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Thermomagnonic diode: Rectification of energy and magnetization currents
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We investigate the dynamics of two coupled macrospins connected to thermal baths at different temperatures.
The system behaves like a diode which allows the propagation of energy and magnetization currents in one
direction only. This effect is described by a simple model of two coupled nonlinear oscillators interacting with
two independent reservoirs. It is shown that the rectification phenomenon can be interpreted as a a stochastic
phase synchronization of the two spin oscillators. A brief comparison with realistic micromagnetic simulations
is presented. This new effect yields promising opportunities in spin caloritronics and nanophononic devices.
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I. INTRODUCTION

Since the discovery of the spin-Seebeck effect [1,2],
according to which a thermal gradient in a ferromagnet
generates a spin current, the emerging field of spin caloritronics
[3] has been the object of intense investigation. A related line of
research, which was developed independently in recent years,
focuses on heat transport in lattices of nonlinear oscillators
[4,5]. The relevance of such studies to condensed-matter
problems is illustrated by the growing interest in heat transport
properties of low-dimensional materials like nanotubes [6]
and graphene [7]. Further motivation comes from the per-
spective of controlling nanoscale energy flows [8,9] as well
as from the hope of finding novel dynamical mechanisms
that could enhance the efficiency of thermoelectric energy
conversion [10].

Within this general background, in the present work, we
investigate theoretically a system that could be the building
block of novel magnonic devices, allowing the propagation
of energy and magnetization currents in one direction only.
The system consists of two coupled macrospins connected
to thermal reservoirs at different temperatures. It has been
demonstrated recently by means of micromagnetic simulations
that such a system can indeed act a spin-Seebeck diode [11].
The basic functioning principle is similar to that of the thermal
diode considered in the recently born field of phononics
[7–9,12,13]. It can be qualitatively explained in terms of
a temperature-dependent renormalization of the macrospin
frequency spectra, whose overlap may lead to a conducting
or nonconducting state depending on the sign of the applied
thermal gradient. However, such a thermomagnonic system
offers several new possibilities for control of nanoscale energy
flows [14]. The most evident one is related to the fact that
we are dealing here with two coupled currents of the basic
conserved quantities, energy and magnetization.

To gain theoretical insight we study here an effective sim-
plified model consisting of two coupled oscillators interacting
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with external reservoirs. This will allow us to place on a
clearer basis the basic operating principles of the system.
In particular, we argue that the rectification effect can be
described as stochastic phase synchronization [15–18] of the
two precessing spins. Stochastic phase synchronization occurs
in a large class of nonlinear oscillators driven by noise.
It basically amounts to the fact that noise can lead to an
enhanced phase entrainment and thus to an increase in energy
transfer among the oscillators. This phenomenon, which has
attracted great interest in the past decade in connection with
biomedical systems and neural circuits [19,20], has never been
investigated in the broad context of nanoscale energy transfer
or, in particular, in magnonics and spin caloritronics. Such
a novel interpretation, which is pursued in the present work,
is useful to ease the physical intuition and to suggest a new
mechanism for the transfer of energy and spin currents in these
systems.

The present study answers a very general question, that is,
under what conditions the transfer of energy and magnetization
between coupled spins at different temperatures occurs. The
rectification effect considered here has several applications.
In particular, it opens the way to the experimental realization
of thermal logic gates, which have been recently described
theoretically within the field of nanophononics [21–23]. This
could be the starting point of a new generation of energy-
efficient electronic devices.

Moreover, we suggest implementing this new diode using
a very common and well-known spintronics device, the spin
valve. We wish to point out that the studies on the spin-Seebeck
effect on spin-valve systems performed so far concern only the
spin current carried by electrons. The notion of magnetization
current developed here, which is a special case of the usual
spin-wave (SW) current, has not been investigated so far in this
kind of system. Spin-caloritronics experiments are challenging
due to the intrinsic difficulty of measuring the spin current,
which is based on the inverse spin-Hall effect [1]. Here, we
suggest a direct way to detect spin and energy transport, which
is based on the overlap of the SW modes of the system. This
can be done using various well-known techniques, such as
ferromagnetic resonance force spectroscopy [24,25].
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The paper is organized as follows. In Sec. II we describe the
physical system and introduce the effective coupled-oscillator
model and its interaction with the thermal reservoirs. In Sec. III
we discuss the rectification of energy and magnetization
currents as a phase-synchronization phenomenon induced
by thermal fluctuations. Some simulations of the oscillatos
model are thereby described. In Sec. IV we consider the
case in which the system is driven by both a thermal and
a magnetization gradient. The predictions of the models are
then tested qualitatively with the micromagnetic simulations
of the full magnetization dynamics of the device (Sec. V).
Finally, we close the paper with an overview in the concluding
section.

II. PHYSICAL SYSTEM AND MODEL

The local dynamics of the magnetization M in a ferromag-
net is described by the Landau-Lifshiz-Gilbert (LLG) equation
[26–28]

∂ M
∂t

= −γ0 M × Heff + αM × ∂ M
∂t

/Ms, (1)

where γ0 is the gyromagnetic ratio, α is the adimensional
Gilbert damping parameter, and Heff is the effective field,
given by the functional derivative of the Gibbs free energy
of the system with respect to the magnetization. In our case,
the effective field contains the applied, exchange, and dipolar
fields. The first term on the right-hand side of Eq. (1) describes
the precession of the magnetization around the effective field
with frequency ω = γ0|Heff|, while the second term accounts
for energy losses at a rate proportional to the Gilbert damping
parameter α.

It is known that an electrical current with spin polarization
p exerts a spin transfer torque (STT) on the localized magnetic
moments of a ferromagnet [29,30]. The effect of STT is
described by rescaling the effective field as Heff → Heff − a p
and by adding to the right-hand side of Eq. (1) the term

τ = γ0
b

Ms

M × (M × p). (2)

The term proportional to a is usually called the fieldlike
component of STT. The term proportional to b, which controls
the damping, is the usual Slonczewski STT [31–35]. The latter
can lead to a steady-state precession and to a reversal of the
magnetization [36,37].

The parameters (a,b) are proportional to the intensity of
the current and to the degree of spin polarization. In general,
they both depend on the geometry of the system and on the
microscopic transport properties of the material [38]. For their
computation in realistic devices, several methods have been
developed [39–42]. Here, they are considered free parameters
of the model, which can be used to control the rectification
effect.

The device considered here, shown in Fig. 1(a), consists
of a spin-valve nanopillar made of two ferromagnetic layers
separated by a nonmagnetic spacer and coupled by dipolar
interaction. This system, which is the prototype for spintronic
devices, has several applications [25,43] and constitutes the
usual geometry for spin-transfer nano-oscillators (STNOs).

FIG. 1. (Color online) (a) Circular precession of the magneti-
zation in a system of two disks coupled via dipolar interaction.
(b) The system behaves as a chain of two oscillators with frequencies
ω1 < ω2 connected to two thermal baths. Regarding the rectification
effect, when �T = T1 − T2 > 0 the two frequencies may overlap,
giving the two nonzero currents jM and jE ; and when �T < 0 the
frequencies split, and no net current flows in the system.

We consider the simple case where both the effective
field and the polarization vectors are aligned with the z axis,
which defines the precession axis of the magnetization. In
this case, the nonadiabatic STT leads simply to a rescaling
of the oscillation frequency. Thus, in our model the relevant
physics is described only by the Slonczewski STT. This
simplification is quite realistic if we consider the nanopillar
geometry [24,25,33].

Whithin the macrospin approximation, the circular preces-
sion in the x-y plane of the magnetization vectors of the
two disks can be described by two coupled LLG equations.
In the weakly nonlinear regime, those can be effectively
approximated in terms of the complex SW amplitudes,

cn = Mxn + iMyn√
Msn(Msn + Mzn)

, (3)

of disk n = 1,2 [25,43]. At this level of description, the system
dynamics can thus be modeled by the stochastic equations

ċ1 = (i − β1)(ω1c1 + 2p1c1 − h12c2) +
√

D1ξ1, (4)

ċ2 = (i − β2)(ω2c2 + 2p2c2 − h21c1) +
√

D2ξ2. (5)

These are the equations of motion of two coupled non-
linear oscillators, whose resonance frequencies ωn(pn) ∝
|Heff| depend on the SW power pn = |cn|2 (n = 1,2). The
analytical expressions for ωn at zero temperature, obtained by
diagonalizing Eqs. (4) and (5), are given in Refs. [24] and
[25]. The damping rates, which describe energy dissipation
towards the environment, are chosen to be 	n(pn) = βnωn(pn)
[43]. The parameters βn here model the effect of STT.

Thermal fluctuations are accounted for by the stochastic
terms

√
Dnξn, ξn being a complex Gaussian random variable

with unit variance and zero average, and Dn = 2αkBTn, as
prescribed by the fluctuation-dissipation theorem [43]. This is
equivalent to adding a fluctuating therm to the effective field
in Eq. (1).

The coupling term h12c2 [25] is the functional derivative
iδHint/δc

∗
n of the interaction Hamiltonian Hint = h12c1c

∗
2 +

c.c. Note that this Hamiltonian has a general form that
describes also exchange interaction, magnon tunneling
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between different materials, and phase locking in STNO arrays
[37,43].

The chosen form of the stochastic and dissipative terms
ensures that, for βn = α and T1 = T2 = T , the expected canon-
ical distribution exp{−H/(kBT )} is the stationary solution of
the Fokker-Planck equation associated with Eqs. (4) and (5)
(here H is the Hamiltonian for the isolated system [44]). In
this first part of the paper we focus on the case in which
βn = α. The case when βn �= α, where the system is kept out
of equilibrium by STT [45], is also of interest and is discussed
in Sec IV.

It is important to remark that Eqs. (4) and (5) hold if
the system is dominated by two SW modes, one for each
oscillator. In the presence of a texture of the magnetization, the
system contains several SW modes, which depend essentially
on the geometry of the system [24,25]. This feature can be
described by developing Eqs. (4) and (5) in the proper SW
mode basis, as in Refs. [24] and [25]. In these systems,
thermal fluctuations excite all the SW modes of the system
and the intrinsic nonlinearity of the LLG equation generates
an additional coupling between the SW modes. The latter
can originate complex phenomena, such as mode hopping
and mode coexistence [46,47]. In many situations, when the
dwelling time between different modes is large enough, one
can still use Eqs. (4) and (5) [46]. In our case, it is possible to
identify clearly the modes that belong to each oscillator, and the
micromagnetic simulations reported in Sec. V corroborate the
single-mode picture. In perpendicularly magnetized spin-valve
nanopillars with several SW modes, it has been shown that
[11,24,25] a SW mode expansion of Eqs. (4) and (5) is
sufficient to describe the system properly even in the presence
of thermal fluctuations. In particular, no mode hopping as been
observed, even in the presence of a thermal gradient [11].

Let us now introduce the conserved currents of the system.
Combining Eqs. (4) and (5) with their complex conjugates
gives the two conservation equations for the SW power [43],

ṗ1 = −2	1(p1)p1 + j 12
M , (6)

ṗ2 = −2	2(p2)p2 + j 21
M , (7)

which leads to the definition of the magnetization current
between the two oscillators [44,48]:

j 12
M = 2h12Im(c1c

∗
2). (8)

Note that Eqs. (6) and (7) are the conservation equations
for the z component of the magnetization. For a continuum
ferromagnet with exchange stiffness A, they lead to the usual
definition of SW spin current jM = AM × �∇ M carried by
the exchange interaction [21]. The conservation equation for
the local energy gives the energy current

j 12
E = 2h12Re(ċ1c

∗
2), (9)

which describes the transfer of energy between the oscillators.
The computation of these currents is similar to the case of the
discrete nonlinear Schroedinger equation (see Refs. [44] and
[48] for a thorough discussion).

III. PHASE DYNAMICS AND RECTIFICATION

Let us now discuss the rectification effect. A full analytical
solution is obtained, in principle, by solving the Fokker-Planck
equation associated with Eqs. (4) and (5), in a manner similar
to that used in Ref. [49]. For our purposes, it suffices first to
restrict ourselves to a discussion of the deterministic equations,
obtained by sample averaging Eqs. (4) and (5). Setting cn =√

pne
iθn and φ = θ1 − θ2, these equations are written in the

phase-amplitude representation as

ṗ1 = −2	1(p1)p1 − j 12
M + 2D1, (10)

ṗ2 = −2	2(p2)p2 + j 21
M + 2D2, (11)

φ̇ = ω1(p1) − ω2(p2) + (h21

√
p1/p2 − h12

√
p2/p1) cos φ,

(12)

where the currents read j 12
M = 2h12

√
p1p2 sin φ and j 12

E =
2h12ω1(p1)

√
p1p2 sin φ. The constant terms 2Dn account for

the fact that the powers are always bounded away from 0
due to fluctuations. In the context of phase-synchronization
phenomena, Eq. (12) is often referred to as the Adler equation
[15,17].

The solutions of Eqs. (10)–(12) are of two types: (i)
phase-running (desynchronized) solutions, where the two
oscillators have different frequencies; and (ii) phase-locked
(synchronized) ones. In case i the time-averaged currents
are 0, and Eqs. (10)–(12) reduce to 	n(pn) = Dn and φ̇ =
ω1(p1) − ω2(p2), which implies the equipartition relation
pn = kBTn/ωn(pn), for n = 1,2. This means that the ther-
mostats thermalize each oscillator independently and there
is no net transfer of energy and magnetization between the
oscillators. Note that the mere fact that p1 �= p2 does not imply
that there is a net current: the average energy provided by the
baths is returned to them. For case ii there is instead a common
frequency of oscillation θ̇n = ω, so that φ̇ = 0 and one has

	1(p1) = D1 − j 12
M /2, (13)

	2(p2) = D2 + j 21
M /2, (14)

ω1(p1) − ω2(p2) + (h21

√
p1/p2 − h12

√
p2/p1) cos φ = 0.

(15)

Such a phase-locked regime can only occur if Eqs. (13)–(15)
admit a solution, namely, for

|ω1(p1) − ω2(p2)| � |h21

√
p1/p2 − h12

√
p2/p1|. (16)

It has to be remarked that, already at this level of approxima-
tion, all the parameters are temperature dependent since the
spin powers p1 and p2, solutions of Eqs. (13)–(15), depend on
both T1 and T2.

The crucial observation is that Eqs. (13) and (14) are
not invariant with respect to the exchange of the two noise
sources D1 and D2, so there may be regions of the parameters
[Dn,	n(pn)] where the currents are different upon exchanging
the sign of the applied temperature gradient. In particular, there
may be cases in which Eq. (16) is satisfied for, say, T1 > T2 but
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not for T1 < T2, thus yielding the desired effect. Note also that
Eq. (16) defines the condition for the approximate resonance of
the effective (temperature-dependent) frequencies and is thus
conceptually similar to the criteria of spectral overlap usually
invoked to explain the working principle of phononic thermal
diodes [8,9].

In the previous analysis, thermal noises are accounted for
only through their mean values. In the presence of noise it is
known that the phase locking is only effective as fluctuations
will eventually desynchronize the oscillators [15,16]. In other
words, even when condition (16) holds the phases will not
remain exactly locked but will undergo random phase slips
leading to phase diffusion.

To substantiate the above arguments, we turn now to
numerical simulations of Eqs. (4) and (5). For simplicity,
we have taken a symmetric coupling, h12 = h21 = h. At
equilibrium, we have set T1 = T2 = T0, and then we have
increased one of the two temperatures at a time, keeping the
other fixed at T0 and defining the temperature difference as
�T = T1 − T2. After the system has reached a stationary state,
the currents were time-averaged over an interval of 106 time
steps.

Figure 2 shows the two currents vs �T , for βn = α = 0.02
and h = 0.1, averaged over 50 samples. The system clearly
displays a rectification effect when �T > 0. The two currents
have a similar profile, growing monotonically until they reach a
plateau at �T ≈ 1.2. Note that the strength of the rectification
effect decreases as T0 increases.

The origin of the rectification is illustrated in Fig. 3,
which shows the power spectra averaged over 500 trajectories.
All the following simulations were performed with T0 =
0.2. For positive gradients, the peak at ω1 broadens and
shifts towards a higher frequency, until it overlaps with the
peak at ω2, while for negative gradients the peaks do not
overlap.

When the oscillators are phase locked, the time-averaged
currents are not 0 and there is a net transport of energy
and magnetization through the system. The phase locking

FIG. 2. (Color online) Rectification effect for the magnetization
(a) and energy (b) currents, computed for different values of T0.
Equations (4) and (5) were integrated numerically using a fourth-order
Runge-Kutta method with time step 10−3 model units, frequencies
ω1 = 1 and ω2 = 2, and kB = 1.

FIG. 3. (Color online) Power spectra of the two oscillators illus-
trating the mechanism of resonance underlying the rectification effect.

can be seen in Fig. 4(a), which shows the phase difference
φ = θ1 − θ2 vs time, computed for different values of �T and
averaged over 150 samples. One can see that φ is constant in the
synchronized regime. The slope dφ/dt , displayed in Fig. 4(b),
increases linearly with �T and intercepts 0 at �T = 1.2,
where the oscillators are synchronized and the currents reach
the plateau shown in Fig. 2.

We have also investigated the dependence of the current on
the damping α and coupling h. Figures 5 and 6 show the phase
diagrams of the currents in the planes (α,�T ) and (h,�T ),
respectively. Interestingly, the rectification effect is present in
a wide range of system parameters. In both cases, the currents
increase with the parameters α and h and vanish around α ≈
10−3 and h ≈ 5 × 10−2. This feature depends on the fact that
α and h control, respectively, the coupling with the thermal
baths and between the oscillators.

FIG. 4. (Color online) (a) Phase difference φ vs time, computed
for different values of �T . φ increases linearly in time in the
desynchronized regime, while it is constant in the synchronized
one. (b) Slope of φ vs �T , which vanishes when the oscillators
are synchronized. The line is a guide for the eye.
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FIG. 5. (Color online) Magnetization and energy currents as a
function of the temperature difference �T and Gilbert damping
parameter α. The currents vanish when the coupling with the bath
α → 0. Data were obtained by averaging the currents over 2 × 106

time steps, with only one trajectory.

IV. COUPLED TRANSPORT

Up to now we have considered the case in which the
damping coefficients βn are set to be equal to the Gilbert
damping parameter α. Actually, in STNOs, the damping can
be modified by a spin-polarized current [25,37,43], an effect
that can be modeled by changing the parameter βn. This simple
fact immediately suggests another route to drive the system off
equilibrium. It should in fact be realized that setting β1 �= β2

is somehow equivalent to applying an external force capable
of driving energy and magnetization flows. The situation is
analogous to the standard nonequilibrium thermodynamics,
where the two coupled currents are associated with two
“forces”: the differences of temperature and of chemical
potential. In our system, the parameters βn control the escape
rate of magnons towards the reservoirs [25,43] and �β =
β2 − β1 acts as an additional force that controls the currents,
in a way similar to a chemical potential [44,48].

Taking h = 0.1 and α = 0.02, the dynamics was computed
for different values of �T and of the “chemical potential”
difference �β. Computations were performed starting at
equilibrium with βn = β0 = 0.03 and decreasing one damping
while keeping the other fixed at β0.

FIG. 6. (Color online) Magnetization and energy currents as a
function of the temperature difference �T and coupling strength
h. The currents vanish when h → 0, and the oscillators become
uncoupled. Data were obtained by averaging the currents over 2 × 106

time steps, with only one trajectory.

FIG. 7. (Color online) Phase diagrams in the (�T,�β) plane.
(a) Magnetization and (b) energy currents. (c) Ratio between the
spin-wave powers and (d) ratio between the magnetization and the
energy currents.

The phase diagrams of the currents are displayed in
Figs. 7(a) and 7(b). Both diagrams have a similar profile and
are neatly separated into a conducting (yellow-red) and an
insulating (light-blue) region. The first occurs at �T,�β > 0,
where oscillator 1 has a lower damping and higher temperature
than oscillator 2. When �T,�β < 0, the situation is reversed
and the system is insulating.

One can see here a remarkable feature: When �β is
sufficiently negative (≈−0.02), a negative current flows at
positive �T . This means that, with tuning of the chemical
potential, the system operates as a cooling machine that pumps
energy and spin from the colder to the hotter system.

Figure 7(d) shows the power ratio G = |p1 − p2|/(p1 +
p2), which is roughly symmetric in the (�T,�β) plane. This
means that, in both the conducting and the insulating region,
there is a similar difference in SW power. In the conducting
region, the two oscillators are synchronized and there is a net
energy and magnetization transfer from the “hot” to the “cold”
system. On the contrary, in the insulating region, there is no
current and the energy provided by the baths is returned to
them. This corresponds precisely to the situation described at
the beginning of the paper: the condition p1 �= p2 is necessary,
but not sufficient, to have transport.

An important parameter in spin caloritronics is the spin-
Seebeck coefficient, which describes the capability of the
system to convert the energy current into a spin current.
However, this makes sense only in the linear regime, where
the currents are proportional to the thermodynamic forces.
Here, the performances of the system can be described by the
current ratio S = |jM/jE |, which is displayed in Fig. 7(d) on a
logarithmic scale. In the conducting region, one can see that S

is higher in the quasilinear regime (at small �T and high �β),
where it reaches 60%, while it decreases smoothly until about
40%–30% as �T increases. The current ratio drops to 13%
in the inversion regions, where the current becomes negative
(positive) with a positive (negative) gradient.
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FIG. 8. (Color online) Time-averaged currents vs temperature
difference in a spin-valve nano-pillar. Inset: Overlap of the spin-wave
modes, at the core of the rectification effect.

V. COMPARISON WITH MICROMAGNETIC
SIMULATIONS

To check our model on a realistic system, we have
performed micromagnetic simulations on a nanopillar made
of two Permalloy (Py) nanodisks, displayed in Fig. 1(a). The
disks have a radius R = 20 nm, and thicknesses t1 = 5 and
t2 = 3 nm, and are separated by a 4-nm spacer. An external
field Hext = 1 T is applied along the z direction. The other
micromagnetic parameters of the system are as follows. The
exchange stiffness of Py is A = 1.3 × 10−11 J/m. The mag-
netic parameters of the disks, taken from Ref. [24], are Ms1 =
7.8 × 105 A/m, Ms2 = 9.4 × 105 A/m, α1 = 1.6 × 10−2,
α2 = 0.85 × 10−2, and γ0 = 1.87 × 1011 rad × s−1 × T−1.
These parameters are the same as in Refs. [11] and [24].
Computations were performed with the Nmag micromagnetic
solver [50], using a finite-element tetrahedral mesh with a
maximum size of 3 nm.

Starting from a uniform tilt of the magnetization of 8◦ with
respect to the z direction, the time evolution was computed for
50 ns with a time step of 1 ps, and the results were averaged
over 16 samples with different realizations of the stochastic
noise.

The time-averaged currents are shown in Fig. 8 as a function
of the temperature difference between the two disks. Note that
the currents displayed here are per unit coupling and are, thus,
pure numbers.

One can see that the system displays a strong rectification
effect (compare Fig. 8 with Fig. 2). Moreover, the SW spectra
in conducting and insulating regimes are drastically different.
Indeed, for negative �T the SW spectra display two distinct

maxima, while for positive �T there is a single broadened
peak (see the inset in Fig. 8). This picture is compatible
with the simple double-oscillator model and suggests that the
synchronization mechanism proposed above is indeed at the
basis of the rectification observed in realistic simulations of
the nanopillar.

VI. CONCLUSIONS

To conclude, we have studied, through simple analytical
arguments and computer simulations, a novel system which
can rectify both energy and magnetization currents. A signif-
icant rectification effect is present in a large set of system
parameters and the underlying physical process suggests a
new method for phase locking and transfer of energy and
magnetization in magnonic and spin-caloritronic devices.
The connection with phase synchronization phenomena is
insightful and allows us to understand the basic rectification
mechanism in a simple way.

We wish to stress that the results presented here are general
and may apply to systems described by the LLG equation
[26–28], with different geometries, coupling mechanisms,
and sizes between the nanometer and the micrometer range.
The nonlinearity of the LLG equation and the presence of
noise are the essential ingredients for this effect. Choosing
a spin-valve geometry allows us to study a realistic system
where spin transfer also plays a significant role, controlling
the magnon population of the device. However, we expect
that devices with different geometries (such as nanocontacts
of different materials where the spins are exchange coupled)
can exhibit a similar rectification effect. At variance with the
models studied in the context of phononics [13], the magnonic
device allows us to consider coupled transport of the the two
basic conserved quantities, energy and magnetization. The
control of the associated forces allows for new possibilities.
As exemplified in this work, it would be possible, for instance,
to control the energy current on the device scale by changing
the applied spin-polarized currents.
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