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Excitonic superfluidity and screening in electron-hole bilayer systems
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Superfluidity in electron-hole bilayers in graphene and GaAs has been predicted theoretically many times
but not yet definitively observed. A key controversy is the correct approximation for the screening of the
Coulomb interaction for the pairing. Mean-field theories using different approximations for the screening lead to
diametrically contradictory predictions for superfluidity. We test these different approximations against diffusion
quantum Monte Carlo results and find good agreement with the mean-field theory that uses screening in the
superfluid state, but large discrepancies with other approximations for screening. This mean-field theory predicts
no superfluidity in existing devices, provides pointers for new devices to generate the superfluidity, and, very
importantly, it permits calculations for complicated lattices at finite temperatures, impractical in Monte Carlo.
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There have been intense efforts to observe excitonic super-
fluidity in bilayer electron-hole systems. These include double
quantum wells in GaAs-AlGaAs heterostructures, double
graphene monolayers, and hybrid graphene-GaAs structures
[1–5]. With a Coulomb interaction to generate pairing between
electrons and holes, there are predictions of room-temperature
superfluidity in such systems [6]. But despite ultrahigh-quality
materials, and insulating barriers as thin as 1 nm, the superfluid
has not yet been definitively observed, except in the quantum
Hall regime with an external magnetic field, where the physics
is quite different [7].

An important theoretical controversy involves the nature
and effectiveness of the screening of the long range Coulomb
electron-hole interaction driving the superfluid pairing. There
have been suggestions that extremely strong screening will
completely suppress superfluidity in graphene double layers
[8], but other calculations that treat screening differently arrive
at a diametrically opposite conclusion that high temperature
superfluidity in this system should indeed be possible [6,9–12].
There is disagreement in the literature as to whether (a) the
pairing interaction should be unscreened (US) [6,13], (b) to
work with a screened pairing interaction appropriate for a
normal state (NS) [8,14,15], or (c) to start with a superfluid
state generated by the unscreened pairing interaction and then
self-consistently screen the pairing interaction by carriers in
the superfluid coherent state (SS) [9–12]. These different
approaches predict dramatically different properties for the
electron-hole system.

Recently, an upturn in the Coulomb drag has been reported
as T goes to zero in GaAs and in graphene-GaAs hybrid
heterostructures [2,3,16]. This may be a precursor of electron-
hole superfluidity. The upturn occurs at low temperatures that
are in agreement with only some of the theoretical predictions.

In this work we are able to resolve the controversy
on the correct mean-field approximation for screening by
comparing the different approximations against ground-state
results from highly accurate diffusion quantum Monte Carlo
(DQMC) calculations. DQMC serves as a benchmark against
which approximate theories may be compared [17]. The
accuracy of DQMC results has been confirmed in related
systems by agreement within a few percent with experimental

measurements of the BCS-BEC crossover of ultracold strongly
interacting fermions [18].

The exciton superfluid condensate fraction will serve here
as the calibration measure for the approximate mean-field
theories of screening. The condensate fraction is a fundamental
ground-state property, extensively used experimentally and
theoretically to characterize the different regimes of pairing
in systems of ultracold strongly interacting fermions [19].
Recently DQMC has been used to study condensation in
the electron-hole bilayer [20] (see also Ref. [21]), including
calculating the condensate fraction. The system investigated
in Ref. [20] is a symmetric single-valley electron-hole bi-
layer with quadratic energy bands. We compare the DQMC
superfluid condensate fraction properties with mean-field
calculations for the same system using the three approaches
for screening referred to above: (US), (NS), and (SS).

Another open theoretical problem is how to correctly deal
with vertex corrections in the mean-field calculations [15,22].
Since DQMC includes not only full screening but also vertex
corrections and two-body correlations, while all the mean-field
screening approaches omit vertex corrections and intralayer
correlations, it means that comparisons of the predicted
condensate fractions can also provide new information on
the importance in the excitonic superfluid state of the vertex
corrections and intralayer correlations.

We describe the electron-hole bilayer system by the grand
canonical Hamiltonian,

H =
∑

k,�

ξkc
†
k�ck� + 1

2�

∑

k,k′,q,� �=�′

×V 0
|k−k′ |c

†
k+(q/2)�c

†
−k+(q/2)�′c−k′+(q/2)�′ck′+(q/2)�. (1)

k, k′, and q are two-dimensional wave vectors in the layers, �
is the quantization area, c†k� (ck�) are the creation (destruction)
operators for electrons (e) and holes (h) distinguished by
� = (e,h), and the quadratic band dispersion for the electrons
and holes of equal effective mass m� are ξk = k2/(2m�) − μ,
with μ the equal electron and hole chemical potentials. Spin
quantum numbers are not shown. V 0

q = vqe
−qd is the bare

Coulomb interaction between electrons and holes separated
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FIG. 1. (Color online) (a) Superfluid-normal phase diagram at
zero temperature. Axes are layer separation d and interparticle
spacing rs . Condensate fraction phase boundary c = 0 for DQMC
taken from Ref. [20] (dashed black curve with filled circles),
and for superfluid state screened interaction (SS) (solid red line).
(b) Condensate fraction c = 0.25 contour line for DQMC, for
screened interaction in the superfluid state (SS), for unscreened
(US) (dotted green line), and for screened in the normal state (NS)
(dash-dotted blue line).

by a barrier of thickness d and dielectric constant κ , with
vq = −2πe2/(κq).

The effective electron-hole interaction Vq in the unscreened
case (US), and with random phase approximation (RPA)
screening in the normal state (NS) is

V (US)
q = V 0

q , (2)

V (NS)
q = V 0

q

1 + 2vq�
(NS)
0 (q) + (

vq�
(NS)
0 (q)

)2
[1 − e−2qd ]

,

(3)

where �
(NS)
0 (q) is the polarizability in the normal state within a

layer. In the (SS) approach, calculations start with the coherent
state generated by the unscreened interaction V 0

q , and the
pairing interaction is then screened within the RPA by carriers
in the superfluid coherent state which spans the two layers,

V (SS)
q = V 0

q

1 + 2vq�
(SS)
0 (q) + (

vq�
(SS)
0 (q)

)2
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,

(4)

where �
(SS)
0 (q) = �

(n)
0 (q) + �

(a)
0 (q), with �

(n)
0 (q) and �

(a)
0 (q)

the normal and anomalous polarizabilities in the superfluid
state [12].

The T = 0 mean-field equations for the (s-wave) gap 	k
and chemical potential μ for equal carrier densities n are

	k = − 1

�

∑

k′
V|k−k′|

	k′

2Ek′
; n= 2

�

∑

k

(1 − ξk/Ek), (5)

where Ek =
√

ξ 2
k + 	2

k.
Figure 1(a) shows the superfluid-normal phase diagram at

zero temperature. The axes are the barrier thickness d, and the
density, represented in terms of the average particle spacing
rs , both in units of the effective Bohr radius. At high densities,
the DQMC predicts a negligible exciton condensate fraction,
then at a threshold around rs ∼ 1–2, the condensate fraction
abruptly jumps to values of order unity. The DQMC c = 0

contour (dashed black curve with filled circles), represents the
boundary that separates the superfluid phase from the normal
Fermi liquid. This contour is reproduced from Fig. 3 and Fig. 1
of the Supplemental Material of Ref. [20].

The (SS) mean-field calculation gives a jump in the con-
densate fraction similar to the jump predicted by DQMC, and
we see in Fig. 1(a) that this position of the (SS) c = 0 contour
(solid red line) reproduces the DQMC normal-superfluid phase
boundary very well. In contrast, the (US) and (NS) mean-field
approximations show no discontinuous jump in the condensate
fraction, predicting instead a continuous exponential growth
in the condensate fraction with increasing rs , starting at zero
in the rs = 0 limit.

Since the (US) and (NS) approaches have no threshold for
condensate formation, in Fig. 1(b) we instead compare the
point in DQMC and in the three mean-field approximations
at which c reaches c = 0.25. The DQMC c = 0.25 contour
line is reproduced from Fig. 1 of the Supplemental Material of
Ref. [20]. The c = 0.25 contour line from the (SS) approach is
again in good agreement with the c = 0.25 contour line from
DQMC. In contrast, the c = 0.25 contour lines from the (US)
and (NS) approaches are seen to lie well to the left and well to
the right of the DQMC contour line, respectively.

We now compare the functional dependence on rs of the
condensate fractions at fixed d for DQMC and the mean-
field approximations. Figure 2(a) compares the respective
condensate fractions at d = 1.0. The DQMC condensate
fraction is reproduced from Fig. 2 of Ref. [20]. For rs < 2.5,
DQMC predicts a negligible exciton condensate fraction [23].
Then at rs � 2.5, the condensate fraction discontinuously
jumps from zero to c ∼ 0.2. Thus for d = 1.0, the position
of the DQMC normal-superfluid phase boundary is at rs �
2.5. The corresponding condensate fraction from the (SS)
approach shows a similar discontinuous jump at rs � 3, also
from exponentially small values to c ∼ 0.4. The (US) and
(NS) condensate fractions exhibit no jump, but instead grow
smoothly and exponentially from zero in the rs = 0 limit.
Thus, as we have noted, the normal-superfluid phase boundary
predicted by DQMC, does not exist for the (US) and (NS)
approaches.

When we take rs above the onset value, the DQMC and
(SS) condensate fractions in Fig. 2(a) are of order unity and
increase rapidly. However, the (SS) condensate fraction grows
significantly faster than the DQMC condensate fraction. This
discrepancy, which does not exceed a factor of 2, is associated
with the formation of biexcitons in the DQMC calculation,
an effect of four-particle correlations which are absent in
mean-field theories. For large rs , biexciton formation becomes
significant at the expense of exciton formation, and this has the
effect of significantly reducing the DQMC exciton condensate
fraction [20,21]. Figures 2(b) and 2(c) show similar overall
results for d = 0.7 and 0.3. We see a similar level of agreement
between DQMC and (SS) results maintained over the range
0.3 � d � 1. The DQMC, (SS), and (US) results all have a
weak dependence on d, but the (NS) curve moves to sharply
smaller rs values with decreasing d.

Recalling that DQMC is a benchmark for ground-state
properties and includes full dynamic screening, the full vertex
corrections, and the intra- and interlayer two-body density
correlations, we conclude that the comparisons with DQMC
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FIG. 2. (Color online) Condensate fraction c as a function of
rs for barrier thickness d as labeled. DQMC (Ref. [20]) (dashed
black curve with filled circles); unscreened (US) (dotted green line);
screened in superfluid state (SS) (solid red line); screened in normal
state (NS) (dash-dotted blue line).

in Figs. 1 and 2 strongly indicate that the (SS) approach is the
most reliable mean-field approximation for screening in the
presence of a superfluid.

A central consideration for experiments is the expected
transition temperature Tc for the superfluid, since a large
superfluid condensate fraction at T = 0 is not of practical
interest if Tc is so low that it is experimentally inaccessible.
Tc cannot be directly determined from ground-state properties
because in two dimensions Tc is not linearly related to the value
of the T = 0 gap 	 [24], but nevertheless a large value of 	

through strong pairing is an essential prerequisite for a high Tc.
For example, Ref. [8] concluded from their determination of
an extremely weak pairing energy scale in double monolayer
graphene, that any superfluid transition would occur at imprac-
tically low Tc. At present there exists no DQMC calculation
of the superfluid gap 	, but now that the (SS) mean-field
approach has been validated against highly accurate DQMC
calculations, we can use the (SS) approach to predict 	.

Figure 3 shows 	max as a function of rs , determined from
the three mean-field approaches. 	max is the maximum value of
the momentum-dependent gap 	k at zero temperature. For this
example, we give the energy scale of 	max in Kelvin, taking m�

and κ from double bilayer graphene with a hexagonal boron
nitride substrate and barrier d = 0.7 [12]. While not directly
applicable to graphene, since here there is only one valley, we
expect the trends to be the same.
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FIG. 3. (Color online) Superfluid gap 	max at T = 0 as a function
of rs , calculated for a Coulomb electron-hole pairing interaction
which is unscreened (US) 	(US)

max (dotted green line); screened in the
superfluid state (SS) 	(SS)

max (solid red line); screened in the normal
state (NS) 	(NS)

max (dash-dotted blue line).

In Fig. 3, we see that as rs approaches rs = 5, the gap
	(SS)

max calculated with screening in the superfluid state (SS),
becomes equal to the gap 	(US)

max without screening (US). This
indicates that (SS) screening is unimportant for rs � 5. The
absence of screening for rs � 5 is caused by the collapse
of the Fermi surface in the BEC regime. Without a Fermi
surface there can be no electron-hole excitations that are
needed for screening. The Fermi surface collapse is associated
with the renormalization of the chemical potential μ, with
μ going large and negative. This strong renormalization of
μ is frequently used to characterize the BCS-BEC crossover
in ultracold fermionic atoms [25], but is less well known in
solids. In contrast, the gap from the normal state screening
(NS) approach 	(NS)

max is very much smaller than 	(SS)
max, and the

large renormalization of μ for the (NS) approximation only
occurs at unrealistically low densities, rs > 15.

When rs drops below rs = 5, the pairs become less compact,
screening starts to become significant, and so in Fig. 3 	(SS)

max
becomes less than 	(US)

max . By rs � 3 we are approaching the
BCS regime, where the screening becomes so strong that 	(SS)

max
is exponentially suppressed and drops sharply, before abruptly
disappearing at rs = 2.5, leaving only a second exponentially
vanishingly small solution. The overall physical behavior
is that superfluidity kills screening at low densities, while
screening kills superfluidity at high densities.

The transition to the superfluid state with a large gap is not
continuous either in temperature or density. As a function of
temperature, the normal to superfluid transition has Kosterlitz-
Thouless character. As a function of density, the superfluid
state at large densities has an exponentially small gap, with
sub-mK critical temperatures. We have noted that at an onset
value of rs , a large discontinuous jump in the superfluid gap
occurs in the (SS) approach. This is caused by the sudden
appearance of three solutions to the gap equation [Eq. (5)]
instead of just the one solution [10]. Only the solution with the
largest 	max, corresponding to the lowest ground-state energy,
will actually be realized in the system, with the result that
	max suddenly becomes large and comparable to the chemical
potential μ. The jump in 	max has a strong discontinuous
character, similar to a first order transition.

The quantitative comparisons we have made allow us to also
address the role of vertex corrections, which are an important
issue in superfluidity for two reasons. First, we recall that for a
Coulomb pairing interaction there is no characteristic energy
scale to use in a Midgal expansion [26], so the beyond-Migdal
vertex corrections are not a priori small [22] for any of the
mean-field approaches, with or without screening. Second,
there are additional vertex corrections when screening is
evaluated in the superfluid state (SS), arising from the presence
of the self-energy insertions in the polarization diagrams
needed to generate the broken-symmetry state [27]. The
good agreement between DQMC and the (SS) approach in
Fig. 1 allows us to conclude that the sum total of the vertex
corrections are negligible for the (SS) approach for rs � 3 for
all d shown (see also Ref. [10]). For rs � 5, the agreement in
Fig. 3 between 	(SS)

max and 	(US)
max indicates that the additional

vertex corrections are negligible in the (SS) approach when
rs � 5, while the reasonable agreement in Fig. 2 between the
DQMC and (SS) condensate fractions for rs � 5, plus the
shared flat dependence on rs , indicates that the beyond-Migdal
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vertex corrections are also small in the (SS) approach when
rs � 5. We thus conclude that the vertex corrections are small
in the (SS) approximation for rs � 3 and rs � 5, that is, for
much of the density range. The insignificance of the vertex
corrections probably stems from the relatively large number
of carrier species in the system and the opening of a large gap
that suppresses particle-hole processes.

By a similar argument, the agreement between DQMC
and the (SS) approach in Fig. 1 for rs � 3 indicates that the
intralayer correlations between like species has little effect on
the superfluid properties for rs � 3. This is consistent with
conclusions drawn by comparing the gaps reported in Fig. 2
of Ref. [28], which included these correlations, with the gaps
calculated in Fig. 1(a) of Ref. [13], which neglected these
correlations. This comparison shows, at most, a 10%–20%
effect on the T = 0 gap. We note that if benchmark DQMC
data were available for a particular system, then intralayer
and interlayer correlations could be included in a systematic
way by adapting the classical-map technique to the superfluid
coupling [29].

Having established the (SS) approach as the best ap-
proximation for screening in the superfluid state, we now
discuss why superfluidity has been so difficult to observe in
electron-hole bilayer systems. Experiments with electron-hole
monolayers of graphene separated by a barrier thickness
of 1 nm saw no evidence of superfluidity [4], and this is
consistent with the theoretical predictions of Ref. [10] using
the (SS) mean-field approach for these system parameters.
Reference [12] demonstrated, however, that a double bilayer
graphene system with a 1 nm barrier, could generate an
exciton superfluid at experimentally attainable temperatures.
Experiments with double quantum wells in GaAs with peak
separation of electron and hole wave functions �25 nm
did not see definitive evidence of superfluidity [2,3]. This
observation is consistent with theoretical predictions within the
(SS) mean-field approach [12,30]. Reference [30] showed that
carrier densities need to be reduced by a factor of 2 at existing
peak separations, to generate superfluidity at temperatures
Tc ∼ 100 mK. Recently, experimental evidence suggesting the
existence of preformed electron-hole Cooper pairs in a hybrid

graphene-GaAs double layer system with quadratic bands
has been reported [16]. Below a characteristic temperature,
the Coulomb drag displays an upturn with an order of
magnitude enhancement. The characteristic temperature aligns
with the pseudogap crossover temperature, which should be of
the order of the pairing energy scale. A fit of the temperature
dependence of the drag resistivity gives an estimate of a
superfluid transition temperature of Tc ∼ 10–100 mK. This
temperature range is of the same order as the Tc evaluated
within the (SS) mean-field approach for this system, although
at lower densities [31].

In conclusion, we have resolved a long-standing debate
about the best mean-field approach to take for screening in
electron-hole bilayer excitonic superfluidity. We compared
DQMC condensate fraction properties with predictions from
different mean-field approximations for screening, and we
were able to conclude that the best mean-field approximation to
use is the (SS) superfluid state screened interaction approach.
The extent of the satisfactory comparison between the DQMC
and (SS) results for the condensate fraction over such a wide
parameter range cannot be regarded as fortuitous. The good
agreement for such a fundamental ground-state property of the
superfluid as the condensate fraction, gives strong support to
the predictive power of the (SS) approach, a straightforward
theoretical approach based on mean field.

This agreement of ground-state properties should help
theoretically in the experimental search of electron-hole
superfluidity at accessible temperatures, since it now makes
it possible to employ the (SS) approximation to explore
beyond the practical capabilities of DQMC: to map out
finite temperature properties like the superfluid transition
temperature Tc [12], and to investigate new semiconductor
and graphene devices with complicated lattice configurations
and a large number of Fermion species, all in the quest for
high Tc.
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