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In systems combining type-II superconductivity and magnetism the nonstationary magnetic field of moving
Abrikosov vortices may excite spin waves, or magnons. This effect leads to the appearance of an additional
damping force acting on the vortices. By solving the London and Landau-Lifshitz-Gilbert equations we calculate
the magnetic-moment-induced force acting on vortices in ferromagnetic superconductors and superconductor-
ferromagnet superlattices. If the vortices are driven by a dc force, magnon generation due to the Cherenkov
resonance starts as the vortex velocity exceeds some threshold value. For an ideal vortex lattice this leads to
an anisotropic contribution to the resistivity and to the appearance of resonance peaks on the current-voltage
characteristics. For a disordered vortex array the current will exhibit a steplike increase at some critical voltage.
If the vortices are driven by an ac force with a frequency ω, the interaction with magnetic moments will lead to a
frequency-dependent magnetic contribution ηM to the vortex viscosity. If ω is below the ferromagnetic resonance
frequency ωF , vortices acquire additional inertia. For ω > ωF dissipation is enhanced due to magnon generation.
The viscosity ηM can be extracted from the surface impedance of the ferromagnetic superconductor. Estimates
of the magnetic force acting on vortices for the U-based ferromagnetic superconductors and cuprate-manganite
superlattices are given.
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I. INTRODUCTION

Within the last 13 yr a number of fascinating compounds
have been discovered, revealing the coexistence of ferromag-
netism and superconductivity in the bulk [1–5]. These com-
pounds are U-based ferromagnets (except for the iron pnictide
EuFe2As2 [5] with a superconducting transition temperature
of 25 K) which become superconducting at temperatures
∼1 K under applied pressure, or even at atmospheric pressure.
Experimental investigation of magnetic properties of these
materials in the superconducting state is hampered by the
Meissner effect, making static measurements inefficient. How-
ever, important parameters can be extracted from dynamical
measurements of the spin-wave (magnon) spectrum, which
can be determined, e.g., by microwave probing [6,7] or using
Abrikosov vortex motion [8,9].

A number of papers have been devoted to theoretical
investigation of the magnon spectrum in magnetic super-
conductors [6,7,10–14]. Buzdin [10] determined the magnon
spectrum in a superconducting antiferromagnet with an easy-
axis anisotropy. Different types of spin waves in ferromagnetic
superconductors in the Meissner state have been studied by
Braude, Sonin, and Logoboy [6,7,11,12], including surface
waves and domain wall waves.

Experimental measurements of the ac magnetic suscep-
tibility of superconducting ferromagnets revealed that the
screening of the magnetic field created by magnetic moments
in these materials is incomplete [2,3]. This indicates that the
superconducting transition in the U compounds occurs in
the spontaneous vortex state. Only two papers so far have
addressed the influence of Abrikosov vortices on the magnon
spectrum in ferromagnetic superconductors. In Ref. [13]
coupled magnetic moment-vortex dynamics has been studied
in the limit of long wavelength λw � a, where a is the

intervortex distance. Later [14], this analysis was extended to
the case λw � a. It has been demonstrated that in the presence
of a vortex lattice the magnon spectrum acquires a Bloch-like
band structure.

To study the spin-wave spectrum experimentally two simple
procedures have been proposed. The first method is based on
the direct excitation of magnons by an electromagnetic wave
incident at the sample [6,7,14]. Then information about the
spin-wave spectrum can be extracted from the frequency-
dependent surface impedance Z. Note that this procedure
can be applied also to ordinary ferromagnets, but in all
cases the high-quality crystalline surface is required. The
surface impedance has been calculated for a ferromagnetic
superconductor in the Meissner state [6,7] and in the mixed
state [14] for a static vortex lattice.

The second method is based on the indirect magnon
excitation: an external source of current sets in motion
the Abrikosov vortices, which start to radiate magnons
when the Cherenkov resonance condition is satisfied [8,9].
Here the current-voltage characteristics yield information
about the magnon spectrum. Since this method involves
Abrikosov vortices, it is specific for superconducting ma-
terials. Different phenomena arising from vortex-magnetic
moment interaction in magnetic superconductors have been
studied by Bulaevskii et al. [8,9,15–18]. In Refs. [8,15] the
dissipation power due to magnon generation by a moving
with a constant velocity vortex lattice in a superconducting
antiferromagnet has been calculated. In Ref. [9] this result has
been generalized for the case of a vortex lattice driven by a
superposition of ac and dc currents. In Refs. [16] and [17]
a polaronic mechanism of self-induced vortex pinning in
magnetic superconductors is discussed. The motion of the
vortex lattice under the action of dc [16] and ac currents [17]
has been studied. Finally, in Ref. [18] it has been predicted
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that the flux flow should lead to the creation of domain walls
in systems with slow relaxation of the magnetic moments.

In the present paper, by solving the phenomenologi-
cal London and Landau-Lifshitz equations, we analyze the
problem of magnon generation by moving Abrikosov vor-
tices in ferromagnetic superconductors and superconductor-
ferromagnet (SF) multilayers. Theoretical investigation of the
latter systems is relevant in view of the recent success in fabri-
cation and characterization of cuprate-manganite superlattices
[19–21]. Also, recently an experimental study of the flux-flow
resistivity in Nb-PdNi-Nb trilayers has been reported [22].
Our consideration of bulk ferromagnetic superconductors,
on the other hand, is relevant to the U-based compounds
mentioned above. In this aspect, the present work complements
the preceding papers [8,9,15–18], which concentrated mainly
on antiferromagnetic materials. As we show, the presence of
ferromagnetism introduces its own specifics, as the magnon
spectrum in ferromagnets differs from the antiferromagnetic
spectrum. Our results also include the comparison of the cases
of a disordered and regular vortex lattice.

The outline of the paper is as follows. In Sec. II we give
a model of the ferromagnetic superconductor and derive a
general equation for the magnetic-moment-induced force fM
acting on vortices in ferromagnetic superconductors. In Sec. III
this force is calculated for a vortex lattice and disordered vortex
array moving under the action of a dc transport current. Here
the differences in the dependence of fM vs vortex velocity for
ferromagnetic and antiferromagnetic materials are discussed.
Section IV is devoted to vortex motion under the action of an
ac driving force. The magnetic contributions to the vortex
viscosity and vortex mass are determined. In Sec. V it is
shown how the force fM can be estimated experimentally by
measuring the surface impedance. In Sec. VI the generalization
of our calculations for the SF multilayers is discussed. In the
conclusion a summary of our results is given.

II. THE INTERACTION FORCE BETWEEN VORTICES
AND MAGNETIC MOMENTS: GENERAL EQUATIONS

In the London approximation the free energy of the
ferromagnetic superconductor in the mixed state can be taken
in the form

F =
∫ [

1

8πλ2

(
A + �0

2π
∇θS

)2

+ (rot A − 4πM)2

8π

+ α

2

(
∂M
∂xi

∂M
∂xi

)
+ KM2

⊥
2

− BHe

4π

]
d3r. (1)

Here λ is the London penetration depth, A is the vector poten-
tial, �0 is the flux quantum (�0 = π�c/ |e| > 0), θS is the su-
perconducting order parameter phase, M is the magnetization,
and α is a constant characterizing the exchange interaction.
The U-based ferromagnetic superconductors, listed in Table I,
have a strong easy-axis magnetocrystalline anisotropy, which
is accounted for by the term KM2

⊥/2, where K is an anisotropy
constant, M⊥ = M − (e · M)e, and e is a unit vector along the
anisotropy axis. The term BHe/4π in Eq. (1) accounts for a
uniform external field He. All terms in the right-hand side of
Eq. (1) are integrated over the whole space, except for the
first term, containing λ, which is integrated over the sample

TABLE I. Parameters of some ferromagnetic superconductors.
L = √

α/K is the effective domain wall width, Han is the anisotropy
field, μU is the magnetic moment per U atom, μB is the Bohr
magneton, ωF is the ferromagnetic resonance frequency (estimated
as ωF ∼ 2μUHan/�), and Vth is the critical vortex velocity for
magnon radiation (see Sec. III). The data have been taken from
Refs. [1,23–25].

Compound UGe2 UCoGe URhGe

λ (nm) 1000 1200 900
L (nm) 13,6 45 3450
Han (T) ∼100 ∼10 ∼10
μU 1.4 μB 0.07 μB 0.3 μB

ωF (Hz) ∼1013 ∼1010 ∼1011

Vth (cm/s) ∼107 ∼105 ∼107

K = Han/M ∼104 ∼104 ∼103–104

volume. Certainly, outside the sample M = 0. In the sample
the magnetization modulus is constant.

First, we determine the equilibrium state by minimizing F

with respect to M, and then with respect to A and θS . We
note that anisotropy field Han = KM is typically very large
(see Table I): It is comparable to or greater than the upper
critical field. This means that the inequality B � Han holds for
any internal field B that does not suppress superconductivity.
Then the transverse component of the magnetization M⊥
can be estimated as M⊥ � B/K � M . Since K � 1, in a
zero approximation with respect to K−1 we can neglect the
transverse magnetization (even in the anisotropy energy, which
appears to be proportional to K−1). Then

F (A,θS) ≈
∫ [

1

8πλ2

(
A + �0

2π
∇θS

)2

+ B2

8π
− BM0 − BHe

4π
+ 2πM2

]
d3r, (2)

where M0 = Me. For an arbitrary shaped sample further
minimization cannot be performed analytically. Here we
assume the ferromagnetic superconductor to be an ellipsoid.
The results derived below should be also valid in the extreme
cases of slabs and long cylinders. It is reasonable to assume
that the average internal magnetic field B0 in an ellipsoidal
sample will be uniform (compare with a dielectric ellipsoid
in a uniform external field; see Ref. [26]). Denoting the
superconductor volume as V , we can rewrite the free energy
as

F = V

[
fS(B0) − M0B0 − B0He

4π

]

+
∫

r/∈V

[
B2

8π
− BHe

4π

]
d3r + const, (3)

where the constant does not depend on the magnetic induction
B, and fS is the free energy density of the vortex lattice:

fS(B0) =
〈

1

8πλ2

(
A + �0

2π
∇θS

)2

+ B2

8π

〉
. (4)

Averaging is performed over a volume that is much larger
than the intervortex distance. The function fS(B0) can be
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determined explicitly by solving the London equation (11)
with a given vortex lattice density, corresponding to the average
field B0. To transform the integral in Eq. (3) we introduce
several quantities: the self-field of the sample BS = B − He,
the magnetization MS due to supercurrents, the effective full
magnetization Meff = M0 + MS , and the effective H field
Heff = BS − 4πMeff . Then the integral can be transformed
as∫

r/∈V

[
B2

8π
− BHe

4π

]
d3r =

∫
r/∈V

B2
S

8π
d3r −

∫
r/∈V

H 2
e

8π
d3r

=
∫

H2
eff

8π
d3r −

∫
r∈V

H2
eff

8π
d3r + const

= V

2
Meff

(
N̂ − N̂2

4π

)
Meff + const.

Here N̂ is the demagnetizing tensor, connecting the effective
magnetization and effective field inside the sample: Heff =
−N̂Meff . Analytical and numerical values of N̂ can be found
in Ref. [27]. Finally, if we eliminate Meff using the relation

Meff = (4π − N̂ )−1(B0 − He),

we obtain

F

V
= fS(B0) − M0B0 − B0He

4π

+ 1

8π
(B0 − He)N̂ (4π − N̂ )−1(B0 − He) + const. (5)

Here the only variable is the internal field B0, which should be
determined from the equation

∂F

∂B0
= 0. (6)

Equations (5) and (6) completely define the equilibrium state
of the ferromagnetic superconductor.

Now we proceed from statics to coupled vortex and
magnetization dynamics. We focus on two systems, for which
the derivation of the force acting on vortices is almost identical:
a bulk ferromagnetic superconductor and an SF multilayer (see
Fig. 1), where S is an ordinary type-II superconductor and F
is a ferromagnet with a strong easy-axis anisotropy, K � 1.
For the multilayer system the same expression (1) for the free
energy is used with M = 0 in the superconductor and λ = ∞ in
the ferromagnet. We neglect the Josephson coupling between
neighboring S layers. This is justified for �10-nm-thick
ferromagnets: In the case of an ordinary (nontriplet) proximity
effect, superconducting correlations decay exponentially on a
scale of several nanometers in the ferromagnet.[28]

Let the vortices be aligned along the z axis (which is
perpendicular to the S-F interface in the multilayer system).
They may form a regular or disordered lattice. When the
vortices are set in motion by a dc or ac transport current, their
time-dependent positions are given by the vector functions
Ri(z,t), lying in the xy plane, where i = 1, . . . ,Nv , and Nv

is the number of vortices. In our calculations we assume the
vortices to be straight; i.e., Ri does not depend on z.

As vortices move, the magnetic moments start to fluc-
tuate. We describe the magnetization dynamics using the

FIG. 1. A scheme of the SF multilayer system. The dashed lines
denote vortices.

Landau-Lifshitz-Gilbert equation [29],

∂M
∂t

= γ

(
M × δF

δM

)
+ ν

M2

(
M × ∂M

∂t

)
, (7)

where γ is the gyromagnetic ratio, ν is a dissipation constant,
and the free energy F is given by Eq. (1). We estimate the gyro-
magnetic ratio in the U-based ferromagnetic superconductors
as γ ∼ 2μU/�, where μU is the magnetic moment per U atom
(see Table I), and an angular momentum of �/2 per U atom is
assumed.

The force acting on a single vortex per unit length of the
vortex equals

fi = − 1

Lv

∂F

∂Ri

, (8)

where Lv is the vortex length. Averaging fi over all vortices,
we obtain the average force

f = − 1

LvNv

∑
i

∂F

∂Ri

. (9)

When we considered the equilibrium state, the magneti-
zation component perpendicular to the easy axis e has been
neglected. Now we have to abandon this approximation, as it
would lead to a vanishing force acting on the vortices from the
side of the magnetic moments. We put M = M0 + m, where
m ≈ M⊥, |m| � M , and linearize Eq. (7) with respect to m:

∂m
∂t

= −γ M0 × (α∇2m − Km + B) + ν

M2
M0 × ∂m

∂t
.

(10)

From this equation it is evident that magnetization fluctu-
ations are excited if the vortex field is not parallel to the
magnetization easy axis. In a ferromagnetic superconductor
this may be achieved by applying an external field at an angle
to the magnetization easy axis or by choosing an appropriate
sample geometry (for example, an ellipsoidal sample with the
magnetization directed along neither of the principal axes).
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The magnetic induction inside the superconductor should
be determined from the London equation,

δF

δA
= 0, or

−∇2B + B
λ2

= �0

λ2
z0

∑
i

δ(2)(ρ − Ri) + 4π

c
rot rot m, (11)

where z0 is a unit vector along the z axis. In the case of the
multilayer system (see Fig. 1), Maxwell’s equations inside the
F layers read

rot B = 4π rot M, div B = 0. (12)

On the SF interface appropriate boundary conditions must be
imposed:

Bz|F = Bz|S, Hx,y |F = Hx,y |S (13)

∂m
∂z

∣∣∣∣
F

= 0. (14)

The last condition follows directly from Eq. (7), if no surface
term is present in the free energy (1).

We present the magnetic field as the sum of the vortex field
h and the magnetization field bM defined by

− ∇2h + h
λ2

= �0

λ2
z0

∑
i

δ(2)(ρ − Ri), (15)

− ∇2bM + bM

λ2
= 4π rot rot m, (16)

inside the superconductor, and

rot h = 0, div h = 0, (17)

rot bM = 4π rot m, div bM = 0 (18)

in the ferromagnetic layers.
In Eqs. (11)–(18) we neglected the magnetic field induced

by normal currents. These are given by j = σE, where σ is
the normal conductivity, and E is the electric field. We first
estimate the contribution of the normal currents flowing in the
F layers of the multilayer system to the magnetic field. Using
both Maxwell’s equations for rot B and rot E, we obtain

rot rot B = 4πσF

c
rot E = −4πσF

c2

∂B
∂t

,

or

∂2B
∂z2

+ ∇2
ρB − 4πσF

c2

∂B
∂t

= 0, (19)

where σF is the conductivity in the magnetic layers. Assuming

∂B
∂t

≈ −(VL∇ρ)B,

where VL is the flux velocity, we can see that the influence of
the normal currents on the magnetic field is negligible, if the
inequality

4πσF

c2
lVL � 1

holds, where l is the characteristic in-plane length scale of
the problem. Similar arguments can be applied to the S

layers. Then, for the multilayer system we find the following
constraint on the vortex velocity,

VL � c2

4π max(σn,σF )l
, (20)

where σn is the normal-state conductivity of the superconduc-
tor. In the case of a bulk ferromagnetic superconductor, we
have to demand

VL � c2

4πσnl
. (21)

As we will see, the main length scales of the problem are the
intervortex distance a and the length L = √

α/K , which is
of the order of the domain wall width of the ferromagnet
(or ferromagnetic superconductor). Further on we assume
that Eqs. (20) and (21) with l = min(a,L) are satisfied.
Then, we may not take into account the normal currents in
Eqs. (11)–(18).

In the free energy (1) the interaction of the vortices with
magnetization originates from the Zeeman-like term (a brief
explanation is given in Appendix A)

FZ = −
∫

Mhd3r.

Then, the magnetic-moment-induced force fM acting on the
vortices is

fM = − 1

LvNv

∫
mz∇hzd

3r. (22)

Here it has been assumed that the perpendicular to the z-
axis component of the field h is negligible. In the case of SF
multilayers, this is true for a sufficiently small period of the
structure. To draw a parallel with preceding works [8,9,15–18],
where the susceptibility formalism has been used, we note that
fM can be written in the form

fM = − 1

LvNv

∫
(χ̂zzhz)∇hzd

3r,

where χ̂zz is the susceptibility operator. If desired, the explicit
form of χ̂zz can be easily derived from Eq. (29), given below.

All further calculations in this section and Secs. III, IV,
and V are carried out for a ferromagnetic superconductor. In
Sec. VI we discuss how our results can be extended to the case
of the multilayer system.

In the Fourier representation Eq. (22) reads

fM = 4π2

Nv

i

∫
qmqzh

∗
qzd

2q, (23)

where for any function X(ρ) its Fourier transform is defined
as

Xq = 1

(2π )2

∫
X(ρ)e−iqρd2ρ.

By Fourier transforming Eqs. (10), (15), and (16), assuming
that all quantities do not depend on z, we obtain

∂mq

∂t
= −γ M0 × [−(K + αq2)mq + bMq + hq]

+ ν

M2
M0 × ∂mq

∂t
, (24)
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hqz = �0

4π2(1 + λ2q2)

∑
i

e−iqRi (t), (25)

bMq = −4π
q × (q × mq)

q2 + λ−2
. (26)

It can be seen that the absolute value of the term bMq in
Eq. (24) is much smaller than |Kmq |. Further on we neglect
the magnetization field bMq .

Equation (24) is an inhomogeneous linear differential
equation with constant coefficients with respect to mq . It can
be solved using standard methods. We are interested in the z

component of the magnetization, which equals

mqz = γMi

2
sin2 θ

∫ t

−∞
hqz(t

′)
{(

1 + i
ν

M

)−1

× exp

[
−
(

1 + i
ν

M

)−1
iω(q)(t − t ′)

]

−
(

1 − i
ν

M

)−1

exp

[(
1 − i

ν

M

)−1

iω(q)(t − t ′)
]}

dt ′,

(27)

where θ is the angle between e and z0, and

ω(q) = γM(K + αq2) = ωF (1 + L2q2) (28)

gives the magnon dispersion law in an ordinary ferromagnet,
if the dipole-dipole interaction is not taken into account (see
Ref. [30]). Here, ωF = γMK is the ferromagnetic resonance
frequency. In the small dissipation limit, ν � M , we have

mqz = γMi

2
sin2 θ

∫ t

−∞
hqz(t

′)

×
{

exp

[(
−i − ν

M

)
ω(q)(t − t ′)

](
1 − i

ν

M

)

− exp

[(
i − ν

M

)
ω(q)(t − t ′)

](
1 + i

ν

M

)}
dt ′. (29)

Then the force fM takes the form

fM = 2π2γM

Nv

sin2 θ

∫
d2q

∫ t

−∞
hqz(t

′)h∗
qz(t)

×
{

exp
[(

i − ν

M

)
ω(q)(t − t ′)

] (
1 + i

ν

M

)
− exp

[(
−i − ν

M

)
ω(q)(t − t ′)

] (
1 − i

ν

M

)}
qdt ′.

(30)

III. MAGNON RADIATION BY VORTICES MOVING
WITH A CONSTANT VELOCITY

Let us consider the motion of vortices under the action
of a constant external force (e.g., spatially uniform and
time-independent transport current). Then the positions of
individual vortices are given by

Ri(t) = Ri0 + VLt + �Ri(t). (31)

Here the vectors Ri0 denote the vortex positions in a regular
lattice, VL is the average flux velocity, and �Ri(t) is
responsible for fluctuations of vortices due to interactions with

pinning cites (〈�Ri(t)〉 = 0). It should be stressed here that
we do not take into account the influence of pinning on the flux
velocity. The effect that is important for us is the vortex lattice
distortion caused by impurities, which strongly influences the
efficiency of magnon generation.

The product of magnetic fields under the integral in Eq. (30)
is

hqz(t
′)h∗

qz(t) =
[

�0

4π2(1 + λ2q2)

]2

eiqVL(t−t ′)K,

K =
∑
i,j

exp{iq(Rj0 − Ri0) + iq[�Rj (t)

−�Ri(t
′)]}. (32)

Below we consider the cases of a perfect vortex lattice and
a disordered vortex array.

A. A perfect vortex lattice

The approximation used in this section is valid for suffi-
ciently weak pinning, when we can put

〈eiq[�Rj (t)−�Ri (t ′)]〉 ≈ 1,

where the averaging is over i. To ensure the fulfillment of this
condition, it is sufficient to demand

�Rq � 1, (33)

where �R is the characteristic displacement of vortices from
their positions in a perfect lattice. The inequality (33) must hold
for all q, giving a considerable contribution to the integral in
Eq. (30). In the end of Sec. III B it is shown that this leads to
the condition

�R � min(L,a). (34)

When (33) holds, we have

K = 4π2NvB0

�0

∑
G

δ(q − G), (35)

where G are the vectors of the lattice, reciprocal to the vortex
lattice. After integration over q and t ′ the magnetic force takes
the form

fM = �0B0γM sin2 θ
∑

G

G
(1 + λ2G2)2

× iω(G) + ν
M

GVL

ω2(G) − (VLG)2 − 2i ν
M

VLGω(G)
.

When the terms corresponding to G and −G are combined,
this can be written as

fM = −γ νB0�0 sin2 θ
∑

G

G(GVL)

(1 + λ2G2)2

× (GVL)2 + ω2(G)

[ω2(G) − (GVL)2]2 + 4 ν2

M2 (GVL)2ω2(G)
, (36)

where small terms of the order of ν/M in the numerator have
been dropped. From this it follows that the force has local
maxima when for some G = G0 the condition

ω(G0) ≈ VLG0 (37)
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is satisfied. This relation presents the well-known Cherenkov
resonance condition. When Eq. (37) holds, magnons with the
wave vector G0 are effectively generated. When the vortex
velocity is close to a resonance value, in the sum in Eq. (36) we
can drop all terms except the two resonant terms corresponding
to G0 and −G0. Then

fM ≈ −γ νB0�0 sin2 θ
G0(

1 + λ2G2
0

)2
× ω(G0)

[ω(G0) − VLG0]2 + ν2

M2 ω2(G0).
(38)

It can be seen that the fM vs VL dependence for a given vortex
velocity direction exhibits a Lorentzian-like peak with the
width

�VL = ν

M
ω(G0)

VL

G0VL

.

The maximum value of fM is

|fM |max = γM2B0�0G0 sin2 θ(
1 + λ2G2

0

)2
νω(G0)

. (39)

Another remarkable feature is that the force is directed at some
angle to the velocity of the vortices: fM is parallel to G0 and
not VL. The angle between fM and VL may range from 0◦ to
90◦. This effect also follows from Eq. (3) in Ref. [16], though
the authors did not mention it, because it has been assumed
that VL and fM are always parallel.

Let us discuss how the Cherenkov resonances influence the
current-voltage characteristics. Abrikosov vortex motion in a
superconductor is governed by the equation

�0

c
j × z0 = −f. (40)

The term on the left-hand side represents the Lorentz force,
with j being the macroscopic supercurrent density. All other
forces are represented by the term f. We take into account two
contributions to f: the viscous drag force −ηVL and fM . Here η

is the viscosity due to order parameter relaxation processes and
normal current flowing through the vortex core [31]. Taking
the cross product of Eq. (40) and z0, we obtain the expression
for the current

j = − cη

�0
VL × z0 + c

�0
fM (VL) × z0. (41)

The relation between j and E is the established via

E = −1

c
(VL × B), (42)

which follows from Faraday’s law. According to Eq. (41), the
vortex-magnetic moment interaction leads to an increase �j
of the current density at a given electric field E:

�j = c

�0
fM

(
c

B0
E × z0

)
× z0.

According to Eq. (38), near the Cherenkov resonance we have

�j = γ νB0c sin2 θ
z0 × G0(

1 + λ2G2
0

)2
× ω(G0)[

ω(G0) − c
B0

(z0 × G0)E
]2 + ν2

M2 ω2(G0)
. (43)

This relation indicates that the I-V curve exhibits a series of
peaks corresponding to the resonance electric fields given by

ω(G) − c

B0
(z0 × G)E ≈ 0. (44)

Moreover, close to the resonance the additional current �j
is directed along the vector z0 × G0 and not E. As a result,
locally the resistance is anisotropic. Here it is important to
take into account that generally the directions of the vectors
G0 and VL are not independent: It is known (for isotropic
amorphous [32,33] and polycrystalline [34] materials) that
a moving vortex lattice tends to reorient itself so that its
shortest translation vector is either parallel or perpendicular
to VL, depending on the the flux velocity and magnetic
field. This effect is a consequence of vortex interaction with
pinning centers or with the the quasiparticle tail of another
vortex, as follows from theoretical considerations [35,36]
and numerical simulations [37]. In our case the interaction
of vortices with magnetic moments also should affect the
vortex lattice orientation. As a result, in amorphous and
polycrystalline superconductors the resistivity may remain
isotropic even in the presence of magnetic moments. However,
in monocrystalline materials there is a competing effect:
Here, in the static case the energetically favorable vortex
nearest-neighbor directions are defined by the symmetry of
the crystal [38]. When vortices move, the interplay of the
two mentioned effects yields the stationary orientation of the
vortex lattice. Then, the angle between VL and G0 may be a
complicated function of the current and magnetic field, and the
anisotropy predicted by Eq. (43) is at least partially preserved.

Considering macroscopic ferromagnetic superconductors
and multilayer systems, care should be taken when applying
Eq. (43) to the whole sample: It is known that even a small
concentration of pinning sites destroys the long-range order
in the vortex lattice [39]. In fact, vortex lattice domains are
formed in large superconducting samples; see Refs. [38,40]. In
monocrystalline samples, as mentioned above, the symmetry
of the crystal makes only few orientations of the vortex
lattices energetically favorable. This fact allows us to put
forward a qualitative argument. Let us denote as G the set
of all reciprocal lattice vectors for all vortex lattice domains.
Since there are only few possible orientations of the domains,
the set G consists of isolated points. We claim that when the
applied electric field satisfies Eq. (44) for some G ∈ G, the
enhancement of the current should be observable. Hence, even
if there are several vortex lattice domains, the peaks on the
current-voltage characteristics are present. The measurement
of the peak voltages at different applied magnetic fields makes
it possible to probe the magnon spectrum ω(q).

B. A disordered vortex array

In this section we analyze the opposite extreme case of a
vortex lattice with considerable disorder. This situation may
be realized in weak magnetic fields, B0 � �0/λ

2 (a � λ),
when vortex-vortex interaction is weak and the lattice is easily
destroyed by defects and thermal fluctuations. Assuming that
the quantities �Rj (t) and �Ri(t ′) for i �= j are not correlated,
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we find that

K = P
∑
i �=j

eiq(Ri0−Rj0) + Nv

〈
eiq[�Ri (t)−�Ri (t ′)]

〉

= PNv

[
4π2B0

�0

∑
G

δ(q − G) − 1

]

+Nv

〈
eiq[�Ri (t)−�Ri (t ′)]

〉
, (45)

where

P = ∣∣〈eiq�Ri (t)
〉∣∣2,

and the averaging is over i. Next we assume that the vortex
position fluctuations �Ri are sufficiently large, so that P � 1
for q � L−1. As we will see, the main contribution to fM comes
from q ∼ L, so the behavior of K at smaller q has a negligible
effect on the result derived in this section. For an estimate of
the required characteristic value of �Ri , we note that if the
quantity Ri(t) has a Gaussian distribution function, then the
condition P � 1 is satisfied for 〈�R2

i 〉 � L2.
Concerning the second term on the right-hand side of

Eq. (45), one can see that〈
eiq[�Ri (t)−�Ri (t ′)]

〉 = 1,

when t = t ′, and〈
eiq[�Ri (t)−�Ri (t ′)]

〉 = P � 1,

when |t − t ′| → ∞. To proceed further, we put〈
eiq[�Ri (t)−�Ri (t ′)]

〉 = e−|t−t ′ |/τ (q),

where the time τ (q) is chosen so that 〈|q[�Ri(t) −
�Ri(t ′)]|〉 ∼ 1 at t − t ′ = τ (q). Our last assumption is that the
vortex self-correlation time τ (q) is much larger than ω(q)−1 at
q ∼ L−1. Then, due to the small factor P , the contribution to
fM of the first term on the right-hand side of Eq. (45) can be
neglected, and we can put

K = Nve
−|t−t ′ |/τ (q). (46)

After integration over t ′, Eq. (30) yields

fM ≈ γM�2
0 sin2 θ

4π2

∫
qd2q

(1 + λ2q2)2

× iω(q)

ω2(q) − (qVL)2 − 2i(qVL)τ−1
1 (q)

, (47)

where τ−1
1 (q) = τ−1(q) + νω(q)/M , and in the numerator

terms proportional to ν/M have been dropped. The main
contribution to the integral comes from q lying in the vicinity
of two circles in the q plane, given by ω(q) = ±qVL (this
equation specifies the Cherenkov resonance condition). Near
the circle ω(q) = qVL we make the following transformation:

ω2(q) − (qVL)2 − 2i(qVL)τ−1
1 (q)

≈ 2ω(q)[ω(q) − qVL − iτ−1
1 (q)].

For the circle ω(q) = −qVL the transformations are analo-
gous. Then

fM ≈ γM�2
0 sin2 θ

4π2

∫
qd2q

(1 + λ2q2)2

× Re
i

ω(q) − qVL − iτ−1
1 (q)

. (48)

The last fraction in the right-hand side resembles the expres-
sion

Re
i

f (x) − iε
,

which reduces to δ(f (x)) when ε → +0. Hence, the last factor
in Eq. (48) also can be replaced by a δ function, when τ−1

1 (q) is
sufficiently small. To derive the limitation on τ−1

1 (q) we direct
the qx axis along VL and rewrite the denominator of the large
fraction in Eq. (48) as

ωF (1 + L2q2) − qxVL − iτ−1
1 (q)

= ωF

(
1 − V 2

L

V 2
th

)
− iτ−1

1 (q)

+ωF L2

[(
qx − VL

2L2ωF

)2

+ q2
y

]
,

where Vth = 2ωF L. Now it is evident that the δ function can
be introduced in Eq. (48) when

τ−1
1 (q) � ωF

∣∣∣∣V 2
L

V 2
th

− 1

∣∣∣∣ .
Then

fM ≈ −γM�2
0 sin2 θ

4π

∫
qd2q

(1 + λ2q2)2
δ(ω(q) − qVL). (49)

Here two points should be noted: (i) The expression for fM
does not depend on the dissipation rate and on the artificially
introduced time τ (q); (ii) Eq. (49) can be derived from
Eq. (36) in the limit of an extremely sparse vortex lattice,
when summation can be replaced with integration.

Technical details of integration in Eq. (49) are given in
Appendix B. The final result is

fM = −γM�2
0 sin2 θ

8λ4ω2
F

[
1 +

(
VL

λωF

)2
]−3/2

�(VL − Vth)VL

(50)

for λ � L. Equation (50) asserts that the quantity Vth is the
magnon generation threshold velocity. The maximal value of
fM is reached at VL = λωF

√
2 � Vth:

|fM |max = �2
0γM sin2 θ

8
√

2λ3ωF 33/2
. (51)

The influence of the magnetic force fM on the current-
voltage characteristics, in general, has been discussed in the
previous section. According to Eqs. (41) and (42), at the
electric field E = VthB0/c the average current density should
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(a)

(b)

FIG. 2. The magnon spectra in an (a) antiferromagnet and (b)
ferromagnet. The dash-dotted line is given by ω = VLq, where VL

is the vortex velocity at which magnon generation becomes efficient
(VL = Vc for antiferromagnetic superconductors and VL = Vth for
ferromagnetic superconducors).

exhibit a stepwise increase by

�j = c

�0
fM (Vth) = γM�0c sin2 θ

8λ4ω2
F

[
1 +

(
Vth

λωF

)2
]−3/2

Vth.

The maximum enhancement of the current density due
to vortex-magnetic moment interaction is reached at E =√

2λωF B0/c and equals

�jmax = �0cγM sin2 θ

8
√

2λ3ωF 33/2
.

In Ref. [15] it has been predicted that in antiferromagnetic
superconductors in the sparse lattice limit the current enhance-
ment �j is proportional to

√
VL − Vc (at VL > Vc), where Vc

is some critical velocity. This result is in contrast with ours:
We found that �j ∼ �(VL − Vth) near the magnon generation
threshold. This difference is due to different magnon spectra
in ferromagnets and antiferromagnets; see Fig. 2. In an antifer-

romagnet ω(q) =
√

ω2
0 + s2q2, where ω0 is a gap frequency

and s is the short-wavelength magnon velocity. As the vortex
velocity is increased, the resonance condition ω(q) = VLq
is first satisfied at infinitely large q. However, at q � ξ−1,
where ξ is the coherence length, the Fourier components
hqz are exponentially small. Magnon generation becomes
efficient at q ∼ ξ , which is reached at a critical velocity that

roughly equals Vc =
√

ω2
0ξ

2 + s2. In short, the generation
threshold in antiferromagnetic superconductors corresponds

to an intersection of the curves ω = ω(q) and ω = VLq at q ∼
ξ−1 [see Fig. 2(a)], yielding a �j ∼ √

VL − Vc dependence.
On the contrary, in ferromagnetic superconductors at VL =
Vth the curves ω = ω(q) and ω = VLq touch each other at
q = L−1 < ξ−1 [see Fig. 2(b)]. This fact leads to a stepwise
increase of the current at the threshold vortex velocity.

Finally, we need to make a remark concerning the condi-
tion (33), providing that the ideal lattice approximation can
be used. It follows from Fig. 2(b) that near the generation
threshold magnons with wave numbers q ≈ L−1 are generated.
This means that for VL � Vth the main contribution to the
integral in Eq. (30) comes from q ∼ L−1. Thus, the condition
�R � L should be imposed to ensure the applicability of
the perfect lattice approximation. Of course, we should also
demand �R � a: Otherwise, the δ functions in Eq. (35)
corresponding to G �= 0 are strongly suppressed.

C. Estimates of the threshold vortex velocity in ferromagnetic
superconductors and SF multilayers

Let us check whether it is possible to observe the features
connected with the Cherenkov resonances on the current-
voltage characteristics of ferromagnetic superconductors and
SF multilayers. To satisfy the condition (37), sufficiently
large vortex velocities VL > Vth are required. Estimates of the
threshold velocity for known ferromagnetic superconductors
are given in Table I. One can see that the values of Vth are
very large. The question arises as to whether such veloc-
ities are compatible with superconductivity in the U-based
superconductors. To investigate this question we estimate the
supercurrent density jth which is sufficient to accelerate the
vortices up to the velocity Vth. Equation (41) yields

jth ≈ cη

�0
Vth. (52)

For the viscosity η we use the Bardeen and Stephen ex-
pression [41] (which is a good estimate for relatively slow
processes) [42],

η = �0Hc2σn/c
2, (53)

where Hc2 = �0/(2πξ 2) is the upper critical field. For the
normal-state conductivity we use Drude’s estimate,

σn ∼ e2n�

mVF

.

Here n is the concentration of charge carriers, m is their mass,
� is the mean free path, and VF is the Fermi velocity. Then

jth ∼ e2n�Hc2Vth

mcVF

. (54)

This value should be compared with the depairing current
density, which is given within the BCS theory by

jcr ∼ en
�

mVF

,

where � is the superconducting gap. We demand jth � jcr. Us-
ing the relation � ∼ �VF /ξ (valid for clean superconductors)
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we can rewrite the inequality above as

Vth � ξ

�
VF . (55)

In the U-based compounds the coexistence of superconductiv-
ity and ferromagnetism appears in clean samples with � � ξ .
The Fermi velocities are of the order of 108 cm/s in UGe2 and
105 cm/s in UCoGe and URhGe; see Refs. [43–45]. Thus, the
inequality (55) is satisfied in neither of these compounds, and
our model breaks down at vortex velocities below Vth. This
is a consequence of the high magnetic anisotropy and large
quasiparticle mass in the U compounds.

The situation seems to be more optimistic in SF super-
lattices. Certainly, we should consider if Eq. (53) is valid for
multilayers. A study of the vortex viscosity in superconductor-
normal metal multilayers is presented in Refs. [46] and [47].
It has been shown that Bardeen-Stephen viscosity (53) may be
significantly modified for vortices inclined with respect to the
z axis or for strongly conducting normal metal layers. Still, in
our case Eq. (53) is a good order-of-magnitude estimate for
dS ∼ dF and σF � σn, where dS and dF are the thicknesses
of the superconducting and ferromagnetic layers (see Fig. 1),
respectively.

Recently, a number of experimental papers
[19–21] have reported successful fabrication of high-quality
YBa2Cu3O7/La2/3Ca1/3MnO3 superlattices. In Ref. [48] the
value Han = 1200 Oe for La0.7Ca0.3MnO3 is given, though it is
noted that the anisotropy is significantly influenced by strain.
Strictly speaking, La0.7Ca0.3MnO3 with M = 530 emu/cm3

(see Ref. [48]) and K ≈ 2 is not in the K � 1 limit, which
means that the magnetostatic term bMq in Eq. (24) cannot be
ignored. However, the order-of-magnitude estimate for Vth

given here remains valid for ferromagnets with K ∼ 1, and it
can be applied to the mentioned compound.

The measured domain wall width in La0.7Ca0.3MnO3,
denoted as δ in Ref. [49], is 12 nm. Assuming γ ∼ μB/�,
where μB is the Bohr magneton, we obtain the following
estimate for the vortex threshold velocity:

Vth = 2γHanL ∼ 104 cm/s. (56)

The Fermi velocity in YBa2Cu3O7 is on the order of or greater
than 107 cm/s [50]. Thus, the condition (55) can surely be
satisfied in the cuprate-manganite superlattices.

Of course, the Bardeen-Stephen estimate for the viscosity
η may break down at transport currents that are considerably
smaller than the depairing current. This may happen, for
example, due to the Larkin-Ovchinnikov instability [51,52] (in
dirty samples at high temperatures) or due to the overheating
instability. These effects lead to a dependence of η on E
and thus to a nonlinear current-voltage characteristic. Still,
considering that vortex velocities 105 cm/s can be achieved
in the linear flux-flow regime in both high-temperature [53]
and low-temperature [54] superconductors, one can expect the
effects caused by the magnon radiation to be observable.

IV. MAGNON RADIATION BY A HARMONICALLY
OSCILLATING VORTEX LATTICE

As shown in Sec. III C, magnon generation in U-based
ferromagnetic superconductors by a vortex array moving with

constant velocity seems problematic due to the extremely
high required vortex velocities. In this section we study a
more feasible approach to magnon generation in magnetic
superconductors, analyzing the case of a harmonic external
current acting on the vortices. Experimentally, the oscillating
current in the superconductor can be created using the
microwave technique (for example, see Ref. [22]). Then,
the surface impedance yields information about the high-
frequency properties of the sample; see Sec. V.

Before we calculate the force fM , we note that there is an
obvious limitation on the frequency ω for the applicability
of the London approach, namely �ω < �, where � is the
superconducting gap. On the other hand, magnon radiation by
vortices starts at ω > ωF . Hence, it is required that �ωF < �

to make the resonant features described below observable.
Subjected to the action of a harmonic force, in the linear

regime the vortices oscillate harmonically:

Ri(t) = R′
i0 + Re−iωt + R∗e−iωt . (57)

Here R′
i0 are the equilibrium positions of the vortices, which

are defined by vortex-vortex interaction as well as pinning. The
vectors R′

i0 do not necessarily form a regular lattice, unlike
Ri0. R is the amplitude of vortex oscillations. We consider
frequencies of the order of the ferromagnetic resonance
frequency in ferromagnetic superconductors, ωF ∼ 100 GHz.
This frequency is several orders of magnitude larger than the
typical depinning frequency [55]. This fact makes it possible
to neglect the influence of the pinning force on vortex motion
and to assume that the oscillation amplitudes of all vortices
are equal to R.

The product of the magnetic fields in Eq. (30) equals

hqz(t
′)h∗

qz(t)

=
[

�0

4π2(1 + λ2q2)

]2

K′eiq(Ri (t)−Ri (t ′))

≈
[

�0

4π2(1 + λ2q2)

]2

K′{1 + iq[Ri(t) − Ri(t
′)]}, (58)

where

K′ =
∑
i,j

e−iqR′
i0+iqR′

j0 = Nv

〈∑
j

e−iqR′
i0+iqR′

j0

〉
. (59)

Here the averaging is over i. The linear with respect to R
contribution to the force takes the form

fM = γM�2
0

8π2Nv

sin2 θ

∫
d2q

∫ t

−∞

iK′qR
(1 + λ2q2)2

(e−iωt − e−iωt ′ )

×
{
e[iω(q)− ν

M
ω(q)](t−t ′) − e[−iω(q)− ν

M
ω(q)](t−t ′)

}
qdt ′ + c.c.

≈ γM�2
0

4π2Nv

sin2 θe−iωt

∫
d2q

K′(q)qR
(1 + λ2q2)2

×
[

ω(q)

ω2(q) − ω2 − 2i ν
M

ωω(q)
− ω−1(q)

]
q + c.c.

(60)

Here c.c. denotes the complex conjugate. Like before, we
neglected small terms on the order of ν/M .
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To proceed further, the explicit form of K′(q) is required.
Again, we consider the cases of a perfect vortex lattice and a
disordered array.

A. A perfect vortex lattice

Let us assume that pinning is sufficiently weak, so that

q�R � 1, (61)

where �R ∼ ∣∣R′
i0 − Ri0

∣∣ is the characteristic deviation of
the vortices from their positions in a perfect lattice. The
inequality (61) should hold for all q, giving a considerable
contribution to the integral in Eq. (60). The characteristic value
of q is estimated below.

For q�R � 1 we have

K′ = 4π2NvB0

�0

∑
G

δ(q − G). (62)

Substituting Eq. (62) into Eq. (60), assuming that the vortex
lattice is either square or regular triangular, we obtain

fM = iωηMRe−iωt + c.c., (63)

ηM = − iγM�0B0

2ω
sin2 θ

∑
G

G2

(1 + λ2G2)2

×
[

ω(G)

ω2(G) − ω2 − 2i ν
M

ωω(G)
− ω−1(G)

]
. (64)

Here we have introduced the complex quantity ηM , playing
the role of a generalized vortex viscosity. Indeed, when ηM is
purely real, the magnetic force is simply fM = −ηMdRi/dt .
In our system there is a phase shift between the vortex velocity
and fM , and the more general expression (63) is valid. Further
on we call ηM the magnetic viscosity.

The ideal vortex lattice is likely to form when vortex-vortex
interaction is sufficiently strong or the intervortex distance is
sufficiently small. Let this distance be much smaller than the
London penetration depth, which means B0 � �0/λ

2. Then
λG � 1 for all G �= 0, and

ηM ≈ − iγM�0B0ω

2λ4
sin2 θ

∑
G �=0

G−2ω−1(G)

×
[
ω2(G) − ω2 − 2i

ν

M
ωω(G)

]−1
. (65)

Now we consider the behavior of ηM in different frequency
ranges. First, let the frequency be below the ferromagnetic
resonance frequency (ω < ωM ). Then magnon generation is
inefficient. However, if we put ν = 0, the force fM will not
vanish below the generation threshold, unlike in the case of
constant vortex velocity. Instead, the magnetic viscosity will be
purely imaginary, signifying that there are no magnetic losses.
In Fig. 3 we plot the imaginary part of η vs magnetic field B0

dependencies for different frequencies (below ωF ) and for a
fixed angle θ .

At frequencies above the ferromagnetic resonance fre-
quency magnetic dissipation cannot be neglected, and the real
part of ηM becomes significant. In Fig. 4 we plot the ηM

vs B0 dependencies for different frequencies and for a fixed

FIG. 3. The Im(ηM ) vs magnetic field dependence at frequencies
below the ferromagnetic resonance frequency for an ideal triangular
vortex lattice [see Eq. (65)]. η0 = γM�2

0 sin2 θ/(2λ4ω2
F ).

angle θ and dissipation rate ν/M = 0.02. The graphs exhibit a
sequence of Lorentzian-like [Re(ηM )] and N-shaped [Im(ηM )]
features, located at some resonant field values, BR , which are
determined from the relation

ω(G) = ω. (66)

Re

Im

Re

Im

Re

Im

FIG. 4. The ηM vs magnetic field dependencies for frequencies
above the ferromagnetic resonance frequency [see Eq. (65)]. η0 =
γM�2

0 sin2 θ/(2λ4ω2
F ). The vortices form an ideal triangular lattice.
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For small fields these features may overlap, but the resonance
corresponding to the highest field remains well distinguish-
able. For a triangular vortex lattice the largest resonance field
equals

BR =
√

3

8π2

�0

L2

(
ω

ωF

− 1

)
,

and for a square lattice

BR = 1

4π2

�0

L2

(
ω

ωF

− 1

)
.

Solving Eq. (66) with respect to G, we obtain

G = q0 = L−1

√
ω − ωF

ωF

. (67)

Hence, like in Sec. III A, the peaks on the ηM vs B0

dependencies must be observable if the characteristic deviation
�R of the vortices from their positions in an ideal lattice
satisfies

�R � min(q−1
0 ,a). (68)

When ω < ωF one can see from Eq. (65) that the main
contribution to ηM comes from the vectors G for which
ω(G) − ω is of the order of ωF − ω, since the terms on the
right-hand side of Eq. (65) are proportional to [ω(G) − ω]−1

when ν → 0. Then, taking into account Eq. (68), for an
arbitrary frequency ω we obtain the following applicability
condition for the ideal lattice approximation:

�R � min

[
a,L

√
ωF

|ω − ωF |
]

. (69)

Note that when the frequency is close to ωF this condition is
weaker than the one imposed by Eq. (34).

We conclude this section by giving a numeric estimate of
the magnetic viscosity. When the resonance condition (66) is
satisfied, we obtain from Eq. (65)

ηM ∼ γM�0B0

λ4G2ω2

M

ν
.

Since B0G
−2 ∼ �0, and the lowest allowable value of ω is

ωF = γMK , we have

ηM � �2
0

Kλ4ωF

M

ν
. (70)

Then, according to Eq. (53), the ratio of ηM to η is

ηM/η � M

ν

ξ 2c2

Kλ4ωF σn

. (71)

We make the numeric estimate for UCoGe, the ferromagnetic
superconductor with the lowest ferromagnetic resonance fre-
quency. In Ref. [3] we find the value 12 μ� cm for the normal
resistivity, and the maximal value 200 Å for the coherence
length. Using Table I, we obtain

ηM/η ∼ M

ν
3 × 10−5. (72)

Data on the ratio M/ν are not available yet. The small factor
10−5 in Eq. (72) appears due to the large magnetocrystalline
anisotropy of UCoGe: It can be seen from Eq. (71) that ηM/η

is proportional to K−2, since ωF = γMK . Hence, to increase
the ratio of ηM to η, compounds (or multilayer systems) with
a lower anisotropy are preferable.

B. A disordered vortex array

Now consider the situation when the vortex lattice is
strongly distorted by pinning centers. To obtain a qualitative
understanding of the behavior of ηM in this case, we calculate
the magnetic viscosity under the assumption that the quantities
R′

i0 and R′
j0 for i �= j are absolutely uncorrelated. In other

words, we assume that there is even no short-range order in
the vortex lattice, so that the average concentration of vortices
at a distance R from a given vortex does not depend on R and
equals B0/�0. Then

K′ = Nv

⎛
⎝1 +

〈 ∑
j (j �=i)

e−iqR′
i0+iqR′

j0

〉⎞⎠

= Nv

(∫
B0

�0
e−iqRd2R + 1

)
= Nv

[
4π2 B0

�0
δ(q) + 1

]
.

(73)

For clarity, we stress here that the product hqz(t ′)h∗
qz(t) does not

decay with increasing t − t ′, unlike in the case of a constant
driving force; see Eqs. (32) and (46). This is explained by
the fact that the vortices oscillate close to their equilibrium
positions and do not travel from one pinning site to another.
Thus, the positions Ri(t) and Ri(t ′) of a single vortex are
always well correlated, corresponding to an infinite correlation
time τ (q).

With K′ given by Eq. (73) the magnetic viscosity takes the
form

ηM = − iγM�2
0

4πω
sin2 θ

∫ ∞

0

q3dq

(1 + q2λ2)2

[
ω(q)

ω2(q) − ω2 − iε
− ω−1(q)

]
. (74)

Here, like in Sec. III B, we assume that the imaginary term −iε (ε > 0) in the denominator is an infinitesimal. To simplify
the expression on the right-hand side of Eq. (74), we note that the contribution to the integral from small q (q � λ−1) can be
neglected in the λ � L limit. Then we can put 1 + λ2q2 ≈ λ2q2 and cut the integral off at q = λ−1:

ηM = − iγM�2
0

4πωλ4

∫ ∞

λ−1

dq

q

{
ω(q)

[ω + ω(q)][ω(q) − ω − iε]
− ω−1(q)

}
. (75)
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Further integration should not present difficulties. For λ � L we obtain

ηM = γM�2
0 sin2 θ

8πωωF λ4

{
πωF

2(ω − ωF )
�(ω − ωF ) − i

[
2ω2

ω2
F − ω2

ln
λ

L
+ ωF

2(ω + ωF )
ln

ω + ωF

ωF

+ ωF

2(ωF − ω)
ln

∣∣∣∣ωF − ω

ωF

∣∣∣∣
]}

.

(76)

Like in the previous section, below the ferromagnetic reso-
nance frequency the magnetic viscosity is purely imaginary.
However, unlike in the case of a perfect vortex lattice, now the
viscosity does not depend on the magnetic field. It should be
also noted that in the limit B0 → 0 Eq. (64) after summation
transforms into (76); i.e., the cases of isolated vortices and
chaotically placed vortices are equivalent, like in Sec. III. The
ηM vs ω dependence is depicted in Fig. 5.

C. Vortex mass

As we have seen, at ω < ωF the magnetic viscosity is
imaginary. Moreover, at ω � ωF the viscosity is proportional
to ω. This signifies that the vortex can be ascribed a mass per
unit length, Mv , so that the equation of motion becomes

Mv

d2Ri

dt2
= fext, (77)

where fext includes all forces, except for the force fM . The mass
is defined by

Mv = iηM

ω

∣∣∣∣
ω=0

. (78)

Before we give explicit expressions for Mv , we should
comment on the connection between the vortex mass en-
hancement and the self-induced polaronic pinning mechanism,
studied in Refs. [16] and [17]. In the mentioned papers it
has been assumed that the magnetization dynamics is purely
dissipative, i.e., ν/M � 1, which is in contrast to our case. In
fact, ν/M � 1 is a necessary condition for the formation of
polaronlike vortices. Thus, the polaronic pinning mechanism
contributes rather to the real part of ηM than to its imaginary

FIG. 5. The frequency dependence of the magnetic viscosity, ηM ,
for a disordered vortex array; see Eq. (76). The value ln(λ/L) = 4.3
of UGe2 has been used. η0 = γM�2

0 sin2 θ/(2λ4ω2
F ).

part, and it is not related to the vortex mass enhancement
discussed here.

Using Eq. (65), we find that the magnetic contribution to
the vortex mass for a perfect lattice is

Mv = γM�0B0

2λ4
sin2 θ

∑
G �=0

G−2ω−3(G), (79)

when B0 � �0/λ
2. For a disordered array we obtain from

Eq. (74)

Mv = γM�2
0

4πω3
F

sin2 θ

∫ ∞

0

q3dq

(1 + q2λ2)2(1 + L2q2)3

≈ γM�2
0 sin2 θ

16πω3
F λ4

(
4 ln

λ

L
− 5

)
(λ � L). (80)

Let us estimate the characteristic magnetic contribution Mv

to the vortex mass and compare it with the electronic
contribution (see, for example, Ref. [56]), which is present
in any superconductor:

Me = 2

π3

m2VF

�
. (81)

We give estimates for the ferromagnetic superconductor
URhGe. The values of ωF = γMK and λ can be found
in Table I. The electron mass and Fermi velocity for one
of the Fermi surface pockets of URhGe were measured in
Ref. [45]. The values given there are m = 22me and VF =
4.4 × 105 cm/s, where me is the free electron mass. Then

Mv ∼ γM�2
0

16πω3
F λ4

≈ 10−24 g/cm, Me ∼ 10−20 g/cm.

It can be seen that the magnetic contribution to the vortex mass
is negligible for URhGe. Estimates for UGe2 and UCoGe
yield the same result. This happens due to the very large
ferromagnetic resonance frequency ωF in these compounds:
Note that the right-hand side of Eq. (80) contains ω−3

F . The
situation is the same as for the magnetic viscosity; see Eqs. (71)
and (72). Thus, the magnetic mass Mv should be detectable in
materials with a smaller ferromagnetic resonance frequency.

V. DISCUSSION OF THE MAGNETIC VISCOSITY
MEASUREMENT

A simple experimental method to study vortex dynamics in
type-II superconductors is based on the measurement of the
surface impedance. A possible geometry for such experiment
is depicted in Fig. 6. We consider the simplest situation,
when the vortices are perpendicular to the sample surface and
the probing electromagnetic wave with the amplitude he is
normally incident on this surface. Then, for a nonmagnetic
superconductor (M0 = 0), theory [31,57] predicts that in a
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FIG. 6. The geometry for the measurement of the surface
impedance of a ferromagnetic superconductor. The dashed lines
denote vortices.

wide range of parameters the surface impedance Z(ω) equals

Z(ω) =
(−iωμρf

4π

)1/2

, (82)

where μ is the static differential magnetic permeability,

μ = dB0z

dHez

,

and ρf is the flux-flow resistance,

ρf = B�0

c2η
.

Thus, the experimental value of the surface impedance
provides information about the viscosity coefficient η.

We prove that for a ferromagnetic superconductor a range
of parameters exists, where Eq. (82) can be applied, if the
magnetic viscosity is taken into account: η should be replaced
with η + ηM .

First, we outline the applicability conditions of Eq. (82) for
an ordinary superconductor. Within the continuous medium
approximation used in Ref. [57] an alternating external field he

excites a long-wavelength and a short-wavelength mode in the
superconductor. For convenience, we call these modes type-1
and type-2, and denote the z projections of their wave vectors
as k1 and k2, respectively. These quantities are explicitly
defined by Equation (24) in Ref. [57]. To use the simple
expression (82) for the impedance, three conditions must be
fulfilled: (i) |k1| λ � 1, (ii) |k1| � |k2|, and (iii) |k2| Lz � 1
(Lz is the sample thickness; see Fig. 6). According to Ref. [57],
the conditions (i) and (ii) are satisfied if

ω � ωC = �0C
∗
44

B0λ2η
, (83)

where C∗
44 is an elastic modulus of the vortex lattice. This

inequality presents a limitation on the frequency. We would
like to note that in the limit Hc1 � B0 � Hc2, where Hc1 is
the lower critical field, the condition (83) can be weakened,

namely,

ω � ωB = �0B0

4πλ2η
(ωB � ωC). (84)

This follows directly from Eq. (22) in Ref. [57].
Let us turn to the case of a ferromagnetic superconductor.

We assume the sample is a slab with dimensions Lx , Ly ,
and Lz, where Lz � Lx,Ly ; see Fig. 6. The x axis, parallel
to the large surface of the sample, is the magnetization easy
axis. In fact, the slab geometry is not a key point for us,
but the equilibrium magnetization must be parallel to one of
the sample surfaces. By applying an external field we can
provide that the internal field B0 is parallel to the z axis. In
the slab geometry the components of the demagnetizing tensor
are Nxx ≈ 0, Nyy ≈ 0, Nzz ≈ 4π . Then, according to Eq. (5),
if the external field is He = (−4πM,0,Hez), the internal field
equals B0 = (0,0,Hez).

Now we discuss the surface impedance of a ferromagnetic
superconductor. Compared to the case of a conventional
superconductor, an additional complication arises due to the
presence of new degrees of freedom. These are connected with
magnetization dynamics and lead to the appearance of new
magnonlike modes. Such modes can be directly excited by an
electromagnetic wave even in the absence of vortices [6,7],
and they may significantly influence the surface impedance.
However, in our geometry the excitation of these modes can
be avoided, as demonstrated below.

If the frequency is not too close to the ferromagnetic
resonance frequency (|ω − ωF | /ωF � K−1) we can neglect
the magnetostatic interaction in the Landau-Lifshitz equation
when analyzing the additional magnonlike modes, as we have
done in Sec. II (where the term bMq has been dropped). Then,
in the limit of small dissipation, Eq. (10) takes the form

∂m
∂t

= −γ M0 ×
(

α
∂2m
∂z2

− Km
)

. (85)

This yields two modes, which we label as types 3 and 4:

m = (z0 ∓ iy0)m3,4e
ik3,4z,

k3 = L−1
√

ω
ωF

− 1, k4 = iL−1
√

ω
ωF

+ 1, (86)

where m3 and m4 are scalar amplitudes. Now suppose
that the magnetic field he in the probing electromagnetic
wave oscillates along the x axis, i.e., along the equilibrium
magnetization (see Fig. 6). We assume that inside the sample
the alternating magnetic induction 〈b〉, averaged over the
xy plane, is also parallel to the x axis. It will be shown
that this statement is self-consistent. Indeed, for 〈b〉 parallel
to M0 we see from Eqs. (10) and (14) that ∂〈m〉/∂t = 0.
This means that the magnonlike type-3 and type-4 modes
are not excited. In the type-1 and type-2 modes 〈m〉 = 0,
but 〈b〉 �= 0. Hence, these modes differ from their analogs
in nonmagnetic superconductors only by the presence of the
magnetic contribution to the viscosity, ηM , which is due to
the Fourier components mq with q �= 0. Then, according to
Ref. [57], the internal field 〈b〉 will be parallel to the probing
field he (which follows from the London equation (11), if the
deformation of the vortex lattice is taken into account). Thus,
we have proved the validity of our assumption, having shown
in addition that only the type-1 and type-2 modes are excited.
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Strictly speaking, the effective viscosity for the long-
wavelength type-1 mode differs from η + ηM , because the
vortices are not straight. However, since |k1| � λ−1, the radius
of curvature of the vortices is sufficiently large to make this
difference negligible.

An electromagnetic wave polarized in the y direction (he =
heyy0) requires separate treatment, which is outside the scope
of this paper. Here, the magnonlike modes of types 3 and 4 must
be taken into account. For a study of the surface impedance in
the case he⊥M0 (in a different geometry), see Ref. [14].

VI. MAGNON EXCITATION IN SF MULTILAYERS

In this section it is shown how our results can be extended
to the case of SF multilayers with S and F being an ordinary
type-II superconductor and ordinary ferromagnet, respectively.
We consider structures with a sufficiently small period d (see
below) and with vortices oriented perpendicular to the layer
surfaces; see Fig. 1. Then, the generalization of the results
from Secs. II–IV is straightforward if two points are taken into
account.

(i) Since the magnetic moments now occupy only a fraction
of the sample, the force fM is reduced by a factor of d/d ′

F ,
where d ′

F � dF is the effective thickness of the ferromagnetic
layer. Formally, all expressions for fM , starting with Eq. (23),
should be multiplied by d ′

F /d. The quantities d ′
F and dF

coincide if the mutual influence of the superconducting
and magnetic orders is negligible. However, this is not the
case for cuprate-manganite superlattices. Experimental papers
report giant superconductivity-induced modulation of the
magnetization [20] and the suppression of magnetic order in
the manganite layer close to the SF interface [21]. In the latter
case, d ′

F < dF , but both quantities are of the same order of
magnitude.

(ii) Due to the fact that the structure is only partially
superconducting, the in-plane London penetration depth now
equals λeff = λ(d/dS)1/2; see Ref. [58], for example. The
expression for the single vortex field

hqz ≈ �0

4π2
(
1 + q2λ2

eff

) (87)

can be used if the period d of the structure is much smaller
than the characteristic in-plane length scale of the problem.
To apply our results for the case of a constant driving force,
we have to demand d � min(a,L), according to Sec. III. The
constraint is somewhat weaker in the case of the harmonic
driving current. Indeed, as we have seen in Sec. IV A, the
main contribution to fM comes from q ∼ L−1√|ω/ωF − 1|;
hence, the limitation on the period of the structure is

d � min

[
a,L

√
ωF

|ω − ωF |
]

.

Finally, we discuss briefly a recent paper by Torokhtii
et al. [22], where the flux-flow resistivity in Nb-PdNi-Nb
trilayers has been measured. It has been reported that in the
presence of the magnetic PdNi layer the flux-flow resistivity in
Nb exceeds the Bardeen-Stephen estimate [41], as if the vortex
viscosity is reduced by the interaction with magnetic moments.
At first sight, this seems to contradict our prediction. However,
this experiment cannot be interpreted in the framework of

the model used here, since the ferromagnetic alloy PdNi
does not possess a well-defined magnetic anisotropy, and the
magnon modes cannot be characterized by a wave vector
q due to the lack of translational symmetry. Moreover, the
dependence of the critical temperature of Nb on the PdNi
layer thickness signifies strong influence of the magnetic order
on superconductivity. We suppose that the explanation of the
viscosity reduction in the mentioned experiment requires a
more complicated microscopic treatment.

VII. CONCLUSION

We have calculated the magnetic-moment-induced force
fM acting on moving Abrikosov vortices in ferromagnetic
superconductors and SF multilayers. When the vortices are
driven by a dc transport current, magnons are efficiently
generated when the vortex velocity exceeds the value Vth =
2ωF L. As a result, narrow peaks appear on the current-voltage
characteristics of the superconductor if the vortices form a
regular lattice. Within a vortex lattice domain the current may
be not parallel to the electric field. For a disordered vortex
array a steplike feature should appear on the current-voltage
characteristics. This behavior is in contrast with antiferromag-
netic superconductors, where the increase of the current at
the magnon generation threshold is proportional to

√
U − Uc,

where U is the voltage and Uc is some threshold value [15].
According to our estimates, the transport current required to
reach the vortex velocity Vth in the U-based ferromagnetic
superconductors is of the order the depairing current due
to the large magnetic anisotropy of these compounds. On
the other hand, in cuprate-manganite multilayers [19–21] the
required current is well below the depairing current, so the
mentioned features may be observable on the current-voltage
characteristics of such systems.

If the vortices are driven by an ac current, the interaction
with magnetic moments results in the appearance of a complex
magnetic contribution ηM to the vortex viscosity. We deter-
mined this quantity for the cases of an ideal vortex lattice and
a disordered vortex array. For low frequencies, ω � ωF , the
magnetic contribution to the vortex mass has been estimated.
From the ηM vs magnetic field and frequency dependencies the
magnon spectrum in the ferromagnetic superconductor can be
extracted. Experimentally, ηM can be determined by measuring
the surface impedance of the sample in the geometry, where the
equilibrium magnetization is parallel to the oscillating external
magnetic field.

ACKNOWLEDGMENTS

We are grateful to L. Bulaevskii and D. Vodolazov for useful
discussions and valuable comments. This work was supported
in part by the Russian Foundation for Basic Research,
European IRSES program SIMTECH (Contract No. 246937),
the French ANR program “electroVortex,” LabEx “Amadeus”
program, and NanoSC COST Action No. MP1201.

APPENDIX A

In this Appendix we prove that the magnetic-moment-
induced force acting on vortices can be written as (22). We
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have to calculate the variation of the free energy when all
vortices are shifted by an equal vector, and the magnetization
is kept fixed. To simplify the calculations we use the fact that
the free energy acquires the same variation if the vortices are
kept fixed, and the magnetization is shifted in the opposite
direction. Then

δF =
∫ (

δF

δA
δA + δF

δM
δM
)

d3r.

According to the London equation δF/δA = 0 the first term
on the right-hand side vanishes. Also, the terms in Eq. (1)
which depend only on M (e.g., the exchange energy) are not
affected by the magnetization shift. Hence, only the term

δF = −
∫

BδMd3r (A1)

remains, and the force acting on a vortex is

(fM )xi
= 1

NvLv

∫
B

∂M
∂xi

d3r = − 1

NvLv

∫
∂B
∂xi

Md3r.

Presenting the magnetic field as B = h + bM , we have

fM = fM1 + fM2, (A2)

(fM1)xi
= − 1

NvLv

∫
∂bM

∂xi

Md3r,

(fM2)xi
= − 1

NvLv

∫
∂h
∂xi

Md3r.

Note that the term fM1 does not depend on the vortex positions.
Hence, to calculate this term we can place the vortices
anywhere in the superconductor. Let us position the vortices in
an area with uniform magnetization (M = const). Then, fM2

vanishes, and fM = fM1. On the other hand, in the area with
homogenous magnetization bM = 0 inside the superconductor
(in the ferromagnetic superconductor this happens due to
London screening, and in the SF multilayer system the field
bM is simply confined to the ferromagnetic layers). Hence,
the magnetization has no influence on the magnetic field and
supercurrent in the vortex region, and the force fM vanishes.
Then, fM1 = 0, and for any vortex positions fM = fM2. From
this follows Eq. (22).

APPENDIX B

In this Appendix we show how the integral in Eq. (49)
can be evaluated. We introduce the dimensionless quantities
l = L/λ, lv = VL/(ωF λ) and g = λq and direct the gx axis

along VL. Then fMy = 0, and

fMx = −γM�2
0 sin2 θ

4πλ3ωF

∫
gxd

2g
(1 + g2)2

δ(1 + l2g2 − lvgx)

= −γM�2
0 sin2 θ

4πλ2VL

∫
(1 + l2g2)δ(1 + l2g2 − lvgx)

(1 + g2)2
d2g

= −γM�2
0 sin2 θ

4πλ2VL

[
l2
∫

δ(1 + l2g2 − lvgx)

1 + g2
d2g

+ (1 − l2)
∫

δ(1 + l2g2 − lvgx)

(1 + g2)2
d2g
]

. (B1)

Now we make a coordinate shift, redesignating gx − lv/(2l2)
by gx ,

fMx = −γM�2
0 sin2 θ

4πλ2VL

{∫
δ
(
g2 − g2

0

)
d2g

1 + g2
y + (gx + lv

2l2

)2

+ (l−2 − 1)
∫

δ
(
g2 − g2

0

)
d2g[

1 + g2
y + (gx + lv

2l2

)2]2

⎫⎪⎬
⎪⎭ , (B2)

where

g2
0 = l−2

(
l2
v

4l2
− 1

)
.

Further, we assume that VL > Vth, so that g2
0 > 0 (at VL <

Vth fM = 0). Integration over the modulus of g is now
straightforward. Then

fMx = −γM�2
0 sin2 θ

8πλ2VL

[∫ 2π

0

dϕ

1 + g2
0 + l2

v

4l4 + lv
l2 g0 cos ϕ

+
∫ 2π

0

(l−2 − 1)dϕ(
1 + g2

0 + l2
v

4l4 + lv
l2 g0 cos ϕ

)2

⎤
⎥⎦ , (B3)

where ϕ is the polar angle in the g plane. Integration can be
completed using standard methods or a table of integrals. The
result is

fMx = −γM�2
0 sin2 θ

8λ2VL

(l−2 + 1)
l2
v

l4

[
(1 − l−2)2 + l2

v

l4

]−3/2

.

(B4)

If we return to dimensional variables and recall that L � λ,
we obtain Eq. (50).
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