain boundary thickness, taken as 0.5 nm
throughout, and � is the atomic volume.

The number of independent parameters can be reduced
by focusing strictly on mixing thermodynamics, i.e., by
assuming equal like-bond energies in the grain interior, EAA

c =
EBB

c , and similar grain boundary penalties, 2�Aγ A
0

zt
= 2�Bγ B

0
zt

.
These parameters are taken to be 1.26 and 0.05 eV/bond,
respectively; they are selected for their match with the material
parameters of tungsten metal for use in future work, but
for the purposes of the present paper, can be regarded as
essentially arbitrary. There remains only the temperature plus
two independent adjustable bonding parameters, represented
by the mixing parameters for grain and grain boundary regions:
ωc and ωgb, which simply map to the more intuitive parameters,
�H mix and �H seg, using �H mix = zωc. Consequently, we can
use a two-dimensional material parameter space such as in
Fig. 2 to represent binary alloy systems based on their mixing
and grain boundary segregation characteristics.

FIG. 2. (Color online) Nanostructure stability map for binary
alloys with four boundary lines and four behavioral regimes.

The state space in Fig. 2 is similar to that presented in our
earlier work [16] and in that of Murdoch and Schuh [17]. In
the present case, this space can be understood in terms of the
different bond types that are preferred in various regions of the
map. Specifically, we identify four main regions that emerge
from consideration of the bonding energies used in our MC
model, and which are divided by the following boundary lines.

1. Onset of solute segregation at grain boundaries, ωgb = 0

The most important consideration for the present work is
whether or not grain boundary solute segregation will occur,
opening the door to stable nanostructures. Relief of interface
energy penalty by grain boundary segregation requires a
negative ωgb, and the boundary line at ωgb = 0 along the
diagonal of the map in Fig. 2, with negative ωgb lying above
the boundary line (or �H seg > �H mix), represents the cases
where alloying can lower the grain boundary formation energy
compared to its single-component counterpart.

2. Transition from solid solution to grain boundary segregation,

ωgb = − 2�Aγ A
0

zt + ωc

Even if ωgb is negative and alloying lowers the grain
boundary penalty, a bulk solid solution may yet be more
stable than a grain boundary segregated state. Only when
EAB

gb is lower than EAB
c would alloying be able to provide

a lower-energy grain boundary state than a bulk solid solution.
This occurs when the following inequality is met: ωgb <

− 2�Aγ A
0

zt
+ ωc.

3. Onset of grain metastability, ωc = 2�Aγ A
0

zt

For those cases where grain boundary solute segregation
is not preferred (i.e., lying in the lower part of Fig. 2), the
structure will not have a stable nanostructure. The ground
state in this condition could be a solid solution or a bulk
phase separated state. The vertical boundary line in Fig. 2
represents the crossover between dominance of EAB

c and EAA
gb

and therefore whether formation of solid solution in the grain
interior or a single-component grain boundary results in a
higher energy state. Solute precipitation becomes more likely

with higher ωc, and when ωc >
2�Aγ A

0
zt

, the system can lower
the energy by forming a precipitated polycrystalline structure
rather than a single-crystal solid solution.

4. Onset of grain boundary stabilization, ωgb = − 2�Aγ A
0

zt

The last boundary line represents the ideal case where alloy-
ing can lower the grain boundary energy penalty sufficiently
enough that a nanocrystalline structure becomes the system’s
ground state. This requires the alloyed grain boundaries to
be the lowest-energy bonding state; such condition is realized

only when ωgb < − 2�Aγ A
0

zt
, which defines the upper, green-

shaded region in Fig. 2.
The above boundary lines construct the diagram in Fig. 2,

and delineate four main regions worthy of further exploration
using the MC model. We select four particular alloy systems,
labeled A to D on the stability map in Fig. 2, to represent
the regions enclosed by the four boundary lines. These are
denoted as region A: bulk systems, region B: phase-separated
polycrystals, region C: duplex nanostructures, and region D:
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classical nanostructured systems and will be explored in more
detail in later sections.

B. Monte Carlo procedure

Our Monte Carlo procedure is standard in the sense that
we probe configuration space through individual switching
events that are accepted if energy lowering and accepted with

probability P = e
−(E2−E1)

kT if energy raising; E1 and E2 are,
respectively, the total system energies before and after the
switch. There are two types of switching events in our MC
procedure, considered as independent and referred to as grain
switching and atom switching. A type of switch is first selected
with equal probability. For atom switching, a solute atom and
a solvent atom are selected at random (regardless of their
grain numbers), and their chemical types are exchanged with
the original grain number of each atomic site unchanged. For
grain switching, an atom is chosen at random, and if it has at
least one neighbor of a different grain number, its grain number
is changed. The new grain number is chosen at random from
among those of its nearest neighbors as well as a unique grain
number that matches none of the neighboring atoms. Thus
the grain switching event allows atoms at grain boundaries
to change their grain allegiance, or to spontaneously nucleate
new grains, which may subsequently grow or disappear.

The system is initialized at 10 000 K, where it is random-
ized, and then slowly cooled at a rate−(Tstep−Tfinal)

1000 . The system
spends one MC step at an immediate temperature, Tstep, and
cooling decelerates as the system temperature converges to
the final target, Tfinal. The Monte Carlo procedure proceeds
until the total system energy reaches a steady state. All
simulations are performed for 100 000 MC steps, with each
step corresponding to an average of one switch event per atom
across the whole system. We tested this MC procedure for
path independence by using different initial states (including
bicrystal, polycrystal, amorphous, mixed, and unmixed) and
establishing convergence to the same steady-state structure
regardless of the initial grain structure and atomic distribution.
We also verified that the rate of cooling specified above
yielded sufficiently equilibrated structures for the conditions
presented, by running various simulations at various rates and
obtaining the same results.

C. Grain boundary segregation

To verify conformity of the present model to conventional
grain boundary segregation thermodynamics, we perform
some simulations on bicrystal geometries in which the grain
numbers are fixed, so as to permit grain boundary segregation
to develop independently of any change in grain structure. In
the dilute limit, the enthalpy of grain boundary segregation
relates to local solute concentrations, Xgb in the grain bound-
aries, and Xc in the grain interior, via the McLean segregation
isotherm:

Xgb

1 − Xgb
= Xc

1 − Xc
exp

(
Ediff

kT

)
, (11)

where Ediff is the energy difference between a solute atom
residing in the grain interior with respect to a grain boundary.
For a BCC bicrystal conjoined on the (001) planes, Ediff =

FIG. 3. (Color online) (a) The relative solute excess at grain
boundaries in a bicrystal shows a higher tendency for grain boundary
segregation with increasing �H seg. (b) The energy difference
calculated using the grain boundary segregation isotherm and the
change in system energy both show the expected relationship with
the input �H seg. (c) A side view of a 30 × 30 × 60 BCC bicrystal
with 2 at.% solute and �H seg = 15 kJ/mol. The color denotes the
grain numbers and the black circles represent the solute atoms. (d) A
solute distribution map of the same BCC bicrystal with the color of
the solute atoms indicating the depth into the page. All simulations
are performed at T = 25 °C.

8EAB
c − (4EAB

gb + 4EAB
c ), which is equal to �H seg when

�H mix and γ0 are taken as zero to eliminate the effects from
chemical mixing and grain boundary energy penalty.

The relative solute excess at grain boundaries, Xgb/Xc,
is calculated from a bicrystal with X = 0.1–2 at.% and
plotted with �H seg in Fig. 3(a), along with a side view of the
bicrystal [Fig. 3(c)] and a three-dimensional solute distribution
map showing the solute atoms preferentially segregating at
grain boundaries [Fig. 3(d)]. The energy difference Ediff after
equilibrating the alloy configuration, denoted by Hcalc in
Fig. 3(b), displays the expected behavior. Alternatively, by
definition Ediff can be calculated from the change in system
energy normalized by the change in the number of solute
atoms relocated to the grain boundaries after equilibration.
This method reproduces the same relationship with �H seg.

The change in grain boundary segregation behavior with
solute content is further explored, to verify that the segregation
tendency decreases as the boundary saturates with solute, as
captured, for instance, by the Fowler-type isotherm common
in interfacial segregation theory. Using a fixed value of
�H seg = 10 kJ/mol, we repeat the above exercise for a
range of solute contents X = 0.1–40 at.%. The effective
segregation energy, Hcalc, is calculated from the relative
solute excess at grain boundaries using Eq. (11) and plotted
with the global solute composition in Fig. 4. At dilute
concentrations, Hcalc matches the dilute-limit input �H seg
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FIG. 4. Variation between effective grain boundary segregation
energy and global solute content. All simulations are performed at
T = 25 °C on a 30 × 30 × 60 BCC bicrystal with �H seg =
10 kJ/mol.

value of 10 kJ/mol, and this value declines monotonically at
higher solute content. The form of the trend in Fig. 4 aligns with
expectations, and highlights that composition dependence of
the segregation energy is an emergent behavior that arises from
solute-solute interactions; no additional new thermodynamic
inputs are required to model nondilute behavior. Although
the model takes a “dilute-limit” segregation energy as input,
it is applicable beyond the dilute limit with no modification
because it captures these collective effects. We conclude that
conventional grain boundary segregation behavior is well
captured by our simulation in both dilute and nondilute limits
with proper composition dependence.

III. SYSTEMS WITHOUT STABLE
NANOSTRUCTURED STATES

As described above, we will explore the basic behaviors
of our model by examining in detail four case studies (A–D)
that are typical of the kinds of equilibria we find with many
varieties of inputs. These four cases lie in separate regions of
Fig. 2, and in this section we begin with a brief examination
of the first two structures, labeled A and B. These structures
are similar in that they involve systems where grain boundary
segregation is not expected to be energy lowering, and they
exhibit bulk ground states.

Depending on the relative severity of the phase separation
tendency and the grain boundary energy penalty, instability
can manifest in several ways including the structures in
Fig. 5, all of which have no apparent solute segregation
at grain boundaries. For structure A, at low �H mix and
�H seg, the grain boundary energy penalty is greater than the
enthalpic terms and therefore all grain boundaries are higher
in energy than grain interior bonds. A nanostructure cannot be
maintained in this “bulk system” regime, highlighted in red in
Fig. 2. The representative alloy system A in Fig. 5(a) displays
bulk solid solution structures at low solute concentrations,
and precipitation emerges at higher alloy contents beyond the
solubility limit; in all cases, the system has only a single grain
once equilibrated.

For structure B in Fig. 5(b), the system equilibrates to a
polycrystal with phase separation. Although there are grain
boundaries present, they are not decorated with solute in
concentrations above those in the bulk solution. In this regime,
highlighted in yellow in Fig. 2, the single-component grain

FIG. 5. (Color online) Systems with no stable nanostructured
state at 500 °C from a 100 × 100 × 6 BCC lattice. (a) System
“A” with �H mix = 20 kJ/mol and �H seg = 15 kJ/mol forms
single-crystalline solid solutions with precipitation emerging at
10 at.% solute concentration. (b) System “B” with �H mix =
100 kJ/mol and �H seg = 65 kJ/mol exhibits phase separation with
no solute segregation at grain boundaries.

boundaries have a bond energy with a magnitude between
that of the bulk solid solution EAB

c and bulk phase separation
EAA

c bonds. As a result, bulk phase separation is the preferred
condition, but single-component grain boundaries may persist
in an entropically stabilized condition.

Traversing from lower right to upper left in Fig. 2, there is a
transition between the bulk-stable conditions described above
and the green region where nanocrystalline structures may
emerge. The blue region in which alloy C resides is a transition
region between these behaviors; here the solute-segregated
grain boundary is a low-energy configuration compared to
unalloyed grain boundaries, but higher in energy compared
to bulk phase separation. The “duplex nanostructures” from
alloy C, shown in Fig. 6, display a nanocrystalline structure
at low solute concentrations and become a duplex nanocrys-
talline structure with solvent-rich and solute-rich crystalline
regions and solute segregation at grain boundaries at higher
solute concentrations. These transitional structures may be
better appreciated once a clearer understanding of the stable
nanostructure region is reached, and we turn our attention to
this in the following.

IV. CLASSICAL NANOSTRUCTURED SOLID SOLUTIONS

Alloying can lower the energy penalty of a grain boundary
when ωgb is negative, or �H seg

�H mix > 1 for our alloy systems.
An ideal case is when solute segregation at grain bound-
aries creates the lowest energy state among all bond types,
ultimately making a nanoscale grain structure the ground

state. This condition is characterized by ωgb + 2�Aγ A
0

zt
< 0 and

highlighted in green in Fig. 2. The representative alloy D in
this “classical nanostructured” region has bond energies that
are ordered EAB

c > (EAA
gb = EBB

gb ) > (EAA
c = EBB

c ) > EAB
gb ;

solute segregated grain boundaries are preferred over bulk
phase separation, and undecorated grain boundaries over bulk
solid solution.
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FIG. 6. (Color online) Duplex nanocrystalline structures from
system “C” at 500 °C with (a) 5 at.%, (b) 20 at.%, and (c) 40 at.%
solute content from a 100 × 100 × 6 BCC lattice with �H mix =
50 kJ/mol and �H seg = 65 kJ/mol. The solute atoms are presented
in black in the first and second columns with and without the grain
structure, respectively. The grain structure of the solute-rich regions is
displayed with solvent atoms highlighted in gray in the third column.
The solute-rich regions remain crystalline at all concentrations.

Some typical nanostructures that emerge in system D
are shown along the bottom of Fig. 7, in panels (d)–(f).
Here, we observe polycrystalline structures that are clearly
decorated at the boundaries with solute, and as more solute
is available, the grains become finer to accommodate it. This
is classical nanostructure stabilization of the kind envisioned
by Weissmuller [1,2], Kirchheim [9,10], and in our group’s
prior work [13–15]. The notion that such nanostructures
are formally system ground states presents an interesting
alternative to conventional bulk materials thermodynamics,
and proposes a major correction to, e.g., the assembly of binary
alloy phase diagrams. As such, it is instructive to examine the
energetics and structural degrees of freedom of such materials
with the present MC model, where we can independently
manipulate the structural constituents and explore the nature
of these nanocrystalline ground states.

A. System energy

First, we compare the structure and total energy of alloy
D after equilibration at 500 °C with those of the unalloyed
material under the same conditions. The sequence of panels
(a)–(c) in Fig. 7 shows the evolution of the unalloyed structure
upon cooling. As expected, the grain structure is initially a fine

FIG. 7. (Color online) The structures and total energy of system
“D” with 0–40 at.% solute. For the unalloyed material, the system
energy reduces upon cooling from (a) a fine-grained polycrystalline
structure to (b) a coarse-grained structure, and finally, (c) a single
crystal in equilibrium. The equilibrated structures are provided for
(d) 1 at.%, (e) 5 at.%, and (f) 10 at.% alloys, along with (g) an
inverse relationship between the total system energy and the solute
content. With increasing solute content, the system energy is lowered
and a smaller average grain size can be accessed. The energies of
alloys with a static grain structure but varied solute concentration are
also provided, indicating that for a grain structure there is a certain
global concentration needed for the system energy to be minimized.
The energies of single-crystal structures are provided as a reference;
for a single-crystal structure, bulk precipitation emerges at 10 at.%
composition and provides lower-energy states compared to a single-
crystal solid solution. Simulations are performed on a 100 × 100 ×
6 BCC lattice with �H mix = 20 kJ/mol, �H seg = 65 kJ/mol, and
T = 500 °C.

grained polycrystal (a) that coarsens (b) until the single-crystal
ground state is achieved (c) over the course of the cooling
process. In panel (g), the total system energy is shown for
these structures, and the monotonic drop from points “a” to
“c” corresponds to the coarsening process; the total energy at
point “c” represents the lowest energy that can be achieved in
the unalloyed condition.

Next, we consider the addition of solute atoms. Before
considering the nanocrystalline systems, it is instructive to
consider the energy of a single-crystalline system that is
alloyed; such systems are produced by the same equilibration
process but with only a single (unchanging) grain number used
for the whole MC lattice. The asterisk and square data points
in Fig. 7(g) show the energy of such single-crystalline alloys.
Even though the single-crystalline alloys are equilibrated with-
out the presence of grain boundaries, solute precipitation is still
a possible competing bulk state. Given their equal enthalpy of
mixing, the single-crystalline behaviors of alloy D are identical
to those of alloy A shown earlier in Fig. 5(a). We observe
precipitation of solute emerging at 10 at.% concentration in
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FIG. 8. (Color online) (a) Inverse relationship between average
grain size and solute content in the classical nanostructured alloy
D with 1–40 at.% solute concentration at 500 °C, shown with the
associated change in total grain boundary area. (b) The total grain
boundary area increases as the average grain size decreases with
solute addition.

both systems, with a plateau of lower-energy states from pre-
cipitation presented by the square data points. The energies of
a single-crystalline random solid solution are also provided by
the asterisk data points in Fig. 7(g) as a reference. Their values
increase slightly with alloying level; this is expected since the
alloy in question has a modest positive enthalpy of mixing.

Compared with any of the above results on alloyed or unal-
loyed single crystals, the system energy can be lowered even
further to achieve unique ground states when the grain structure
is allowed to remain polycrystalline in the alloyed systems.
The series of panels (d)–(f) show the resulting equilibrated
structures, which, as noted earlier, are characterized by grain
boundary segregation. What is clear now by comparison of the
data in Fig. 7(g), is that these structures are of lower energy
than any single-crystal solid solution in this alloy system;
these are thermodynamically stable nanocrystalline structures
in which grain growth at constant composition is an energy
raising proposition.

The black data points in panel (g) show a linear decrease
in energy with composition, which is in line with analytical
calculations in Ref. [17]. What is more, these structures [cf.
Figs. 7(d), 7(e), and 7(f)] exhibit smaller average grain sizes
with increasing solute content. This is made more explicitly
clear in Fig. 8(a), which shows an inverse relationship between
grain size and composition as expected in this regime; solute
excess drives the system toward grain boundary retention
rather than solvation or precipitation. Here, the average grain
size is calculated from the diameter of volume-equivalent
cylinders and converted to the nanometer scale using the lattice
parameter of 3.16 Å.

B. Reduction in grain boundary formation energy

As noted in the introduction, the equilibrium condition
for closed alloy systems with grain boundaries is the one in
which the total system energy is minimized with respect to any
change in grain size, i.e., dG

dA
= 0. The equilibrated structures

in Figs. 7 and 8 all must satisfy this condition. As also noted in
the introduction, there is opportunity for confusion in closed
systems because dG

dA
is not equal to γ , and both quantities

are occasionally called “grain boundary energy.” To clarify
the relationship between these variables and to more clearly
elaborate their circumstances in equilibrium, we proceed to
directly evaluate them from the simulated structures.

We call γ the “grain boundary formation energy,” and it is
the difference between the energy of a grain boundary structure
and that of a perfect crystal normalized by the total grain
boundary area [14,35]:

γ = �Edefect − �Eideal

Adefect
, (12)

where �Edefect and �Eideal are, respectively, the formation
energies of the polycrystal and a single crystal and Adefect is
the total grain boundary area in the polycrystal. The single
crystal must possess the same chemical ordering (chemical
potentials) as the defected structure such that the energy
difference results only from topological defects [14]. By
replacing all grain numbers in the equilibrated alloy structure
with a single value, a single crystal with the same chemical
distribution as the original alloy structure can be obtained,
based on which�Eideal may be calculated. The total grain
boundary area can be obtained by replacing all atoms in the
alloy with the solvent, thus creating a pure polycrystal with the
identical grain structure, and calibrating it using Eq. (12) with
the formation energy of a pure single crystal (as �Eideal) and
the grain boundary formation energy of the pure metal. After
obtaining �Eideal and Adefect of the alloy, the total energy of
the equilibrated alloy is used as �Edefect and the alloy grain
boundary formation energy can be calculated.

Upon increasing the solute content, a higher fraction of
grain boundaries exists in equilibrium to accommodate the
solute, and Fig. 8 shows a monotonic increase in the total
grain boundary area, or Adefect, as the concentration increases
[Fig. 8(a)], or as the grain size is refined [Fig. 8(b)]. The
reduction of the grain boundary formation energy is presented
in Fig. 9, on both linear (a) and logarithmic (b) scales
with composition. On the logarithmic scale, the alloy grain
boundary formation energy displays a nearly linear trend with
composition, as expected (at least in the dilute limit) from
Eq. (4). The grain boundary specific solute excess, �, is
estimated from the best fit line in Fig. 9(b) to be approximately
36–49 atoms/nm2, which is a physically reasonable value.

At 0 at.% concentration, the grain boundary formation
energy is 1.1 J/m2, which matches the input γ0 value. After
alloying, the grain boundary formation energy is reduced
significantly below zero. It has been pointed out in a discussion
of Kirchheim and Gottstein [3,4] that for closed systems, the
first two terms on the right-hand side of Eq. (3) are positive
but their magnitudes are small. In order to attain equilibrium
( dG

dA
= 0), the grain boundary formation energy, γ , then must

be negative. The negative values of γ obtained in Fig. 9
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FIG. 9. (Color online) Reduction in grain boundary formation
energy with solute addition. In the classical nanostructured alloy
D, the grain boundary formation energy is reduced to a negative
value, indicating that these nanocrystalline alloys are lower in energy
than their single-crystalline counterparts. The variation between the
effective grain boundary formation energy and ln(X) is almost linear
as expected at dilute concentrations. The single-component and zero
grain boundary formation energy are noted by the dotted lines.

are thus expected. The implication of a negative alloy grain
boundary formation energy is not that unchecked creation of
grain boundaries is preferable, but rather that a very specific
solute-segregated grain boundary configuration can reduce
the system energy according to Eq. (1). Such configuration
depends in detail on the solute concentration according to
Eq. (4). The fraction of decorated grain boundaries in the
equilibrium state is limited by the amount of solute available
in the system. Any grain boundary area created beyond
the capacity of solute to stabilize them would annihilate in
equilibrium because of the energy penalty from γ0A.

To further elucidate this concept, we use our simulation to
compare the total energy of alloy D when the composition is
fixed at 5 at.% but the grain size is varied away from the equi-
librium value. This is accomplished by using equilibrated grain
structures obtained from those in Fig. 7, at a variety of compo-
sitions that effect different grain sizes (Fig. 8). These structures
then have their chemical composition reassigned to a value of
5 at.% solute, before the structures are equilibrated isother-
mally at 500 °C, while fixing the grain structure. In this way we
fix a nanoscale grain size and explore the preferred solute con-
figuration on that structure, with results as shown in Fig. 10.

The solid data points in Fig. 10 show the raw output of
these simulations, giving the total system energy as a function
of grain size at fixed composition. With no precipitation and

FIG. 10. (Color online) (a) Total system energy of 5 at.% clas-
sical nanostructured alloys from system “D” with various prede-
termined average grain sizes. The system energy is minimized at
point “d” with the grain structure obtained from the equilibrium
5 at.% alloy. The structures with smaller or larger average grain
sizes are observed to have higher energy with under-full and over-full
solute segregated grain boundaries, respectively. With the energy
of a single-crystalline solid solution under the same conditions,
denoted by “g,” as the reference state, the energies of alloys with
equilibrium and over-full grain boundaries are lowered by γxeqA

via grain boundary segregation, while the alloys with under-full
grain boundaries possess both energy increment and penalty of the
magnitude γxeqAxeq + γ0(A − Axeq). The structures of 5 at.% alloys
after equilibration are provided for the original grain structures from
(b) 15 at.%, (c) 10 at.%, (d) 5 at.%, (e) 2 at.%, and (f) 1 at.% alloys.
Simulations are performed on a 100 × 100 × 6 BCC lattice with
�H mix = 20 kJ/mol, �H seg = 65 kJ/mol, and T = 500 °C.

therefore a negligible change in entropy, the slope of this data
is dG

dD
, with D the grain size, and is related to dG

dA
as dG

dA
=

dG
dD

dD
dA

, with the functional form between A and D presented
in Fig. 8(b). These data show an energy landscape that is
reminiscent of those proposed by Weissmuller [1,2] and others
[15], which decreases to a minimum value before rising again.
Even though all of the obtained final structures are energy
minimized with respect to the chemical distributions in their
present grain structures, the true minimum energy can only be
achieved at a specific grain size, shown in Fig. 10(d), where the
grain structure is obtained from the equilibrium 5 at.% alloy
structure, which is exactly the point where dG

dD
= dG

dA
= 0.
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FIG. 11. (Color online) The grain boundary fraction increases
with solute content in the classical nanostructured alloys. The
grain structures, provided in the insets, are composed of a large
volume fraction of grain boundaries at high solute compositions and
eventually become all intergranular at 50 at.%.

When a grain is smaller than the equilibrium grain size,
there is an energy excess in grain boundaries that are not
decorated by the solute and therefore exist in a high-energy
state; grain growth towards the equilibrium value is preferred.
On the other hand, when the average grain size falls above
the equilibrium value, all grain boundaries are decorated but
there are grain interior bonds that could exist in an otherwise
lower-energy solute-segregated grain boundary configuration,
if there only were grain boundary sites to accept them.
The balance between under-full and over-full grain boundary
networks results in a specific equilibrium grain size. The
fine-grained equilibrium structure in Fig. 10(d) possesses a
lower energy than its single-crystalline counterpart, denoted
by the asterisk labeled “g.”

With a single crystal as the reference state, grain refinement
raises the system energy by γ0A from the increase in total grain
boundary area, and when alloyed, counteracted by γA from the
reduced equilibrium grain boundary formation energy. Based
on the free energy expression in Eq. (1) and a single-crystal
solid solution with energy �μiNi as the reference state,
these two terms (γ0A and γA) are isolated and plotted in
Fig. 10 along with the actual system energy obtained from
our simulated alloy structures. For grain sizes above the
equilibrium value, all grain boundaries are stabilized; the
grain boundary formation energy γ is thus the equilibrium
grain boundary formation energy of the 5 at.% alloy and A is
the total grain boundary area at each grain size. However,
for the grain sizes below the equilibrium value, only a
fraction of grain boundaries are decorated and stabilized by
the solute, and therefore γA is fixed to the value of the
equilibrium 5 at.% alloy. The remaining grain boundaries
are undecorated and possess the energy penalty from γ0. The
overall energy is thus G = �μiNi + γxeqAxeq + γ0(A − Axeq),
where the subscript denotes the equilibrium concentration
(5 at.% in this case). The resulting energy function provides a
good fit for the total energy of our alloy structures.

As a complementary line of logic to the above, a static
grain structure can be equilibrated with the solute composition
varied. The subplots in Fig. 7(g) labeled “D1,” “D2,” and “D3”
represent the energies of alloys with a fixed grain structure
but different solute concentrations specified by the x axis.
The results show three energy minima that align with the
equilibrium data points in black, suggesting that for a certain

grain structure (or its representative D), there is a specific
global solute concentration needed to achieve grain stability.
The two types of energy minima, with varying X at a fixed D

in Fig. 7(g) and with varying D at a fixed X in Fig. 10, are
in line with the one-to-one relationship between global solute
concentration and equilibrium grain size presented earlier in
Fig. 8(a) and the consequent control of grain size via solute
concentration in these classical nanostructured alloys.

Finally, we note that with solute-segregated grain bound-
aries being preferred over phase separation, and with an
excessive amount of grain boundaries induced by the solute,
the structures of alloy D from the classical nanocrystalline
regime can display an amorphouslike structure at the highest
solute concentrations. Due to the nature of our fixed lattice
simulation, an amorphous structure is not explicitly captured
as a state of disordered atomic packing, but rather as a system
in which individual grains are so small as to defy definition as
crystals (i.e., no larger than a few atoms). This is captured by a
high volume fraction of atoms coordinating grain boundaries,
as shown quantitatively in Fig. 11. All atoms have at least
one grain boundary bond at 50 at.% concentration. This
amorphouslike structure is in line with the analytical thermo-
dynamic calculations from Refs. [2] and [17], which suggested
that there is a terminal concentration at which a nanocrystalline
state can exist, and above which the grain size refines to the
order of the grain boundary thickness and an amorphous phase
can emerge close to the equiatomic concentration.

V. CONCLUSIONS

We have developed a Monte Carlo simulation for the
purpose of investigating polycrystalline alloys in which both
the chemical configuration and grain structure are allowed to
vary. The model is built in such a way that classical McLean-
type grain boundary segregation and regular solution mixing
are recovered in the proper limits. By using the simulation to
visualize grain-atomic structures and study alloy energetics,
grain stability is explored in phase-separating binary alloys
with the following findings. (1) Grain boundary segregation
states in some alloys can be energetically favorable compared
to any competing bulk states, and therefore a polycrystalline
structure is the system’s ground state. (2) The distinction
between what we call the “grain boundary formation energy” γ

and the “grain boundary area potential” dG
dA

in a closed system
is clarified using simulation results. Whereas these two terms
are both equivalent and called “grain boundary energy” in an
open system, in a closed system γ is related to the energy
change caused by topological defects and dG

dA
is related to

the equilibrium grain size attainment. (3) Upon alloying, a
negative γ is physically plausible, and stability against both
grain growth and phase separation can be achieved when γ is
negative and dG

dA
= 0 in closed systems. (4) The free energy

landscape and γ can both be modified via solute addition, as
observed in different types of nanostructure behaviors with
alloy material parameters (�H mix and �H seg) and control of
equilibrium grain size via solute concentration.
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