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Vortex anomaly in low-dimensional fermionic condensates: Quantum confinement breaks chirality
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Chiral fermions are responsible for low-temperature properties of vortices in fermionic condensates, both
superconducting (charged) and superfluid (neutral). One of the most striking consequences of this fact is that
the core of a single-quantum vortex collapses at low temperatures, 7 — 0 (i.e., the Kramer-Pesch effect for
superconductors), due to the presence of chiral quasiparticles in the vortex-core region. We show that the situation
changes drastically for fermionic condensates confined in quasi-one-dimensional and quasi-two-dimensional
geometries. Here quantum confinement breaks the chirality of in-core fermions. As a result, instead of the
ultimate shrinking, the core of a single-quantum vortex extends at low temperatures, and the condensate profile
surprisingly mimics the multiquantum vortex behavior. Our findings are relevant for nanoscale superconductors,
such as recent metallic nanoislands on silicon, and also for ultracold superfluid Fermi gases in cigar-shaped and
pancake-shaped atomic traps.
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L. INTRODUCTION occupation of such fermionic states changes abruptly when
T — 0. Therefore, in the nearest vicinity of the vortex center,
A(r) exhibits a sharp increase over a rather short spatial
scale governed by & = &) (T /T,), where & is the usual zero-
temperature coherence length and 7. is the critical temperature
[5,10-12].

In the present work we show that the physical situation
changes drastically when a fermionic condensate is confined
in quasi-one-dimensional or quasi-two-dimensional geometry.
Quantum confinement breaks the chirality of in-core fermions
and, instead of the Kramer-Pesch shrinking, the vortex core
exhibits an anomalous extension at near-zero temperatures.
For illustration, we perform numerical studies of a vortex
with a winding number, n = 1, located in the center of a
superconducting nanocylinder. Such ultimate confinement is
not only a theoretical possibility: experimental results on
a single vortex confined in a flat metallic nanoisland have
become available recently [13]. Furthermore, our finding is
also relevant to recently realized fermionic condensates in
cigar-shaped and pancake-shaped atomic traps [14], where the
solid control of the system geometrical parameters makes it
possible to observe the predicted anomaly with a high accuracy
(see the discussion in Sec. V).

The present paper is organized as follows. In Sec. II we
outline the Bogoliubov—de Gennes (BdG) formalism for a
superconducting nanocylinder and then discuss the system
parameters and a simple model for taking into account surface
roughness. Section III presents our main results. The summary
and relevant discussions are given in Sec. [V.

Chiral fermions are responsible for many unusual phenom-
ena, ranging from high-energy to condensed-matter physics.
Though such fermions were originally introduced in relativis-
tic field theory, it seems hardly an exaggeration to say that their
role in present solid-state studies is even more important. The
whole realm of graphene physics is largely based on the pres-
ence of Dirac points [1]. The same can be said for topological
insulators [2]. In superconductivity chiral fermions recently
attracted much attention in the contest of Majorana excitations
[3]. Yet, chiral quasiparticles localized in the vortex core
have been known for type-II superconductors and for rotating
fermionic neutral superfluids for more than 50 years [4,5].

Caroli et al. [6] were the first to find that there exist
fermionic quasiparticles localized in the vortex core with ener-
gies lower than the excitation gap deep in the superconducting
state A (so-called in-gap or in-core fermions). The formation
mechanism of such quasiparticles, i.e., Andreev reflection, was
revealed through a semiclassical consideration by Andreev [7].
With advances in the experimental technique, those in-gap
fermions were eventually observed in the tunneling spectra of
type-1I superconductors [8].

Though it was clear that in-core quasiparticles should alter
the profile of the order parameter A(r), the theoretical study
of this issue by Kramer and Pesch [9] produced a striking
result. It was revealed that the core of a single-quantum
vortex in a clean s-wave superconductor collapses at near-zero
temperatures. Similar behavior was also found for superfluid
fermionic condensates [5], such as atomic Fermi gases [10]
and superfluid neutron star matter [11]. The origin of the
Kramer-Pesch collapse is the chirality of in-core fermionic II. FORMALISM
excitations [5], whose energy is positive and proportional
to the angular momentum m. Since the energy goes to zero
for m — 0, fermions localized in the vortex core create
a kind of zero-energy Fermi surface [5]. As a result, the

Our analysis invokes a numerical solution of the BdG equa-
tions [4] designed for an s-wave superconducting nanocylinder
with a vortex line inside (winding number n = 1). The BdG
equations read
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where E, is the quasiparticle energy, u,(r) and v,(r) are the
electronlike and holelike wave functions, respectively, and
the single-electron Hamiltonian (measured from the chemical
potential w) is H, = 2—r1n?[—ihV — Z—"_A]2 — u, with m, being
the effective carrier mass (set to the free electron mass below).
We consider the deep type-II regime, which allows us to
neglect the magnetic field, i.e., A = 0.

The pair potential of a single vortex with winding number
n =1 is expressed in cylindrical coordinates as A(r) =
A(p)e~ . Consequently, u,(r) and v,(r) can be chosen in
the following forms:

1

u,(r) = — Luj,nk(p)ei(’”‘l/z)eeikz, (2a)
T
1 . )

v,(r) = ﬁvjmk(p>e’<’"“/2)9el“, (2b)
T

where v = {j,m,k}, j is the radial quantum number, m is
a half-odd integer [6,15], k is the wave number for the
longitudinal motion in the z direction, and L is the length
of the cylinder. The transverse quantum confinement dictates
that u jk(R) = vju(R) = 0, where R is the cylinder radius.
Then, the radial particlelike and holelike wave functions are
expanded in terms of the Bessel functions as

jmk(P) =) Cjmki Bim—1(P), (3a)
Vink(0) = D djmki b i1 (), (3b)

with (9 = m £ 1/2)

V2

Gin(p) = Rl

Jﬂ(ai,ﬂp/R)7 (4)

where J), is the nth-order Bessel function of the first kind and
o;, is its ith zero. Plugging Eqgs. (2) and (3) into Eq. (1),
the BAG equations are represented in the matrix form so that
the key point of the corresponding numerical procedure is
to diagonalize the relevant matrix. Here one should take into
account the usual normalization condition [4],

Y (i + i) = 1 )

i

where ¢k, and d,; are chosen to be real.
As a mean-field approach, the BdG equations are supple-
mented by the self-consistency relation

A(r) =g Z (P (0[1 =2 f(E))], (6)

0<E,<hwp

with g being the coupling constant, wp the Debye frequency,
and f(E,) the Fermi distribution of quasiparticles. The usual
way to incorporate Eq. (6) in numerical calculations is to
invoke iterations, starting from a proper initial condition [e.g.,
A(p) = Ag] and diagonalizing the corresponding matrix at
each step until convergence is reached.

Our interest is to investigate the effects of quantum
confinement on the vortex core. Such effects are expected to
dominate when the spacing between discrete single-electron
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levels (here associated with the transverse electronic motion)
8~ %’Ig—z is of the order of or larger than the characteristic
pairing energy Ag. Typically, for metallic parameters we have
Ag ~ 0.5-1.0 meV, and one reaches § ~ Ag for R ~ 30 nm.
Consequently, the optimal regime to investigate confinement
effects on a single vortex is to adopt & ~ R ~ 30 nm. For
illustration, we choose hAwp = 30 meV and Ay ~ 1.2 meV
(at T = 0), the same microscopic parameters as those used in
Ref. [15]. We take the Fermi velocity as vy = 1.4 x 10° m/s,
which yields & ~ 25 nm. To simplify and speed up our
numerical procedure, we take k = 0 (as in Ref. [15]), which
corresponds to a cylindrical Fermi surface oriented in the
z direction. The prototype material can be, e.g., NbSe,
(see Refs. [15-17]).

An unavoidable issue in nanoscale superconductors is non-
magnetic imperfections such as surface roughness or disorder
associated with the wetting layer between the superconducting
material and the semiconductor substrate. So, it is important
to check how the results are stable against such imperfections.
The standard procedure to incorporate disorder is to employ the
Usadel equations [18]. However, such quasiclassical equations
are not useful when analyzing the quantum-confinement
effects. So, we stay with the BdG equations and incorporate
the disorder in a perturbative manner. Namely, we assume that
the single-electron Hamiltonian includes, as a perturbation,
an irregular and spatially nonuniform potential that simulates
the effects of surface imperfections. Then, to first order in the
perturbation, we keep the same wave functions as previously.
However, the single-electron levels associated with ¢; ,(p),

ie., el.(f),; = %O;—z” should be shifted by the perturbation. By
analogy with Refs. [19] and [20], we model such a shift by
incorporating a noise term in the modified single-electron

energies

SR, 7

where §R measures fluctuations in the radius and s; , is a
random number uniformly distributed in [—1,1]. Then, the new
energies are incorporated into the matrix BdG equations to get
new self-consistent results. They are subsequently averaged
over different random sets of s; ;.

III. RESULTS

Our numerical investigations of the BdG equations per-
formed for radii R = 30-70 nm (for the chosen parameters
R/Ap = 6-12) reveal that quantum confinement of a sin-
gle vortex results in qualitative changes of its microscopic
properties. In particular, we find two different regimes of
low-temperature modifications to the vortex core, which we
call the ordinary and the anomalous ones. They interchange
each time when the radius increases or decreases by approx-
imately Ag/2, i.e., when the number of contributing single-
electron levels increases or decreases by one. The ordinary
regime is characterized by the Kramer-Pesch shrinking of
the vortex core, similar to bulk. This regime is illustrated
in Fig. 1(a) by the curve corresponding to R = 60.3 nm.
As seen, in the nearest vicinity of the vortex center A(p)
sharply increases up to 0.4A( on the scale of & ~ 0.05R,
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FIG. 1. (Color online) Microscopic vortex characteristics for two
different radii, R = 60.3 nm (ordinary) and R = 60.7 nm (anoma-
lous): (a) the relative order parameter A(p)/Ao versus p; (b) the
current density j(p) (in units jo =48 nA/nm?, chosen for our
convenience) as a function of p.

and then gradually approaches Ag on the larger scale of
& ~ 0.4R. Notice that although our results are calculated for
zero temperature, £ is small but not zero. The point is that
below the quantum limit 7/ T, < 1/(kp&y), with kr being the
Fermi wave number, the discreteness of the in-gap fermionic
states starts to manifest itself through the Friedel oscillations
of A(r) in the vortex core [12,21]. The latter shadow the
Kramer-Pesch collapse so that & approaches Az/2 (see, e.g.,
Refs. [12,21]).

The anomalous regime exhibits a completely different
low-temperature trend. In this case the vortex core does not
shrink, as illustrated by the data for R = 60.7 nm given in
Fig. 1(a). Instead, the vortex core expands, and the spatial
distribution of the condensate near the origin of the coordinates
(more precisely, its averaged trend) mimics, to a great extent,
the profile of the order parameter in the center of multiquantum
vortices [22]. This increase in the size of the vortex core is
even more visible in the dependence of the current density on
p [see Fig. 1(b)]. Notice that, surprisingly, the current density
calculated for R = 60.7 nm even changes its sign in the core
region. Because of the combination of pronounced Friedel
oscillations with the core expansion, the order parameter can
also cross zero for small p/R. However, this is not always the
case, as seen from Fig. 2, where anomalous A(p) is shown for
radii R = 63.8, 67.1, and 73.5 nm. When the radius increases,
the anomalous core expansion becomes less pronounced and
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0.4+ 67.1 b

0.25 R=63.8 nm 1

0.0 : ‘ :
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FIG. 2. (Color online) The anomalous regime of the vortex-core
behavior for different radii, R = 63.8, 67.1, and 73.5 nm.
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FIG. 3. (Color online) Quasiparticle energy Ej, in units of A,
given as a function of the angular momentum m for R = 60.3 nm (a)
and R = 60.7 nm (b). Calculations are for zero temperature.

is washed out eventually together with any signatures of
quantum-size effects.

Now the question arises as to what physics is behind
the breakdown of the Kramer-Pesch effect. The answer is
illustrated by Fig. 3, where the quasiparticle energies E ;i
are shown versus the angular momentum m for the regular (a)
and anomalous regimes (b). In Fig. 3(a) all in-gap fermions
(Ejme S Ao) are chiral; i.e., positive-energy fermions have
positive angular momentum m. They are mainly located in
the vortex-core region and responsible for the Kramer-Pesch
effect, in agreement with the standard bulk arguments [5,12].
The situation is qualitatively different in the anomalous regime.
As seen in Fig. 3(b), here in-gap excitations with negative
m appear. Therefore, the chirality of the in-gap (in-core)
fermions is broken, which breaks in turn the Kramer-Pesch
shrinking. The explanation is that the states with negative m
produce negative contributions to the order parameter. As the
corresponding energies are close to zero, these contributions
play a significant role only at near-zero temperatures, which
is the reason for the core expansion observed in Figs. 1 and 2.
The appearance of such negative contributions is a result of
depairing caused by interplay between quantum confinement
and superfluid motion.

In other words, in addition to the length scales & and &,
we obtain a new anomalous length which is associated with
in-core fermions having negative m. Such fermions do not
appear in bulk for a single-quantum vortex: they are purely
the consequence of the size-quantization effects. So, it is
convenient to introduce the length &, = &, related to the
contribution of in-core (in-gap) fermions with positive m, and
the length £_, associated with in-core fermions having negative
m. The breakdown of the Kramer-Pesch effect occurs when the
in-core fermions with negative m dominate. This wipes out the
length-scale &, , and the low temperature profile of the vortex
core is governed by £_. As we have the following hierarchy
of scales £, < &_ <K &, the breakdown of the chirality of the
in-core fermions results in a significant expansion of the vortex
core.

It is now important to check whether or not our find-
ings are stable against surface roughness and other surface
imperfections like a disordered wetting layer between a
nanoscale superconductor and the corresponding substrate.
For this purpose we add the noise term in the single-electron
energy as given by Eq. (7). Figure 4 illustrates the impact
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FIG. 4. (Color online) Impact of the surface roughness. Panels
(a) and (c) show the data for the order parameter and the supercurrent
density for R = 62 nm in the ordinary regime; panels (b) and (c)
represent the anomalous regime for R = 60.7 nm. In each panel the
data for the three different fluctuations R = 0, 0.5, and 1.0 nm are
given.

of surface roughness in the case of the ordinary Kramer-
Pesch regime [panels (a) and (c)] and the anomalous regime
[panels (b) and (d)]. The data are presented for two radii,
R = 62 nm (ordinary) and R = 60.7 nm (anomalous), and
each panel includes curves for three different sizes of the radius
fluctuations SR = 0, 0.5, and 1 nm (such fluctuations should
be of the order of the lattice constant of the corresponding
material). Upper panels demonstrate how the dependence of
the order parameter on p/R is sensitive to an increase in § R
while the lower panels are related to the current density. From
panels (a) and (c) one can see that the Kramer-Pesch shrinking
is rather sensitive to the surface roughness. This fully agrees
with the usual expectations that the Kramer-Pesch effect in
bulk s-wave superconductors is smeared out in the presence of
impurities [23,24]. In contrast, the anomalous expansion of the
vortex core is significantly more stable. As seen from panels
(b) and (d), the changes in A(p) and j(p) are less pronounced
in this case even for 6R = 1 nm (i.e., the onset of the steep
change in j(p) is practically independent of § R). On the other
hand, the Kramer-Pesch effect is already heavily affected at
SR = 0.5 nm.
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IV. CONCLUSIONS

In summary, we demonstrated that quantum confine-
ment has a dramatic effect on the microscopic properties
of vortices. In particular, a vortex with winding number
n =1 confined in an s-wave superconducting nanocylinder
exhibits an anomalous low-temperature expansion of its core
rather than the Kramer-Pesch collapse typical of bulk clean
superconductors. The physics behind such an anomaly is
that quantum confinement breaks the chirality of in-core
fermions responsible for the low-temperature core collapse
in bulk. We found that the effect is rather stable against
surface imperfections, which favors its possible observations
in experiments with nanoscale superconductors. Based on
our findings we can expect similar results for a vortex in
quasi-two-dimensional geometry, such as metallic nanoislands
deposited on silicon. Confined fermionic condensates are now
also available in experiments with atomic traps [14] where
the cigar-shaped and pancake-shaped fermionic condensates
have recently been realized. Notice that the shape of the
confining potential is not of importance for our study until
the coherence length is smaller than the system dimensions. In
particular, the effect of interest is due to a pronounced energy
spacing between the single-particle levels, and it appears for
both “hard-wall” and “soft-wall” potentials. Thus, the “anti”-
Kramer-Pesch trend can also be observed in ultracold atomic
condensates.

We note that the reported oscillations of the vortex core
with changing radius (i.e., interchange of the ordinary and
anomalous regimes) are a new quantum-size effect in addition
to the well-known shape (quantum-size) resonances theoret-
ically investigated in ultrathin films [25], quantum-striped
superconductors [26], superconducting metallic nanowires
[27], and pancake-shaped and cigar-shaped superfluid Fermi
gases [28,29], and recently observed in atomically flat su-
perconducting metallic nanofilms [30]. Thus, we believe
that our findings will open a new chapter in studies of
superconducting and superfluid quantum-size oscillations in
quasi-one-dimensional and quasi-two-dimensional fermionic
condensates.
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