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Equation for the superfluid gap obtained by coarse graining the Bogoliubov–de Gennes equations
throughout the BCS-BEC crossover
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We derive a nonlinear differential equation for the gap parameter of a superfluid Fermi system by performing
a suitable coarse graining of the Bogoliubov–de Gennes (BdG) equations throughout the BCS-BEC crossover,
with the aim of replacing the time-consuming solution of the original BdG equations by the simpler solution
of this novel equation. We perform a favorable numerical test on the validity of this new equation over most of
the temperature-coupling phase diagram, by an explicit comparison with the full solution of the original BdG
equations for an isolated vortex. We also show that the new equation reduces both to the Ginzburg-Landau
equation for Cooper pairs in weak coupling close to the critical temperature and to the Gross-Pitaevskii equation
for composite bosons in strong coupling at low temperature.
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I. INTRODUCTION

The Bogoliubov–de Gennes (BdG) equations [1] form the
basis for a description of a nonuniform Fermi superfluid,
and were originally introduced as an extension of the BCS
approach [2]. In practice, their numerical solution poses severe
problems related to computational time and memory space,
since the Pauli principle requires one to obtain a detailed
knowledge of a whole set of one-particle eigenfunctions in
order to produce eventually the function �(r) representing the
spatial dependence of the superfluid gap parameter of interest.
In contrast, superfluidity for bosons (at low temperatures)
can be conveniently described by a single condensate wave
function, which can be directly obtained by solving the
Gross-Pitaevskii (GP) differential equation [3,4].

Two cases are already known for which the solution of the
BdG equations in nonuniform situations can be replaced by the
simpler solution of a single differential equation for �(r). It
was shown long ago by Gor’kov [5] that the Ginzburg-Landau
(GL) equation for (largely overlapping) Cooper pairs can be
derived from the BdG equations in weak coupling and close to
the critical temperature Tc at which superfluidity is lost. More
recently, it was shown that the GP equation for composite
bosons that form in strong coupling can as well be derived
from the BdG equations at low enough temperature [6].

In both cases, the microscopic derivations rely on the
presence of a small parameter, namely, the ratio |�(r)|/kBTc

for the GL equation and the ratio |�(r)/μ| for the GP equation,
where μ is the chemical potential and kB the Boltzmann
constant. These restrictions limit, in practice, the validity of
these differential equations for �(r) to rather small portions of
the temperature vs coupling phase diagram. In the following,
we shall use (kF aF )−1 as the coupling parameter [where aF

is the scattering length for two fermions with opposite spins
in vacuum and kF is the Fermi wave vector related to the
(average) density via n = k3

F /(3π2)], which ranges from being
�−1 in the weak-coupling (BCS) limit to being � +1 in the
strong-coupling (BEC) limit across the unitary limit where
(kF aF )−1 = 0.

Further attempts have also been made to derive from the
BdG equations extensions of the GL equation, which would

apply to the BCS regime but at temperatures T somewhat
deeper in the superfluid phase away from Tc [7–9]. More
recently, a systematic expansion of the BdG equations in terms
of the small parameter (Tc − T )/Tc was considered again in
the BCS regime [10], although it was explicitly tested for the
spatially uniform case only.

In this paper, we adopt an alternative strategy and obtain a
nonlinear differential equation for the gap parameter �(r) by
performing a suitable coarse graining of the BdG equations
over the microscopic fluctuations of their one-particle eigen-
functions. Since the smoothness of the spatial variations of the
local magnitude and phase of the gap parameter �(r) will be
the criterion underlying the derivation of this new equation, we
may identify it as a local phase density approximation (LPDA)
to the BdG equations. The aim is to replace the solution of
the BdG equations themselves by the solution of this simpler
equation for �(r) over most of the temperature-coupling phase
diagram. To this end, we will explicitly test the validity of
this new equation against the solution of the original BdG
equations for the nontrivial case of an isolated vortex, for
which a favorable comparison will result over a wide portion
of the phase diagram in spite of a considerable reduction of
the computation time (that is, a few seconds against a whole
day). This opens the way to possible future applications of the
LPDA equation to more complex inhomogeneous situations,
for which implementing the BdG equations is essentially out
of reach because it is computationally too demanding.

The paper is organized as follows. Section II presents a
derivation of the LPDA equation for the gap parameter by
coarse graining the BdG equations, and shows how both
the GL and GP equations can be recovered from the LPDA
equation in the appropriate limits. A numerical comparison is
also presented between the results of the LPDA equation and
of the original BdG equations for the case of a single vortex
embedded in an infinite superfluid, for several couplings and
temperatures. Section III provides the expressions of the coarse
grained number density and current that are consistent with
the LPDA approach, and shows a numerical comparison with
the corresponding BdG results for a single vortex. Section IV
gives our conclusions together with an outlook on possible
future applications of the LPDA equation. In the Appendix
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analytic expressions are given for the coefficients of the LPDA
equation, which are valid at zero temperature throughout the
BCS-BEC crossover.

II. THE LPDA EQUATION

In this section, the LPDA equation for the gap parameter
is derived from the original BdG equations, whereby a double
coarse graining procedure is introduced for the phase and
magnitude of the gap parameter. It is also shown that the LPDA
equation encompasses the GL equation for largely overlapping
Cooper pairs and the GP equation for a dilute gas of composite
bosons, which are recovered in the appropriate regions of the
temperature-coupling phase diagram. Numerical results are
also presented to test the usefulness and validity of the LPDA
equation in practice for a nontrivial case.

A. Coarse graining the BdG equations

Formally, the solution of the BdG equations can be written
in terms of the associated normal (G11) and anomalous (G12)
single-particle Greens functions in the broken-symmetry phase
[6]. In particular, the BdG self-consistent equation for the gap
parameter takes the form

− �(r)∗

v0
= 1

β

∑
n

∫
dr′′G̃0(r′′,r; −ωn)�(r′′)∗G11(r′′,r; ωn)

(1)

where v0 is the strength of the attractive interparticle inter-
action of the contact type, ωn = kBT (2n + 1)π (n integer) is
a Matsubara frequency, and G̃0 is the noninteracting Green’s
function that satisfies the equation

[iωn − H(r)] G̃0(r,r′; ωn) = δ(r − r′). (2)

Here, H(r) = [i∇ + A(r)]2/(2m) + V (r) − μ contains the
vector potential A(r) (in the Coulomb gauge) as well as an
external potential V (r) (we set � = 1 and e = 1). Accordingly,
in what follows it is convenient to introduce a local chemical
potential μ̄(r) = μ − V (r) − A(r)2/(2m). [For neutral atoms
in a rotating trap, for which A(r) = m � ∧ r where � is the
angular velocity, μ̄(r) does not contain the term ∝ A2.]

The coarse graining of the gap equation (1) proceeds as
follows. The variable r′′ in Eq. (1) is written as r′′ = R +
τ + ρ, where R and τ identify, in order, the centers of the
volume elements (embedded into one another) about which
the magnitude �̃(R) and (the gradient of) the phase 2Q(R,τ )
of the gap are considered to be approximately constant (cf.
Fig. 1). We write

�(r′′) = �̃(R) e2iQ(R,τ )·(R+τ+ρ). (3)

Locally in the smaller volume element centered at R + τ ,
the problem is then equivalent to a Fulde-Ferrell phase [11]
with balanced spin populations and wave vector Q(R,τ ), so
that in Eq. (1)

G11(r′′,r; ωn)= eiQ(R,τ )·(R+τ+ρ−r)GA
11(R + τ + ρ − r; ωn|r)

(4)

l
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y’’
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FIG. 1. (Color online) Double coarse graining procedure. Vol-
umes of side � centered at R are identified where the magnitude �̃(R)
of the gap parameter is considered to be (approximately) constant.
Embedded in them, smaller volumes centered at R + τ are further
identified where (the gradient of) the phase 2Q(R,τ ) of the gap
parameter is also considered to be (approximately) constant.

where we have assumed that the volume element centered at
R + τ is close to the variable r in Eq. (1), and

GA
11(x; ωn)=

∫
dk

(2π )3

eik·x [iωn + ξA(k − Q)]

[iωn − EA+(k; Q)][iωn + EA−(k; Q)]
,

(5)

with ξA(k − Q) = (k−Q)2

(2m) − μ̄ + A · (k−Q)
m

and

EA
±(k; Q) =

√(
k2

2m
+ Q2

2m
− μ̄ − A

m
· Q

)2

+ �̃2

± k
m

· (Q − A). (6)

When the expression (5) is used in Eq. (4), local values μ̄(r)
and A(r) are there implied [as indicated by the notation |r) in
Eq. (4)]. Similarly, we write for the noninteracting counterpart

G̃0(r′′,r; −ωn) =
∫

dk
(2π )3

eik·(r′′−r)

−iωn − k2

2m
+ A(r)

m
· k + μ̄(r)

(7)

in terms of a (local) eikonal approximation [5].
In this way, upon integrating over ρ and summing over ωn,

from Eq. (1) one arrives at the expression

−�(r)∗

v0
=

∑
{R}

�̃(R)
∑
{τ }

e−2iQ(R,τ )·r

×
∫

dk
(2π )3

1 − 2 fF (EA
+(k; Q(R,τ )|r))

2EA(k; Q(R,τ )|r)
, (8)
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where fF (E) = (eE/(kBT ) + 1)−1 is the Fermi function and
2EA(k; Q|r) = EA

+(k; Q|r) + EA
−(k; Q|r).

At this point, further approximations involve (i) setting in
the exponent Q(R,τ ) · r 	 Q(R,τ = 0) · R + Q(R,τ ) · (r −
R); (ii) transforming the sum over τ into an integral over
the independent variable Q under the assumption that all
the relevant values of Q are effectively sampled by varying
τ in the volume of side � centered at R (cf. Fig. 1);
(iii) transforming also the sum over R into an integral;
(iv) identifying �(R) = e2iQ(R,τ=0)·R�̃(R); (v) eliminating v0

in favor of aF through a standard regularization [12,13]. The
gap equation then becomes

− m

4πaF

�(r) =
∫

dR �(R)
∫

dQ
π3

e2iQ·(r−R) KA(Q|r) (9)

where we have introduced the kernel [14]

KA(Q|r)=
∫

dk
(2π )3

{
1 − 2 fF (EA

+(k; Q|r))

2EA(k; Q|r)
− m

k2

}
. (10)

The desired differential equation for �(r) results eventually
from Eq. (9) by expanding the kernel KA(Q|r) in powers of
Q and integrating by parts the integral over R therein. Up to
quadratic order, one obtains [15]

− m

4πaF

�(r) = I0(r) �(r) + I1(r)
∇2

4m
�(r)

− I1(r) i
A(r)

m
· ∇�(r) (11)

with the notation

I0(r) =
∫

dk
(2π )3

{
1 − 2fF (EA

+(k|r))

2 E(k|r)
− m

k2

}
(12)

and

I1(r) = 1

2

∫
dk

(2π )3

{
ξ (k|r)

2 E(k|r)3
[1 − 2fF (EA

+(k|r))]

+ ξ (k|r)

E(k|r)2

∂fF (EA
+(k|r))

∂EA+(k|r)

− k · A(r)

A(r)2

1

E(k|r)

∂fF (EA
+(k|r))

∂EA+(k|r)

}
(13)

where ξ (k|r) = k2

2m
− μ̄(r), E(k|r) =

√
ξ (k|r)2 + |�(r)|2,

and EA
+(k|r) = E(k|r) − k·A(r)

m
.

Equation (11) represents the main result of the present
paper. From the way it was obtained, we may regard it as
representing a local phase density approximation (LPDA),
that should hold with no a priori restrictions on coupling
and temperature regimes, provided that �(r) varies slowly
enough with its magnitude varying more slowly than its phase.
Note, in particular, the presence of the vector potential in the
arguments of the Fermi functions entering the coefficients (12)
and (13) of the LPDA equation, which results in a kind of a
local Fulde-Ferrell phase. This feature (which will be a crucial
ingredient when applying the LPDA equation, for instance,
to neutral fermions in a rotating trap) distinguishes, too, the
present from other proposals also based on the slow spatial
variation of the gap parameter [16].

In addition, for a sufficiently small A(r) one may expand
fF (EA

+(k|r)) and ∂fF (EA
+(k|r))/∂EA

+(k|r) in Eqs. (12) and
(13) in powers of k · A(r). In this case

I1(r) ∼= 1

2

∫
dk

(2π )3

{
ξ (k|r)

2 E(k|r)3
[1 − 2fF (E(k|r))]

+ ξ (k|r)

E(k|r)2

∂fF (E(k|r))
∂E(k|r)

+ k2/(3m)

E(k|r)

∂2fF (E(k|r))
∂E(k|r)2

}
and

I0(r)∼=
∫

dk
(2π )3

{
[1 − 2fF (E(k|r))]

2 E(k|r)
− m

k2

}
− A(r)2

m
I1(r)

where now the local chemical potential μ(r) = μ − V (r) no
longer contains the A(r)2 term. Grouping all terms containing
I1(r) in Eq. (11), one correctly recovers the gauge-invariant
form − I1(r)

4m
[i∇ + 2A(r)]2. Related expressions for the coarse

grained number density and current will be obtained in Sec. III.

B. Recovering the GL and GP equations

The LPDA equation reduces to the GL and GP equations
in the appropriate limits, which can be shown as follows.

For weak coupling (kF aF )−1 � −1 and temperatures close
to Tc, in the above expression for I1(r) one can approximate
E(k|r) ∼= |ξ (k|r)| and neglect the terms whose integrands are
odd in ξ (k|r). Omitting further the external potential, one ob-

tains I1(r) ∼= k2
F

2m

N0
6(kBTc)2

∫ ∞
0

dy

y

tanh y

cosh2 y
where N0 = mkF /(2π2)

is the density of states at the Fermi level per spin component.
In addition, using the BCS equation for Tc one obtains
I0(r) ∼= − m

4πaF
+ N0

(Tc−T )
Tc

− 7 ζ (3)
8π2

N0
(kBTc)2 |�(r)|2 where ζ (3) is

the Riemann zeta function of argument 3. The GL equation
is thus readily recovered from the LPDA equation (11) in this
limit [5].

In the opposite limit of strong coupling (kF aF )−1 � +1
and low temperatures, the two-body binding energy ε0 =
(ma2

F )−1 = −2μ + μB is the largest energy scale in the
problem, where μB is the residual chemical potential for
the composite bosons that form in this limit. To the lead-
ing significant order, one obtains I1(r) ∼= m2aF

8π
and I0(r) ∼=

− m
4πaF

+ m2aF

8π
[μB − 2 V (r) − ma2

F

2π
|�(r)|2]. The GP equation

for composite bosons is thus readily recovered from the LPDA
equation (11) in this limit [6].

C. Numerical comparison for an isolated vortex

We pass now to test the numerical solution of the LPDA
equation (11) with A(r) = 0 for the nontrivial case of an
isolated vortex embedded in an infinite medium, against the
results of the accurate solution of the BdG equations reported
in Ref. [17] across the BCS-BEC crossover for all T < Tc.
This case exemplifies the situation depicted in Fig. 1, whereby
the magnitude of the gap parameter varies more slowly than
its phase, and actually represents a rather extreme situation
since the gradient of the phase diverges when approaching the
center of the vortex.

Figure 2 shows the profiles �(ρ) of the gap parameter
(in units of the asymptotic value �0 away from the center
of the vortex) vs the radial distance ρ (in units of k−1

F ) for
various temperatures and couplings across unitarity, obtained
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FIG. 2. (Color online) Radial profiles of the gap parameter �(ρ)
for an isolated vortex embedded in an infinite fermionic superfluid, for
various temperatures and couplings. In each case, the results obtained
by solving the LPDA equation (11) (dashed lines) are compared with
those obtained by the full solution of the BdG equations obtained in
Ref. [17] (full lines).

by solving the LPDA equation (11) (dashed lines) and from
the BdG calculation of Ref. [17] (full lines).

In all these cases, the overall agreement between the two
calculations appears to be extremely good, considering also the
fact that the coherence (healing) length changes substantially
from case to case, and appears especially remarkable in the
light of the huge reduction of computational time (by a
factor of about 105) that results in the LPDA calculation
with respect to the BdG calculation. Deviations between
the two calculations emerge essentially in the BCS regime
at low temperature, where the LPDA calculation fails to
reproduce the Friedel’s oscillations that are present in the BdG
calculation over the microscopic length scale k−1

F (which has
been “coarse-grained” by the LPDA approach). That a local
differential approach might be bound to fail in the BCS regime
at low temperature was already pointed out in Refs. [7–9], but
was never explicitly verified against a nontrivial benchmark
like the BdG calculation here considered. The reason for the
failure of a local differential approach in the BCS regime at
low temperature should be traced in the spatial range of the
kernel from which this differential equation is obtained in the
final step, since this range (which is of the order of the size of

the fermion pairs at low temperature) about coincides with the
range of the gap parameter itself, thus limiting the validity of
a local (differential) approach.

III. COARSE GRAINED DENSITY AND CURRENT

In this section, we provide additional information about
the expressions of the number density and current which are
consistent with the LPDA approach developed in Sec. II.

A. Coarse grained density

With reference to Fig. 1 and Eq. (5), the number density at
a point r inside the small volume element centered at R + τ ,
to which there corresponds the wave vector Q(R,τ ), has the
form

n(r) = 2kBT
∑

n

eiωnηG11(r,r; ωn)

→ 2kBT
∑

n

eiωnηGA
11(0; ωn,Q(R,τ )|r)

=
∫

dk
(2π )3

{
1 − ξA(k; Q(R,τ )|r)

EA(k; Q(R,τ )|r)

× [1 − 2fF (EA
+(k; Q(R,τ )|r))]

}
(14)

where η is a positive infinitesimal and

ξA(k; Q(R,τ )|r) = k2

2m
− μ(r) + [Q(R,τ ) − A(r)]2

2m
,

EA(k; Q(R,τ )|r) =
√

ξA(k; Q(R,τ )|r)2 + |�(r)|2,
EA

+(k; Q(R,τ )|r) = EA(k; Q(R,τ )|r)

+ k
m

· [Q(R,τ ) − A(r)]. (15)

In the above expressions, μ(r) = μ − V (r) contains only the
external potential V (r) and the r dependence originates from
the local values of μ(r) and �(r). Recalling, in addition, that
the wave vector Q(R,τ ) is associated with ∇ϕ(r)/2 where
ϕ(r) is the phase of the gap parameter �(r) = |�(r)|eiϕ(r), it
is useful to rewrite the above LPDA expression for n(r) in the
more standard form:

n(r) =
∫

dk
(2π )3

{
1 − ξA(k|r)

EA(k|r)
[1 − 2fF (EA

+(k|r))]
}

(16)

where

ξA(k|r) = k2

2m
− μ(r) + 1

2m

(∇ϕ(r)

2
− A(r)

)2

,

EA(k|r) =
√

ξA(k|r)2 + |�(r)|2, (17)

EA
+(k|r) = EA(k|r) + k

m
·
(∇ϕ(r)

2
− A(r)

)
.

This expression for the local density can even be used in the
central region of a vortex where |�(r)| → 0 but ∇ϕ(r) → ∞
at the same time (to deal with this case, we set V (r) = 0 and
A(r) = 0). The way different terms act in Eq. (16) can be
most readily understood in the case of zero temperature. If one
neglects the presence of ∇ϕ(r) altogether in the expression
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(16), the density reduces to the local density approximation
(LDA) form:

n̄(r) =
∫

dk
(2π )3

{
1 − ξ (k|r)

E(k|r)
[1 − 2fF (E(k|r))]

}
(18)

where

ξ (k|r) = k2

2m
− μ, E(k|r) =

√
ξ (k|r)2 + |�(r)|2. (19)

At the center of the vortex where |�(r)| = 0, the value of
n̄(r = 0) = k3

μ/(3π2) (where kμ = √
2mμ when μ > 0 and

zero otherwise) corresponds to the density of a noninteracting
Fermi gas with the value μ for the Fermi energy. Replacing
then the chemical potential μ by the local value μ − (∇ϕ(r)/2)2

2m

like in the expression (17) for ξA(k|r) brings this value down
to zero for (positive) μ. But as soon as the effect of ∇ϕ(r) is
restored also in the last term of the expression (17) for EA

+(k|r),
the effect of the Fermi function in Eq. (16) is to bring the value
of n(r = 0) back to k3

μ/(3π2).
To prove this statement, we set Q = ∇ϕ(r)/2 (where |Q| →

∞ at the end of the calculation) and consider in Eq. (16)
the (positive) contribution of the term that contains the Fermi
function with |�(r)| = 0. In this way we obtain

2
∫

dk
(2π )3

fF (EA
+(k|r))

= 2
∫

dk
(2π )3

fF

(
k2

2m
− μ + Q2

2m
+ k · Q

m

)

= 1

2π2

∫ Q+kμ

Q−kμ

dk k2

[
1 −

(
k2

2m
− μ + Q2

2m

)
k Q

m

]

= k3
μ

3π2
(20)

as anticipated. As the temperature is increased above zero,
on the other hand, the term in Eq. (16) containing the Fermi
function becomes progressively more important even on the
BEC side of unitarity when μ < 0.

Figure 3 shows the radial density profiles (for the same
couplings and temperatures considered in Fig. 2), obtained
both within the LPDA expression (16) and the LDA expression
(18), and compares them with those obtained by the full
solution of the BdG equations reported in Ref. [17]. One
concludes from this comparison that the LPDA approach
provides a valuable approximation to the full BdG calculation
also as far as the density profiles are concerned, except close
to the center of the vortex (say, within ρkF � 1) on the BCS
side of unitarity at low temperatures where deviations from
the BdG results appear. Note however that, outside this region,
the LPDA improves on the comparison with the BdG results
with respect to LDA.

The above discrepancies should have been expected from
the analysis made in Ref. [17], where it was shown that
to obtain accurate values of the density at the center of a
vortex one has to account for the detailed structure of the
fermionic BdG wave functions belonging to the continuum
spectrum close to threshold, whose wavelengths are larger
than the local variation of the gap parameter. These are
the local fluctuations which cannot be accounted for by the
LPDA approach. However, once the deviation of n(ρ) from its
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FIG. 3. (Color online) Radial profiles of the number density (in
units of its asymptotic value n0) for an isolated vortex embedded in an
infinite fermionic superfluid, for the same couplings and temperatures
considered in Fig. 2. In each case, the results of solution of the BdG
equations obtained in Ref. [17] (full lines) are compared with both
the LPDA expression (16) (dashed lines) and the LDA expression
(18) (dotted lines), which includes and neglects the effect of ∇ϕ(r),
respectively.

asymptotic value n0 is integrated radially up to a maximum
value ρmax (as it is relevant on physical grounds), the above
local discrepancies between the LPDA and BdG calculations
get considerably reduced, reaching at most 20% for coupling
(kF aF )−1 = −1.0 and zero temperature when ρmax is of the
order of the vortex radius.

Outside the center of a vortex, or else in situations where
the magnitude of [∇ϕ(r)/2 − A(r)] remains small enough
[with respect to the inverse of the coherence (healing) length at
the given temperature], the right-hand side of Eq. (16) can be
expanded to the lowest significant order in [∇ϕ(r)/2 − A(r)],
yielding

n(r) 	 n̄(r) + 1

m

(∇ϕ(r)

2
− A(r)

)2∫
dk

(2π )3

×
{

ξ (k|r)2

E(k|r)2

∂fF (E(k|r))
∂E(k|r)

+ k2

3m

ξ (k|r)

E(k|r)

∂2fF (E(k|r))
∂E(k|r)2

− |�(r)|2
2 E(k|r)3

[1 − 2fF (E(k|r))]
}

(21)
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FIG. 4. (Color online) Radial profiles of the number density for
an isolated vortex, for the same couplings and temperatures of Fig. 3.
The results of solution of the BdG equations from Ref. [17] (full lines)
are compared with the results obtained by the approximate expression
(21) (dashed lines) and the LPDA expression (16) (dotted lines).

where n̄(r) is given by the LDA expression (18) while ξ (k|r)
and E(k|r) are given by Eq. (19). Note that when approaching
the normal phase whereby �(r) → 0, the second term of
Eq. (21) vanishes owing to the identity

∫
dk

(2π )3

{
∂fF (ξ (k|r))

∂ξ (k|r)
+ k2

3m

∂2fF (ξ (k|r))
∂ξ (k|r)2

}
= 0 (22)

which holds for a normal system for any value of μ(r) and
temperature. In this case, n(r) → n̄(r)|�(r)=0.

A comparison between the results of the approximate
expression (21) and the BdG calculation for the local density
is provided in Fig. 4, for the same couplings and temperatures
of Fig. 3. One sees that the approximate expression (21) is
able to reproduce quite well the results of the BdG calculation
outside the inner region of the vortex where |∇ϕ(r)| remains
bounded.

B. Coarse grained current

The most general expression that can be written for the
current density within the LPDA approach of the main text is
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FIG. 5. (Color online) Radial profiles of the current density j (ρ)
for an isolated vortex embedded in an infinite fermionic superfluid,
for the same couplings and temperatures of Fig. 2. The results of the
solution of the BdG equations obtained in Ref. [17] (full lines) are
compared with those obtained by the expression (23) (dashed lines).
The maximum value jmax of j (ρ) corresponds to the BdG calculation.

as follows

j(r) = 1

m

(∇ϕ(r)

2
− A(r)

)
n(r)

+ 2
∫

dk
(2π )3

k
m

fE(EA
+(k|r)) (23)

where the fermion density n(r) is given by Eq. (16) and
EA

+(k|r) by Eq. (17). At the center of the vortex where
|�(r)| = 0, the two terms on the right-hand side of Eq. (23)
compensate each other making j(r) vanish.

A comparison between the radial profiles of the current
density for an isolated vortex embedded in an infinite fermionic
superfluid, obtained from the expression (23) and from the
BdG calculation of Ref. [17], is shown in Fig. 5 for various
couplings and temperatures. The overall comparison between
the two calculations appears quite good, especially regarding
the decay of the current past its maximum and also as far as the
position of the maximum is concerned. However, deviations
between the LPDA and BdG calculations are more evident
for j (ρ) than for �(ρ) in the BCS regime at low temperature
and especially near the center of the vortex where the spatial
variation Q of the phase of the order parameter diverges.
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Under these circumstances, the LPDA approach tends to
suppress locally the superfluid density with respect to the BdG
calculation as well as to increase the normal density at the
same time (cf. Fig. 3).

We may also consider an approximate version of the expres-
sion (23), which holds when the magnitude of [∇ϕ(r)/2 −
A(r)] is small enough and is obtained by expanding the
right-hand side of Eq. (23) to the lowest significant order in
[∇ϕ(r)/2 − A(r)] as follows:

j(r) = 1

m

(∇ϕ(r)

2
− A(r)

)
ns(r) (24)

where

ns(r) = n̄(r) + 2
∫

dk
(2π )3

k2

3m

∂fE(E(k|r))
∂E(k|r)

(25)

can be identified as the local superfluid density [18].
A comparison between the results of the approximate

expression (24) and the BdG calculation for the current density
is provided in Fig. 6, for the same couplings and temperatures
of Fig. 5. One again verifies that an approximate expression
like (24) is able to reproduce the results of the BdG calculation
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FIG. 6. (Color online) Radial profiles of the current density j (ρ)
for an isolated vortex, for the same couplings and temperatures of
Fig. 5. The results of solution of the BdG equations from Ref. [17]
(full lines) are compared with those obtained by the approximate
expression (24) (dashed lines). The maximum value jmax of j (ρ)
corresponds to the BdG calculation.

outside the inner region of the vortex where |∇ϕ(r)| remains
bounded.

Note that when approaching the normal phase whereby
�(r) → 0, in the second term on the right-hand side of Eq. (25)
one can expand

∂fE(E(k|r))
∂E(k|r)

	 ∂fE(ξ (k|r))
∂ξ (k|r)

+ |�(r)|2
2ξ (k|r)

∂2fE(ξ (k|r))
∂ξ (k|r)2

(26)

for which no singularity occurs when ξ (k|r) → 0. When
inserted into Eq. (25), the first term on the right-hand side
of Eq. (26) cancels with the first term on the right-hand side
of Eq. (25) with |�(r)| = 0 owing to the identity∫

dk
(2π )3

{
fF (ξ (k|r)) + k2

3m

∂fF (ξ (k|r))
∂ξ (k|r)

}
= 0 (27)

which holds similarly to Eq. (22). As a result, ns(r) is
proportional to |�(r)|2, albeit with a coefficient that diverges
in the zero-temperature limit when μ > 0, as is evident from
Fig. 6.

In the BCS limit close to the critical temperature Tc

(corresponding to the Ginzburg-Landau regime) only the
second term on the right-hand side of Eq. (26) contributes
to ns(r) by parity arguments about the Fermi surface, yielding

nGL
s (r) 	 |�(r)|2

(2kBTc)3

∫
dk

(2π )3

k2

3m

tanh x

x cosh2 x

∣∣∣∣
x= ξ (k|r)

2kB Tc

	 2 |�(r)|2 7 ζ (3) n

8(πkBTc)2
= 2 |�(r)|2. (28)

Here, n is the value of the homogeneous density when V (r) =
0, ζ (3) is the Riemann zeta function of argument 3, and �(r) =
�(r)

√
7 ζ (3) n/8(πkBTc)2 is the wave function of Cooper pairs

in this limit [19].
In the opposite BEC limit at low temperature (correspond-

ing to the Gross-Pitaevskii regime), on the other hand, only
the first term on the right-hand side of Eq. (25) contributes to
ns(r), and an expansion of the expression (18) to the lowest
order in |�(r)|2 yields

nGP
s (r) 	 n̄(r) 	 |�(r)|2

2

∫
dk

(2π )3

1( k2

2m
+ |μ|)2

= 2 |�(r)|2 m2 aF

8 π
= 2 |�(r)|2 (29)

where �(r) = �(r)
√

m2aF /8π is the wave function of com-
posite bosons in this limit [6].

IV. CONCLUDING REMARKS AND OUTLOOK

In this paper, we have obtained a nonlinear differential
(LPDA) equation for the gap parameter by a coarse-graining
procedure of the BdG equations, with the aim of speeding
up the computer time and reducing the memory space for
solving these equations in an effective way when dealing with
problems that involve superconducting/superfluid systems in
the presence of nontrivial spatially dependent external fields.
In fact, in spite of their apparent simplicity, accurate solutions
of the original BdG equations can be obtained at the price
of considerable efforts only for a limited number of relatively
simple problems (among which one can mention the Josephson
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flow across a one-dimensional barrier [20] and an isolated
vortex embedded in an infinite superfluid [17]).

We have also presented favorable a numerical test of the
LPDA equation, whereby the solution of the LPDA equation
has effectively replaced that of the BdG equations for the case
of an isolated vortex. From this test one can expect that the
LPDA equation could provide accurate enough solutions also
in more complicated physical problems for which a direct
application of the BdG equations will be out of reach.

In practice, the importance of the proposed method lies in
the fact that the LPDA equation has essentially the structure,
on the one hand, of the GP equation (to which it reduces in the
BEC limit of the BCS-BEC crossover at low temperature) and,
on the other hand, of the GL equation (to which it reduces in
the BCS limit of the BCS-BEC crossover close to the critical
temperature). Both equations have, in fact, a long history of
practical applications, to problems related to dilute bosons
at low temperature for the GP equation [21] or to strongly-
overlapping Cooper pairs close to the critical temperature for
the GL equation [22].

Quite generally, finding an efficient way of solving the
BdG equations by replacing them with the LPDA equation
can be relevant not only for problems in condensed matter
or in ultracold gases, but also in nuclear physics (including
neutron stars) where the BdG equations are better known as the
Hartree-Fock-Bogoliubov equations [23]. For instance, in con-
densed matter the method could be applied to superconducting
systems with reduced dimensionality and at the nanoscale level
also in the presence of quantum confinement, thus bringing
out the sensitivity of the superconducting properties on the
specimen geometry [24] or addressing quantum-size effects in
the BCS-BEC crossover [25].

About the BCS-BEC crossover in ultracold gases, applica-
tion of the LPDA equation could prove essential to account
for the experimental data on the occurrence of arrays of
vortices [26] or the quenching of the moment of inertia [27],
which are of particular importance since they have revealed
unambiguously the presence of a superfluid phase at low
enough temperature in an ultracold Fermi gas contained in
a rotating trap. These phenomena can also be of interest
to nuclear physics, in particular as far as the inner crust of
neutron stars is concerned [28,29]. In this context, it is worth
mentioning a related work done by Bulgac and co-workers
through an extension of the Kohn-Sham approach to superfluid
Fermi systems that goes even beyond the BdG equations by
including correlation effects over and above mean field [30].

Still, about rotating traps, it is worth emphasizing the
presence of the vector potential in the arguments of the Fermi
functions that enter the coefficients of the LPDA equation. This
feature, which distinguishes the present from other proposals
also based generically on the slow spatial variation of the gap
parameter [16], is essential to account for the pair-breaking
effects of rotation on ultracold Fermi gases in the BCS-BEC
crossover, as already discussed in Ref. [31] although in the
absence of vortices.

Further applications of the LPDA equation can be conceived
in the context of the Josephson and related effects when
using the original BdG equations would be computationally
too demanding, to study, for instance, multiple barriers
with resonant levels or Josephson coupling between planar

superfluids, which can be of cross interest to condensed-
matter and ultracold atoms physics also within the BCS-BEC
crossover. Dealing with these phenomena can be considered at
finite temperature as well, to assess, for instance, the general
validity of the Landau criterion for superfluidity which can
also be addressed experimentally with ultracold atoms [32].

In addition, extensions of the LPDA approach to spin-
imbalanced systems appears feasible along the lines of
Ref. [33] (which has, however, addressed only the limit of
a Bose-Einstein condensate); and possibly even to nonequi-
librium situations by relying on the Keldysh approach to
superconductivity [34] in the place of the Gor’kov approach
that was utilized in the present paper for equilibrium situations.
On the other hand, inclusion of pairing fluctuations beyond
mean field as well as of time-dependent effects would most
certainly require quite more intense efforts to be implemented.

A comment on the need for including pairing fluctuations
beyond mean field is in order. It is known that, in general, a
correct description (especially at finite temperature) of the
physics of the BCS-BEC crossover would require one to
include pairing-fluctuations beyond mean field [35], as this
is certainly the case for homogeneous systems. However,
fluctuation effects are are also known to be in practice less
severe for inhomogeneous systems, which are those for which
the BdG equations are ideally suited. Accordingly, it is then
clear that the LPDA equation should most suitably be used
to shine light on this kind of complicated inhomogeneous
situations, for which implementing the original BdG equations
would remain a formidable task while an even further inclusion
of fluctuations might be essentially out of reach.

A final comment should be made on the applicability itself
of a local (differential) equation (like the LPDA equation)
in the weak-coupling (BCS) regime when the temperature is
much lower than the critical temperature, such that the GL
equation does not apply in principle. As a matter of fact, the
explicit comparison we have shown, between the results of
the original BdG equations and its approximate version given
by the LPDA equation over a wide range of coupling and
temperature, confirms the expectation that a local differential
approach is bound to fail in the BCS regime at low temperature,
owing to the fact that the size of the Cooper pairs is quite large
and comparable with that of the solution itself.

To overcome this problem, while abandoning at the same
time the full solution of the original BdG equations due to
practical complexities, schemes have been devised over the
time to trade all the information and details provided by
the BdG equations for a reduction of these complexities, yet
still sticking to the weak-coupling (BCS) regime [36]. In this
context, future work could improve on the comparison with the
BdG results at low temperature in weak coupling, by utilizing
the nonlocal (integral) equation (9) for the gap parameter in
the place of the local (differential) LPDA equation (11). In
turn, this nonlocal equation could be applied, e.g., to problems
related to disorder, thereby extending previous approaches [37]
away from the weak-coupling limit.
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APPENDIX: COEFFICIENTS I0 AND I1 IN TERMS
OF ELLIPTIC INTEGRALS

In this appendix, we provide analytic expressions for the
coefficients I0 and I1 of the LPDA equation (11) in the limit
of zero temperature and with A(r) = 0. Specifically, we show
that under these circumstances I0 and I1 can be expressed in
terms of elliptic integrals according to the results of Ref. [38].

From their definitions (12) and (13), we then write

I0 = 1

2π2

∫ ∞

0
dk k2

(
1

2
[( k2

2m
− μ

)2 + �2
]1/2 − m

k2

)
(A1)

and

I1 = 1

8π2

∫ ∞

0
dk k2

( k2

2m
− μ

)
[( k2

2m
− μ

)2 + �2
]3/2 (A2)

where the r-dependence of �(=|�|) and of μ has been dropped
for convenience. With the same notation of Ref. [38], we then
rewrite

I0 = (2m)3/2
√

�

2π2
[x0 I6(x0) − I5(x0)] ,

I1 = (2m)3/2

8π2
√

�
I6(x0),

(A3)

where x0 = μ/� and

I5(x0)=(
1 + x2

0

)1/4
E

(
π

2
,κ

)
− 1

4 x2
1

(
1 + x2

0

)1/4 F

(
π

2
,κ

)
,

I6(x0)= 1

2
(
1 + x2

0

)1/4 F

(
π

2
,κ

)
. (A4)

In these expressions x2
1 = (

√
1 + x2

0 + x0)/2 and κ2 =
x2

1/
√

1 + x2
0 , while E(π

2 ,κ) and F (π
2 ,κ) are the complete

elliptic integrals.
For the sake of example, a plot of I1 according to the

expression (A3) is given in Fig. 7 vs the coupling parameter
(kF aF )−1, where the values of � and μ are taken from mean
field at T = 0 [in this case, owing to the BCS gap equation I0

equals −m/(4πaF ) for all couplings].
We are interested, in particular, in what happens near the

center of a vortex, whereby � → 0 and either one of the two
limits x0 → +∞ and x0 → −∞ is correspondingly relevant.

In the limit x0 → +∞, one obtains I5(x0) 	 √
x0 and

I6(x0) 	 ln(8x0)/(2
√

x0) [38], from which

I0 	 (2m)3/2 √
μ

4π2
ln

(
8 μ

�

)
, I1 	 1

4μ
I0. (A5)

In this limit, the LPDA equation, namely,(
m

4πaF

+ I0

)
�(r) + I1

∇2

4m
�(r) = 0 (A6)

for given value of aF reduces to

4 μ�(r) + ∇2

4m
�(r) = 0 (A7)
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FIG. 7. (Color online) Coefficient I1 [in units of 2m2/(π 2kF )] vs
the coupling parameter (kF aF )−1, obtained from the expression (A3)
where the values of � and μ are taken from mean field at T = 0.

so that in this case the relevant length scale for �(r) is
the inverse of kμ = √

2mμ (μ > 0). This conclusion was
also reached in Ref. [39], while studying the profile of an
isolated vortex at zero temperature directly in terms of the
BdG equations.

In the opposite limit x0 → −∞, one obtains instead
I5(x0) 	 π/(16|x0|3/2) and I6(x0) 	 π/(4|x0|1/2) [38], from
which

I0 	 − (2m)3/2

8π

√
|μ|, I1 	 (2m)3/2

8π

1

4
√|μ| . (A8)

In this limit, the LPDA equation (A6) reduces to(
m

4πaF

− (2m)3/2√|μ|
8π

)
�(r) + (2m)3/2

32π
√|μ|

∇2

4m
�(r) = 0

(A9)

so that in this case the relevant length scale for �(r) can be
identified with the healing length ξ given by

ξ 2 =
(2m)3/2

32π
√|μ|

1
4m

m
4πaF

− (2m)3/2
√|μ|

8π

. (A10)
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FIG. 8. (Color online) The coupling dependence of the healing
length ξ obtained from the expression (A10) (and divided by a factor√

2) (dashed line) is compared with that of the phase coherence length
ξphase at T = 0 from Ref. [40] (full line).
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In particular, in the BEC limit, whereby 2μ = −(ma2
F )−1 +

μB where μB is the chemical potential of the composite bosons
that form in that limit, the expression (A10) reduces to ξ 2 =
(2mBμB)−1 where mB = 2m.

Figure 8 compares, for couplings on the BEC side of
unitarity, the values of the healing length ξ obtained from

the expression (A10) with those of the phase coherence length
ξphase that were obtained in Ref. [40] at zero temperature by
a completely different method. In this respect, it is rather
remarkable to verify how the relatively simple expression
(A10) is able to reproduce ξphase essentially down to the
coupling (kF aF )−1 ≈ +1.0.
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[12] C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht, Phys.

Rev. Lett. 71, 3202 (1993).
[13] P. Pieri and G. C. Strinati, Phys. Rev. B 61, 15370 (2000).
[14] From the way it was obtained, the kernel KA(Q) of Eq. (9)

requires in principle one to specify a cutoff Qc such that
|Q| � Qc. However, for the derivation of the LPDA differential
equation (11) the presence of this cutoff is irrelevant. Consid-
eration to the appropriate value of Qc will be given elsewhere
[S. Simonucci, P. Pieri, and G. C. Strinati (unpublished)].

[15] On the right-hand side of Eq. (11) a term containing∑3
i,j=1 Ai(r)Aj (r) ∂2

∂xi ∂xj
�(r) has been omitted, under the

assumption that A(r)2/m is negligible in comparison with all
the other relevant energy scales of the problem.

[16] S. N. Klimin, J. Tempere, and J. T. Devreese, arXiv:1309.1421.
[17] S. Simonucci, P. Pieri, and G. C. Strinati, Phys. Rev. B 87,

214507 (2013).
[18] An expression similar to Eq. (25) for the superfluid density was

identified by S. S. Botelho and C. A. R. Sá de Melo, Phys. Rev.
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