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Domain wall pinning in notched nanowires
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We theoretically and numerically study magnetic domain wall (DW) pinning at a notch in a magnetic nanowire.
Based on the static DW equation, a general relationship between an external field and a DW structure for a given
notch geometry is found. By estimating the field below which this relationship holds, we obtain the depinning field
theoretically. Our theoretical estimate of the depinning field compares well with simulation results. Furthermore,
our theory explains well why the depinning field of a transverse wall of one chirality is larger than that of the
opposite chirality.
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I. INTRODUCTION

The motion of domain walls (DWs) in magnetic nanowires
has attracted much attention in recent years due to its potential
applications in magnetic memory devices [1] and magnetic
logic gates [2]. These applications are likely to use pinning
effects of a notch on an otherwise homogeneous nanowire
to manipulate DW positions. Although much knowledge of
DW pinning in a notched wire has been obtained from ex-
periments and micromagnetic simulations [3–23], our current
understanding of DW pinning and depinning is quite limited.
It is numerical [18] and experimental [3,10,12,15] fact that
thickness inhomogenities [3] and geometrical constrictions
[10,12,15] can pin a DW. The depinning field depends on
the geometry of the constrictions. It is also known [18] that
depinning fields depend on the depinning process: the static
depinning field is larger than the dynamic depinning field
for a notched nanowire. One popular view [12,15,24] is to
assume pinning as a trap potential well for DWs. However, the
collective model, the base of the concept of the trap potential,
may not be stable against spin-wave emission [25,26]. In
general, a DW, whose structure is substantially deformed near
a notch, is by no means a point particle, and it cannot be
described by one coordinate like a DW center. Even worse,
a DW can only stay at most at a few special locations on
a notched wire. Thus, a trap potential as a function of one
variable like the DW center is ill defined. A seminal analytical
work by Bruno [4] suggests that the pinning can only occur
at narrower parts of a constrained nanowire. Thus, it cannot
explain DW pinning by an antinotch [18]. In summary, a proper
concept and a unified analytical theory for DW pinning by
notches are lacking, and that is the focus of the current work.

In this paper, a relationship between an external field and
a static DW structure is obtained. By estimating the field
below which the relationship holds, we obtain the depinning
field that compares well with simulation results. The paper is
organized as follows. Our model, theory, and the depinning
field formula are in Sec. II. A comparison of the theory
with simulation results is presented in Sec. III, followed by
the conclusion.

*Corresponding author: phxwan@ust.hk

II. MODEL AND THEORETICAL APPROACH

We consider a magnetic nanowire of length l, width w, and
thickness t with a notch on the top edge. The z axis is along
the wire, the y axis is along the width direction, and the x axis
is in the thickness direction. A side view of a nanowire with
a rectangular notch that is d wide and w1 deep is shown in
Fig. 1.

The magnetic wire is described by the following free
energy:

E(m) =
∫ [

A

μ0M2
s

(∇mi) · (∇mi) + fan(m) + fd (m)

+ f0(m)

]
dV, (1)

where m is the unit vector of magnetization, A is the exchange
constant, Ms is saturation magnetization, fan is anisotropy
energy density, fd = −1/2 m · hd is magnetostatic energy
density, and f0 = −m · h is the Zeeman energy density; here
fd , fan, and f0 are in units of μ0M

2
s , and magnetostatic field

hd and external field h are in units of Ms . The summation
convention is applied for the double appearance of index i.
Minimizing this energy yields the Euler-Lagrange equation,

−l2
ex∇2mi + ∂fot

∂mi

− hd,i + 2λmi = 0, (2)

where i = 1,2,3, fot = fan + f0, lex ≡ √
2A/μ0M2

s is the
exchange length [27] and λ is the Lagrange multiplier due
to the constraint m · m = 1. Equation (2) is equivalent to
m × heff = 0, where the effective field is defined as

heff,i ≡ l2
ex∇2mi − ∂fot

∂mi

+ hd,i ,

where i = 1,2,3. This means that the magnetization of a
static DW is parallel or antiparallel to the effective field
everywhere. If Eq. (2) has a DW solution of a boundary
condition ∂m/∂n = 0, where n is the normal direction of
the wire boundary, it means that a DW is pinned [4,28].
Mathematically, the depinning field is the minimal external
field at which Eq. (2) does not have a DW solution. In early
publications [29], it was shown that Eq. (2) does not have a
DW solution for a homogeneous nanowire in the presence of
an external field along the wire. For a wire with a notch, the
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FIG. 1. (Color online) Side view of a magnetic nanowire with
dimensions l × w × t . The dimensions of a rectangular notch are
d × w1 × t . A DW is pinned at the right-hand side of the notch. Color
varying from orange to green represents the values of mz (orange for
mz = 1 and green for mz = −1). White indicates the DW center,
where mz = 0.

criterion for the existence of a DW solution of Eq. (2) is not
yet known. To find such a criterion, we shall first find identities
hidden in Eq. (2). Then, by estimating the possible breakdown
of the identity, we obtain the approximate depinning field.

Multiplying Eq. (2) with ∂mi/∂xj and summing over i =
1,2,3, one has

−l2
ex

∂mi

∂xj

∇2mi + ∂fot

∂xj

− hd,i

∂mi

∂xj

+ 2λmi

∂mi

∂xj

= 0, (3)

where j = 1,2,3. Using identities

∂g

∂xj

∇2g = ∇ ·
(

∂g

∂xj

∇g

)
− 1

2

∂

∂xj

(∇g)2 (4)

and m · ∂m/∂xj = 0 from m · m = 1, we have

l2
ex∇ ·

(
∂mi

∂xj

∇mi

)
= ∂ρ1

∂xj

− hd,i

∂mi

∂xj

, (5)

where ρ1 = 1
2 l2

ex(∇mi) · (∇mi) + fot is the total energy den-
sity excluding magnetostatic energy density. Integrating this
equation over sample � between planes AB and HG and using
the Gauss theorem and boundary condition ∂m/∂n = 0, one
obtains ∫

∂�

ρ1dS −
∫

�

hd · ∇mdV = 0. (6)

Here planes AB and HG are inside two domains and are
far from the DW that is near the notch. ∂� is the boundary
of �. This equation is a general result valid for all DWs
and notches. For simplicity we restrict our discussion below
to the head-to-head transverse wall in a thin nanowire with
a rectangular notch, as shown in Fig. 1. As the nanowire
thickness is very small, it can be reasonably assumed that
the magnetization does not change in the thickness direction.
Then the z component of the above equation can be greatly
reduced to

t

∫
CD

ρ1dy − t

∫
EF

ρ1dy −
∫

�

hd · ∂m
∂z

dV = −2htw. (7)

Then, the external field can be expressed as a functional of
DW structure,

h = t
∫
EF

ρ2dy − t
∫
CD

ρ2dy + ∫
hd · ∂m

∂z
dV

tw1(2w/w1 + mzEF − mzCD)
, (8)

where ρ2 includes only the exchange energy and the anisotropy
energy and mzEF and mzCD are the averaged z components
of magnetization on surfaces EF and CD, respectively. If
a geometrically pinned DW exists, the corresponding DW
structure and the external field have to satisfy this identity.
Because a DW structure is the balance between its exchange
energy and its anisotropy energy, the abrupt change of spin
orientation is thereby forbidden, and the right-hand side of
Eq. (8) should be bounded. If we keep increasing the external
field, Eq. (8) will break down above a critical field. The
breakdown of Eq. (8) means that the DW is moved out of
the notch and the critical field corresponds to the depinning
field. What remains is to estimate this critical field.

Before moving forward, let us first identify the meaning of
all terms in Eq. (8). The first two terms in the numerator are the
exchange and anisotropy energy difference of surface EF and

(a)

(b)

(c)

(d)

(e)

FIG. 2. (Color online) Snapshots of the spin configuration
around the notch as the field increases from zero up over the
depinning field. (a) H = 0 Oe, (b) H = 100 Oe, (c) H = 170 Oe,
and (d) H = 180 Oe. For clarity, each spin represents the average
magnetization of four 4 × 4 × 4 nm cells. The nanowire dimensions
are 1000 × 64 × 4 nm, and the notch dimensions are 40 × 32 ×
4 nm. (e) The evolution of mzCD and mzEF with applied field.
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surface CD. Suppose a positive field is applied along the +z

direction; the DW center will be shifted along the +z direction
[6,7]. Figures 2(a)–2(d) show the change of spin configuration
as the external field increases from zero to the depinning field.
Specifically, Fig. 2(a) is the initial configuration at zero field
where the spins on EF tilt at an angle away from the EF

surface. As field increases, these spins rotate clockwise toward
the EF surface [Fig. 2(b)]. Right before the DW is moved out
of the notch, the spins align almost parallel to the EF plane, as
Fig. 2(c) shows. After the field exceeds a critical value, the DW
center line near EF begins to deviate from the notch, and the
DW is removed from the notch. Spins in equilibrium states are
normal to the EF surface [Fig. 2(d)]. Throughout this process,
spins on CD gradually align with the normal direction. The
changes of mzEF and mzCD as a function of external field are
shown in Fig. 2(e), which clearly shows that the state at the
largest field at which the DW is marginally pinned appears to
have mzEF = 0 and mzCD = 1. We estimate T1 for the critical
state as

T1 ≡ t

∫
EF

ρ2dy − t

∫
CD

ρ2dy

≈ 1

2
tw1

(
lex

�

)2

+ tw1
Kan

μ0M2
s

, (9)

where � is the DW width around the notch and Kan > 0 is
the crystalline anisotropy along the z direction. The third term
in the numerator is the magnetostatic interaction. In a domain
region, the magnetization is homogeneous, i.e., ∂m/∂z ≈ 0.
Thus, the contribution of the domain to this term is zero. In
a DW region, only surface charges are taken into account
because volume charges contribute little in comparison with
surface charges [30–32]. The magnetostatic field can thereby
be approximated as an effective anisotropy field [30,31]:
hd ≈ −Kymyey − Kzmzez. Here Ky = Ky(w,t) comes from
the contribution of surface charges on the top surface y = w

and the bottom surface y = 0; Kz = Kz(w,t) is from the
charges on EF . For the critical magnetization distribution
where mzEF = 0, Kz = 0, only Ky contributes to the integral.
Hence the term can be reduced to

T2 ≡
∫

hd · ∂m
∂z

dV ≈ Ky

μ0M2
s

w1t. (10)

It should be stressed that T2 is mainly from the deformed
DW structure near the notch. For a symmetric DW, this term
is zero because the integral on the right-hand side of the DW
cancels that on the left-hand side. We can then reasonably
expect that the maximum T2 appears for a DW with a half
structure. That is just the critical state mzEF = 0 discussed
earlier.

From the above discussion, the depinning field can be
estimated as

hc ≈ 1

2w/w1 − 1

[
1

2

(
lex

�

)2

+ Kan

μ0M2
s

+ Ky

μ0M2
s

]
. (11)

In terms of T1 and T2, the depinning field is then

hc ≈ T1/(w1t) + T2/(w1t)

2w/w1 − 1
. (12)

This is our key prediction of the depinning field of a head-to-
head transverse wall depinning field in a rectangular-notched
nanowire. Equation (6) is exact, while Eq. (12) is based on
the following assumptions: (1) The wire thickness is thin
and constant, so that the magnetization is homogeneous in
the thickness direction. That is the reason why the simpli-
fied relation (12) is thickness independent. For a nanowire
thickness around the exchange length, this assumption is
almost strictly satisfied [33]. In a real system, wire thickness
should be an important parameter for the depinning field.
As thickness increases, complex structure like vortex may
appear in the system [27], and the depinning mechanism also
becomes complex. Moreover, the thickness inhomogeneity in
real materials may induce an additional coercive field [3,6]. (2)
The volume charges’ contribution to the magnetostatic field
can be ignored. For a transverse wall where all the spins lie in
a plane, this approximation is acceptable [31]. One may still
question the validity of these assumptions, and its accuracy
should be tested against the simulations presented below.

III. RESULTS AND DISCUSSION

We would like to compare our theoretical prediction with
simulation results and discuss the validity of our approach.
In the simulations, all nanowires are 1000 nm long and 4 nm
thick. The wire width varies from 40 to 112 nm as needed.
A rectangular notch is located in the nanowire center. Notch
width d is 40 nm, and notch depth w1 varies. The sample is
divided into cubic cells of 4 × 4 × 4 nm. The magnetization
dynamics is simulated by the OOMMF package [34] with
A = 13 × 10−12 J/m, Ms = 8 × 105 A/m, and Kan = 0.5 ×
103 J/m3. The damping constant is α = 0.1 to accelerate the
simulation. The value of α does not affect conclusions since
only static DW structures are considered. The initial state is a
head-to-head transverse wall of anticlockwise chirality [11,23]
pinned in the right-hand side of EF at zero external field, as
shown in Fig. 2(a). This state can be generated either by a pad
connected at the right end of the nanowire or around the curved
corner in a curved nanowire in experiments [13,35]. In order
to determine the depinning field, an external field is applied
along the +z direction and increases at a step of 5 Oe until the
DW moves completely out of the notch. The minimum field
needed to depin the DW is the depinning field hc. We study
the depinning field as a function of wire width at a fixed aspect
ratio (the ratio of notch depth and wire width) and as a function
of notch depth for a fixed wire width.

Figure 3 shows the depinning field as a function of wire
width w when the aspect ratio is fixed at one half (w1/w =
1/2). The simulation shows that depinning field (black crosses)
decreases as the nanowire width increases. This relation can
be understood from our theory. As the wire width increases,
the magnetostatic field from the surface charges becomes
weak; T2/(w1t) thereby decreases. T1/(w1t) related to the
exchange energy difference also decreases because the DW
width becomes larger as the nanowire becomes wider [16,27].
As the denominator does not change, the decrease of T2/(w1t)
and T1/(w1t) leads to the decrease of the depinning field, as
can be seen from Eq. (12). The deviation may come from the
error in estimation of T2/(w1t), which relates to magnetostatic
energy. The effective Ky is calculated for a perfect transverse
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FIG. 3. The notch depth dependence of the depinning field (hc) of
a head-to-head transverse DW of anticlockwise chirality in nanowires
with rectangular notches whose width is half of the wire width.
The depinning field hc is measured in units of Ms . Here the black
crosses and the black curve are the simulation data and the theoretical
estimate, respectively.

wall in a uniform wire [30,31], while a real DW is substantially
deformed near a notch. The deformation is more severe for
larger w1; this is presumably why the discrepancy between
numerical results and theoretical estimates is bigger for larger
w1, as shown in Fig. 3. Im et al. experimentally explored [16]
the nanowire width dependence of the depinning field when
the aspect ratio is set to about 50%. They also found a similar
wire width dependence of the depinning field.

Figure 4 shows the notch depth (w1) dependence of the
depinning field at fixed w = 64 nm. The numerical results
(black crosses) show that the deeper the notch is, the larger
the depinning field will be. As the wire width is fixed,
neither T1/(w1t) nor T2/(w1t) changes much. The leading
contribution to the depinning field is the denominator, and it
leads to an increase of the depinning fields as the notch depth
increases. Results in two extremes can be justified. One has

FIG. 4. (Color online) The notch depth (w1) dependence of de-
pinning field (hc) of a head-to-head transverse DW of anticlockwise
chirality in a 64-nm-wide nanowire with a 40-nm-wide rectangu-
lar notch. The black crosses are the simulation results with the
magnetostatic interaction, and the black curve is the corresponding
theoretical prediction. The red squares are the simulations without
the magnetostatic interaction, and the red curve is the corresponding
theoretical prediction.

FIG. 5. (Color online) The notch depth (w1) dependence of the
depinning field (hc) of head-to-head transverse DWs in a 64-nm-wide
nanowire with a 40-nm-wide rectangular notch. The black squares
and red dots are for the DW of clockwise and anticlockwise chirality,
respectively.

hc = 0 when a notch does not exist, i.e., w1 = 0, and there is no
DW pinning, a well-known result [29]. The other is w1 ≈ w,
where a wire consists of detached parts. The spin configuration
on the right-hand side of EF is close to a single-domain state,
and the depinning field is expected to be close to the switching
fields of a single domain. The limit of the depinning field
is about 450 Oe, calculating from Eq. (12) when w1 → w,
which is in good agreement with a reported value with similar
parameters [36]. Our notch depth dependence of the depinning
field is different from Bogart et al.’s argument on a triangular
notch where a further increase of the aspect ratio above 60%
has no effect on the depinning fields [12]. There sufficiently
large fields will nucleate a DW on one side of the notch, while
another DW is still pinned on the other side of the notch. Here
only one DW pinned at the right-hand side of the notch exists
under an applied field.

Simulations on a transverse wall of clockwise chirality at
fixed w = 64 nm show a larger depinning field than that of
an anticlockwise transverse wall, as shown in Fig. 5. The
same behavior was found in experiments [11]. This chirality
dependence of the depinning field can also be well explained
by our theory. It is known that the DW width is not uniform
in the transverse direction due to magnetostatic interaction
[27,32]. The anticlockwise wall is wider at the top edge and
narrower at the bottom edge, which is reversed for a clockwise
wall. Therefore the anticlockwise wall whose width is larger
near the notch should correspond to smaller depinning fields,
as can be seen from Eq. (11).

For comparison, we also study DW depinning when the
magnetostatic interaction is excluded. It should be pointed out
that a DW prefers to be pinned at the notch center at zero
field in this case [6]. The red squares in Fig. 4 are the notch
depth dependence of the depinning field from simulations,
and the red curve is the corresponding theoretical prediction.
One can see that they perfectly agree with each other.
This good agreement suggests that our theory captures the
essential physics of DW pinning. A better fit between theory
and simulations in the absence of magnetostatic interaction
indicates that the main error in our prediction comes from
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the calculation of T2, which is related to the magnetostatic
interaction of the inhomogeneous DW texture.

IV. CONCLUSION

In conclusion, an identity is derived from the Euler-
Lagrange equation. This identity provides a relationship
between an external field and a static DW structure in a notched
nanowire. The depinning field corresponds to the maximal
external field under which this identity holds. This theoretical

estimate of the depinning field agrees well with simulation
results. It also explains why the depinning field depends on
the DW chirality.
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M. Kläui, Nat. Commun. 4, 2328 (2013).

[24] S.-M. Ahn, K.-W. Moon, D.-H. Kim, and S.-B. Choe, J. Appl.
Phys. 111, 07D309 (2012).

[25] X. S. Wang, P. Yan, Y. H. Shen, G. E. W. Bauer, and X. R. Wang,
Phys. Rev. Lett. 109, 167209 (2012).

[26] B. Hu and X. R. Wang, Phys. Rev. Lett. 111, 027205 (2013).
[27] Y. Nakatani, A. Thiaville, and J. Miltat, J. Magn. Magn. Mater.

290-291, 750 (2005).
[28] M. Morini and V. Slastikov, Arch. Ration. Mech. Anal. 203, 621

(2012).
[29] X. R. Wang, P. Yan, J. Lu, and C. He, Ann. Phys. (NY) 324,

1815 (2009); X. R. Wang, P. Yan, and J. Lu, Europhys. Lett. 86,
67001 (2009).

[30] A. Aharoni, J. Appl. Phys. 83, 3432 (1998).
[31] D. G. Porter and M. J. Donahue, J. Appl. Phys. 95, 6729 (2004).
[32] H. Y. Yuan and X. R. Wang, arXiv:1307.7269.
[33] R. D. McMichael and M. J. Donahue, IEEE Trans. Magn. 33,

4167 (1997).
[34] http://math.nist.gov/oommf.
[35] L. Thomas, C. Rettner, M. Hayashi, M. G. Samant, S. S. P.

Parkin, A. Doran, and A. Scholl, Appl. Phys. Lett. 87, 262501
(2005).

[36] J. Lu and X. R. Wang, J. Magn. Magn. Mater. 321, 2916 (2009).

054423-5

http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1103/PhysRevLett.77.2566
http://dx.doi.org/10.1103/PhysRevLett.77.2566
http://dx.doi.org/10.1103/PhysRevLett.77.2566
http://dx.doi.org/10.1103/PhysRevLett.77.2566
http://dx.doi.org/10.1103/PhysRevLett.83.2425
http://dx.doi.org/10.1103/PhysRevLett.83.2425
http://dx.doi.org/10.1103/PhysRevLett.83.2425
http://dx.doi.org/10.1103/PhysRevLett.83.2425
http://dx.doi.org/10.1063/1.372930
http://dx.doi.org/10.1063/1.372930
http://dx.doi.org/10.1063/1.372930
http://dx.doi.org/10.1063/1.372930
http://dx.doi.org/10.1103/PhysRevB.64.184412
http://dx.doi.org/10.1103/PhysRevB.64.184412
http://dx.doi.org/10.1103/PhysRevB.64.184412
http://dx.doi.org/10.1103/PhysRevB.64.184412
http://dx.doi.org/10.1103/PhysRevB.65.184425
http://dx.doi.org/10.1103/PhysRevB.65.184425
http://dx.doi.org/10.1103/PhysRevB.65.184425
http://dx.doi.org/10.1103/PhysRevB.65.184425
http://dx.doi.org/10.1103/PhysRevLett.90.097202
http://dx.doi.org/10.1103/PhysRevLett.90.097202
http://dx.doi.org/10.1103/PhysRevLett.90.097202
http://dx.doi.org/10.1103/PhysRevLett.90.097202
http://dx.doi.org/10.1063/1.1556980
http://dx.doi.org/10.1063/1.1556980
http://dx.doi.org/10.1063/1.1556980
http://dx.doi.org/10.1063/1.1556980
http://dx.doi.org/10.1063/1.2042542
http://dx.doi.org/10.1063/1.2042542
http://dx.doi.org/10.1063/1.2042542
http://dx.doi.org/10.1063/1.2042542
http://dx.doi.org/10.1103/PhysRevLett.97.207205
http://dx.doi.org/10.1103/PhysRevLett.97.207205
http://dx.doi.org/10.1103/PhysRevLett.97.207205
http://dx.doi.org/10.1103/PhysRevLett.97.207205
http://dx.doi.org/10.1063/1.2961313
http://dx.doi.org/10.1063/1.2961313
http://dx.doi.org/10.1063/1.2961313
http://dx.doi.org/10.1063/1.2961313
http://dx.doi.org/10.1063/1.2905318
http://dx.doi.org/10.1063/1.2905318
http://dx.doi.org/10.1063/1.2905318
http://dx.doi.org/10.1063/1.2905318
http://dx.doi.org/10.1103/PhysRevLett.102.127203
http://dx.doi.org/10.1103/PhysRevLett.102.127203
http://dx.doi.org/10.1103/PhysRevLett.102.127203
http://dx.doi.org/10.1103/PhysRevLett.102.127203
http://dx.doi.org/10.1103/PhysRevB.79.054414
http://dx.doi.org/10.1103/PhysRevB.79.054414
http://dx.doi.org/10.1103/PhysRevB.79.054414
http://dx.doi.org/10.1103/PhysRevB.79.054414
http://dx.doi.org/10.1103/PhysRevLett.102.147204
http://dx.doi.org/10.1103/PhysRevLett.102.147204
http://dx.doi.org/10.1103/PhysRevLett.102.147204
http://dx.doi.org/10.1103/PhysRevLett.102.147204
http://dx.doi.org/10.1103/PhysRevB.79.214405
http://dx.doi.org/10.1103/PhysRevB.79.214405
http://dx.doi.org/10.1103/PhysRevB.79.214405
http://dx.doi.org/10.1103/PhysRevB.79.214405
http://dx.doi.org/10.1109/TMAG.2010.2041044
http://dx.doi.org/10.1109/TMAG.2010.2041044
http://dx.doi.org/10.1109/TMAG.2010.2041044
http://dx.doi.org/10.1109/TMAG.2010.2041044
http://dx.doi.org/10.1063/1.3459965
http://dx.doi.org/10.1063/1.3459965
http://dx.doi.org/10.1063/1.3459965
http://dx.doi.org/10.1063/1.3459965
http://dx.doi.org/10.1143/APEX.4.033001
http://dx.doi.org/10.1143/APEX.4.033001
http://dx.doi.org/10.1143/APEX.4.033001
http://dx.doi.org/10.1143/APEX.4.033001
http://dx.doi.org/10.1103/PhysRevB.84.024426
http://dx.doi.org/10.1103/PhysRevB.84.024426
http://dx.doi.org/10.1103/PhysRevB.84.024426
http://dx.doi.org/10.1103/PhysRevB.84.024426
http://dx.doi.org/10.1103/PhysRevB.85.024405
http://dx.doi.org/10.1103/PhysRevB.85.024405
http://dx.doi.org/10.1103/PhysRevB.85.024405
http://dx.doi.org/10.1103/PhysRevB.85.024405
http://dx.doi.org/10.1038/ncomms3328
http://dx.doi.org/10.1038/ncomms3328
http://dx.doi.org/10.1038/ncomms3328
http://dx.doi.org/10.1038/ncomms3328
http://dx.doi.org/10.1063/1.3677872
http://dx.doi.org/10.1063/1.3677872
http://dx.doi.org/10.1063/1.3677872
http://dx.doi.org/10.1063/1.3677872
http://dx.doi.org/10.1103/PhysRevLett.109.167209
http://dx.doi.org/10.1103/PhysRevLett.109.167209
http://dx.doi.org/10.1103/PhysRevLett.109.167209
http://dx.doi.org/10.1103/PhysRevLett.109.167209
http://dx.doi.org/10.1103/PhysRevLett.111.027205
http://dx.doi.org/10.1103/PhysRevLett.111.027205
http://dx.doi.org/10.1103/PhysRevLett.111.027205
http://dx.doi.org/10.1103/PhysRevLett.111.027205
http://dx.doi.org/10.1016/j.jmmm.2004.11.355
http://dx.doi.org/10.1016/j.jmmm.2004.11.355
http://dx.doi.org/10.1016/j.jmmm.2004.11.355
http://dx.doi.org/10.1016/j.jmmm.2004.11.355
http://dx.doi.org/10.1007/s00205-011-0458-3
http://dx.doi.org/10.1007/s00205-011-0458-3
http://dx.doi.org/10.1007/s00205-011-0458-3
http://dx.doi.org/10.1007/s00205-011-0458-3
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1209/0295-5075/86/67001
http://dx.doi.org/10.1209/0295-5075/86/67001
http://dx.doi.org/10.1209/0295-5075/86/67001
http://dx.doi.org/10.1209/0295-5075/86/67001
http://dx.doi.org/10.1063/1.367113
http://dx.doi.org/10.1063/1.367113
http://dx.doi.org/10.1063/1.367113
http://dx.doi.org/10.1063/1.367113
http://dx.doi.org/10.1063/1.1688673
http://dx.doi.org/10.1063/1.1688673
http://dx.doi.org/10.1063/1.1688673
http://dx.doi.org/10.1063/1.1688673
http://arxiv.org/abs/arXiv:1307.7269
http://dx.doi.org/10.1109/20.619698
http://dx.doi.org/10.1109/20.619698
http://dx.doi.org/10.1109/20.619698
http://dx.doi.org/10.1109/20.619698
http://math.nist.gov/oommf
http://dx.doi.org/10.1063/1.2139842
http://dx.doi.org/10.1063/1.2139842
http://dx.doi.org/10.1063/1.2139842
http://dx.doi.org/10.1063/1.2139842
http://dx.doi.org/10.1016/j.jmmm.2009.04.057
http://dx.doi.org/10.1016/j.jmmm.2009.04.057
http://dx.doi.org/10.1016/j.jmmm.2009.04.057
http://dx.doi.org/10.1016/j.jmmm.2009.04.057



