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Current-induced torques between ferromagnets and compensated antiferromagnets:
Symmetry and phase coherence effects
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It is shown that the current-induced torques between a ferromagnetic layer and an antiferromagnetic layer
with a compensated interface vanish when the ferromagnet is aligned with an axis of spin-rotation symmetry of
the antiferromagnet. For properly chosen geometries, this implies that the current-induced torque can stabilize
the out-of-plane (or hard-axis) orientation of the ferromagnetic layer. This current-induced torque relies on
phase-coherent transport, and we calculate the robustness of this torque to phase-breaking scattering. From this,
it is shown that the torque is not linearly dependent on the applied current, but has an absolute maximum.
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I. INTRODUCTION

Current-induced torques result from the interaction
between conduction electron spins and the magnetization of a
sample when current flows through it. This torque is generally
present when the magnetization is spatially nonuniform and
has been extensively studied in the context of magnetic
domain walls and spin valve structures. Since its theoretical
prediction [1,2], extensive studies have led to a theoretical
framework of current-induced torque in ferromagnets that
describes experimental results with quantitative success [3].
It has been proposed that current-induced torques also exist in
antiferromagnetic systems [4,5]. Previous theoretical studies
considered systems composed entirely of antiferromagnetic
layers [4,6,7] as well as experimental [8,9] and theoretical
[10–14] systems with both ferromagnetic and
antiferromagnetic layers. Theoretical work has also
focused on antiferromagnet textures [15–18]. Reference
[14] reviews many of these previous works. Experiments have
demonstrated current-induced torque in materials with other
types of complex magnetic ordering, such as skyrmion lattices
[19]. Recent theory [20] and experiment [21] have shown
that antiferromagnets exhibit anisotropic magnetoresistance,
demonstrating a coupling between magnetic order and charge
transport in these materials.

Antiferromagnets exhibit an array of magnetic ordering,
such as spin-density waves that are commensurate or incom-
mensurate with the lattice, and configurations with multiple
spin-density waves. As shown in Ref. [10], the symmetry
properties of the antiferromagnetic layer can lead to torques
in multilayers with qualitatively different properties than con-
ventional spin valves. In particular, a collinear compensated
antiferromagnetic layer interface (with each spin in the ±ẑ

direction, which we call a 1Q spin structure) leads to a torque
which vanishes when the ferromagnet is perpendicular to the
ẑ direction. This torque can stabilize the hard-axis orientation
of the ferromagnet in systems where the antiferromagnet is
pinned. Here we treat similar systems [see Fig. 1(a)] and
compute the current-induced torque on the ferromagnetic
layer. Previous works have investigated the current-induced
torque on the antiferromagnetic layer in such systems [11,13].

In this work, we consider a system where the antifer-
romagnetic layer has a 3Q spin structure [see Fig. 1(b)].
This is qualitatively different from the previously studied 1Q
antiferromagnet because the 3Q structure has only a single axis
of spin-rotational symmetry (threefold in this case), whereas
for the 1Q antiferromagnet, all directions perpendicular to the
ẑ direction are axes of twofold spin-rotational symmetry. We
show that an important consequence of the reduced symmetry
of the 3Q antiferromagnet is that the current-induced torque
stabilizes the out-of-plane magnetic orientation only when the
magnetization is initialized nearby this orientation (in contrast,
the 1Q antiferromagnet drives any initial orientation out of
plane). In this work, we additionally determine the effects of
phase-breaking scattering: The current-induced torque relies
on phase coherence, and quantifying the robustness with
respect to scattering is important to gauge the feasibility of
observing these effects in real systems.

Our results are easily generalized to multilayers composed
of a free ferromagnet layer, and a fixed magnetic layer whose
spin configuration has an axis of n-fold rotational symmetry.
The key property of the torque is that if the ferromagnetic layer
is aligned with an axis of spin-rotational symmetry of the fixed
layer, then the current-induced torque (in fact, all torques) must
vanish. This is seen by recognizing that, by assumption, the
system is invariant with respect to spin rotations about the
ferromagnet orientation by some angle φn, and any nonzero
torque (which must be perpendicular to the ferromagnet
orientation) does not respect this symmetry. For conventional
spin valves, this statement implies the well-known fact that
the current-induced torque vanishes when the ferromagnet
layers are aligned or antialigned. Identification of the points
where the current-induced torque vanishes is important be-
cause the torque may drive the magnetization to these fixed
points. For properly designed antiferromagnet-ferromagnet
multilayers, this property of the torque can stabilize the
out-of-plane magnetic orientation [10]. This is because this
orientation, being a maximum of the magnetic free energy,
represents a fixed point for the conventional micromagnetic
torques. In the absence of current-induced torques, this out-
of-plane configuration is an unstable fixed point; however,
if the current-induced torque drives the ferromagnet to this

1098-0121/2014/89(5)/054421(6) 054421-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.054421


KARTHIK PRAKHYA, ADRIAN POPESCU, AND PAUL M. HANEY PHYSICAL REVIEW B 89, 054421 (2014)

FIG. 1. (Color online) (a) Overall system geometry. (b) The
crystal and spin structure for the 3Q state. The spins at the corners of
the interior box all point inward. (c) The spin on the [111] interface
of the lattice from (b). The small black, medium red, and large gray
dots represent atoms in different layers (i.e., with different y values).
The spin of dots without an arrow is completely in the ŷ direction,
while other spins are partially canted in the ŷ direction. (d) Spherical
coordinate system used to describe the torques on the ferromagnet.
The blue (dark) spins in the x-z plane represent the threefold
symmetric spins of the antiferromagnetic layer, and the thinner
red arrow represents the orientation of the ferromagnet layer.

orientation and exceeds the damping torque, it can stabilize
this configuration, as shown by micromagnetic simulations in
Ref. [10].

II. METHOD

To calculate the current-induced torques, we use the
nonequilibrium Green’s function technique within a tight-
binding representation. This is a well-established approach to
calculating the transport properties of magnetic thin films. We
highlight the most important details here. The system is taken
to consist of two semi-infinite electrodes, with a scattering
region placed between them. There is a difference Vapp in the
electrochemical potential of the two electrodes. The central
quantity is the density matrix ρ:

ρ = i

2π

∫ EF −Vapp/2

−∞
[Gr (E) − Ga(E)]dE

+
∫ EF +Vapp/2

EF −Vapp/2
Gr (E)�L(E)Ga(E)dE, (1)

where Gr,a(E) = [E − HC − �
r,a
L (E) − �

r,a
R (E)]−1, and the

r(a) superscript refers to retarded (advanced). HC is the
scattering region Hamiltonian, and �r

L is the self-energy,
which describes the electronic coupling between the scattering
region and the semi-infinite left lead; it is given by �r

L =
V

†
C,Lgr

0,L(E)VC,L, where VC,L is the coupling matrix element
between the left lead and central region, and g0,L is the surface

Green’s function of the isolated semi-infinite left lead. The
same form of self-energy holds for the right lead.

As noted in previous works [7], phase coherence plays
a central role in a number of the antiferromagnetic systems
studied so far. To explore the robustness of the torques in this
system, we include an additional self-energy �S in the Green’s
function which describes elastic, phase-breaking scattering. Its
form is

�S(E) = iD[Gr (E) − Ga(E)], (2)

where D parameterizes the scattering. A discussion of the pa-
rameter D in terms of real material properties and temperature
is given in Sec. III.

We assume the spin-orbit coupling is negligible, so that
the current-induced torque on the ferromagnet layer is simply
given by the transverse component of incoming spin current
flux. For our geometry, the net spin current has real-space ve-
locity in the ŷ direction. The spin current operator �J (y) is then

�̂J (y) =
∑

j ∈ R(y)
k ∈ L(y)

s,s ′

i[c†j,s �σs,s ′ck,s ′ tj,k − H.c.], (3)

where R(y) are the set of sites with coordinate y ′ greater than
y, and L(y) are the set of sites with coordinate y ′ less than y.
�σ is the vector of Pauli matrices, and we take the hopping tj,k
between all sites j and k to be spin independent. We present
results in terms of torque per current (units of μB/e), which
represents the spin torque efficiency. The absolute value of
this quantity determines the critical current needed to drive
magnetic dynamics.

As discussed in Refs. [22] and [23], it is sometimes
necessary to compute the entire energy integral [both terms
in Eq. (1)] in order to find the current-induced torques. This is
particularly the case when the torques in question are present
in equilibrium (which is itself dependent on the symmetries of
the system, as discussed in Ref. [22]). We checked explicitly
that the current-induced torque in question for these systems is
dominated by the nonequilibrium contribution to the density
matrix [the second term of Eq. (1)], and present only this
contribution in the results (the remaining “energy integral”
contribution is several orders of magnitude smaller in all
of the cases we checked). We take the Fermi energy to be
EF = 3.75t , and use a dense k-point mesh to converge the
transport integrals, up to 10002 k points for a unit cell having
four atoms per layer.

A schematic of the overall system is shown in Fig. 1(a). It
consists of semi-infinite ferromagnetic and antiferromagnetic
layers, separated by a nonmagnetic spacer which is three
atomic layers thick. The layers are fcc, with interfaces in
the [111] direction. We use two different spin structures for
the antiferromagnet. One is a 3Q spin structure, depicted in
Fig. 1(b). The spin structure in the (111) planes is shown in
Fig. 1(c), which shows the threefold symmetry of the spin in the
x-z plane. Each spin also has a component along the y axis (into
or out of the page). Atoms with no arrow in the figure have a
spin fully aligned in the +ŷ direction, while other atoms’ spins
are partially canted in the −ŷ direction, so that the net bulk spin
vanishes. Common antiferromagnetic materials such as FeMn
are predicted to have a 3Q ground state [24–26], consistent
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FIG. 2. (Color online) The angular dependence of the current-
induced torque (CIT) on the ferromagnet for the system with
no antiferromagnetic canting in the y direction (the “no-canting”
system). The black dashed line is the torque in the φ̂ direction and
the gray line with markers is the torque in the θ̂ direction. (a) The
torque as when the ferromagnet is coplanar with the antiferromagnet
spins, which shows a sin (3θ ) dependence. (b) An intermediate angle
and (c) the torque as the ferromagnet orientation is normal to the
plane of the antiferromagnet spins. In this case, the torque varies as
sin (2θ ). The diagrams to the right of the plots show the direction of
antiferromagnet spins in the x-z plane, and with a circle representing
the angles of the ferromagnet layer in the plot.

with measurements [27,28], although there is not complete
consensus between all of the experimental data [29]. To further
explore the consequences of the antiferromagnet symmetry, we
also consider a system where the y component of the spins is
set to 0. This artificial system retains the threefold symmetry in
the x-z plane, but is also symmetric under sy ↔ −sy . We refer
to this as the “no-canting” antiferromagnet. We emphasize
that our primary results generalize to any antiferromagnet for
which there is an axis of n-fold spin-rotational symmetry, as
explained in Sec. I.

We present the angular variation of the torque on the
ferromagnet layer in terms of spherical coordinates, as shown
in Fig. 1(d). The ŷ direction is the hard axis of the ferromagnet,
which is taken to coincide with the axis of threefold symmetry
of the antiferromagnet. As explained in Sec. I, this alignment
of hard axis and the antiferromagnet axis of spin-rotational
symmetry is crucial for the out-of-plane orientation to be
stabilized by the current-induced torque. The ẑ direction is
along one of the spins of the antiferromagnetic layer. We utilize
similar schematics as Fig. 1(d) in the next section to show the
relative orientation of the ferromagnet layer with the spins of
the antiferromagnet.

III. RESULTS

The current-induced torque on the ferromagnetic layer for a
no-canting antiferromagnetic system is shown in Fig. 2. Unlike
the current-induced torque in a conventional spin valve, whose

FIG. 3. (Color online) The angular dependence of the torque on
the ferromagnet for the system with no 3Q spin ordering of the
antiferromagnet. The black dashed line is the torque in the φ̂ direction
and the gray line with markers is the torque in the θ̂ direction. (a) The
torque again varies as sin (3θ ) when the ferromagnet layer is confined
to the x-z plane (easy plane). (b) The complex angular dependence
for the ferromagnet layer oriented along an axis of low symmetry.
(c) The torque vanishes when the ferromagnet is aligned to the axis
of threefold symmetry of the antiferromagnet (arrows indicate these
points).

magnitude has a simple sin (θ ) dependence, we find a more
complex angular dependence for the torque. We first fix φ =
0◦ and vary the ferromagnet orientation from θ = 0 to 360◦.
These orientations are in the easy plane. The torques conform
to the threefold symmetry, varying approximately as sin (3θ ),
as shown in Fig. 2(a). For fixed φ = 90◦, sweeping the polar
angle θ takes the magnetization out of the easy plane, through
the hard-axis direction. The torques in this case are shown in
Fig. 2(c). The torques vary as sin (2θ ), again as required by
symmetry. For fixed φ = 45◦, varying θ takes the ferromagnet
on an “off-axis” orbit and the torque exhibits more complex
angular dependence.

Figure 3 shows similar results for the 3Q spin structure
for the same set of magnetic orientations. The reduction in
symmetry due to the inequivalence of sy and −sy leads to
more complex behavior of the torque. For φ = 0◦, we note the
invariance of the torque under θ → θ + 120◦. Key data points
are shown in Fig. 3(c) by the black arrows. As argued in Sec. I,
when the ferromagnet layer is aligned to the axis of threefold
symmetry, the current-induced torque vanishes.

To gain a fuller view of the current-induced torque near the
out-of-plane fixed point, we show the torque in the vicinity
of these points in Fig. 4. For the no-canting system, the +ŷ

and −ŷ fixed points are equivalent. For electrons flowing from
the antiferromagnet to the ferromagnet, these are stable fixed
points. For the 3Q antiferromagnet, on the other hand, the +ŷ

and −ŷ fixed points are inequivalent. In this case, we find that
the +ŷ is a stable attractor, while the −ŷ is an elliptic fixed
point. The nature of the fixed point (stable, unstable, elliptic,
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FIG. 4. (Color online) A zoom-in view of the torques on the
ferromagnet layer near the fixed point of the current-induced torque.
(a) The result for the “no-canting” system, where the ±y fixed points
are equivalent. The red dot on the sphere on the right represents the
magnetic orientation shown in the left panel. The dark blue arrows
represent the orientation of the antiferromagnet spins. (b) The result
for the 3Q system. The torques indicate that the +ŷ orientation is a
stable fixed point. (c) The −ŷ orientation is an elliptic fixed point.
[The three blue (dark) arrows of (a) have no ŷ component, while for
(b) and (c), the three similar blue (dark) arrows are canted, acquiring
a small positive ŷ component.]

etc.) is parameter dependent, making it difficult to make gen-
eral statements about the prevalence of different fixed points.

For antiferromagnetic systems, it is also important to
distinguish between stable fixed points to which any initial
magnetization vector is driven (global attractors) and those
fixed points for which only an initial magnetization vector
nearby is driven (local attractors). Inspection of Fig. 2(a)
shows that, if the magnetization is in the x-z plane, the torque
driving it to the out-of-plane direction is quite weak (in this
case, the relevant torque is in the φ̂ direction). On the other
hand, if the magnetization is near the z-y plane [Fig. 2(c)],
the torque driving it to the out-of-plane orientation (�θ ) is
much stronger. Rather than characterizing the flow of the
current-induced torque field for any particular system in detail
(which is highly parameter dependent), we simply emphasize
that an experiment is more likely to observe these torques if the
magnetization is initially in the out-of-plane orientation before
the current is applied. Application of a current can stabilize
this configuration, so that subsequent removal of the applied
field does not result in the magnetization returning to the easy
plane.

FIG. 5. (Color online) (a) The magnitude of current-induced
torque near the fixed point of the “no-canting” system as a function
of the elastic-scattering parameter D/t2. The parameters used in the
curve fit are �0 = 0.0478 (μB/e), A = 670 t−2. (b) The same plot
for the 3Q system. The fit applies only to (a).

In contrast to the current-induced torque in non-
collinear ferromagnets, the current-induced torque in many
antiferromagnet systems relies on phase coherence [7]. This
is because the eigenstates of the bulk antiferromagnet are
degenerate Kramer’s doublets with opposite spins. A dis-
tribution of these eigenstates carries no net spin current.
Moreover, scattering at a single compensated antiferromagnet-
nonmagnet interface does not result in spin current. However,
spin-dependent reflection at the ferromagnet interface leads to
a superposition of these degenerate states, which results in a
nonzero spin polarization of the current in the antiferromagnet.
The component of this spin current perpendicular to the fer-
romagnet is responsible for the torque on the ferromagnet and
vanishes as the coherence between the states is destroyed. The
requirement of ballistic (or quasiballistic) transport imposes
more stringent requirements on the existence of current-
induced torques in antiferromagnets than in ferromagnets.
Materials should be nearly single crystal, and scattering (from,
e.g., phonons) should be minimized. In order to estimate the
acceptable limits of electron-phonon scattering, we add an
elastic-scattering channel to the Green’s function self-energy
as described in Sec. II. Figure 5 shows how increased scattering
decreases current-induced torque near the out-of-plane fixed
point of the no-canting system. Here the scattering parameter
D is normalized by the square of the hopping matrix element t .

To place the result of Fig. 5 in context, we write D in terms
of material properties. For simplicity, we focus on just one
phase-breaking process: elastic acoustic phonon scattering.
Our aim is to explicitly show that the current-induced torque,
as a function of the applied current, has a maximum absolute
value. Depending on materials properties and temperature,
other scattering processes may be more important. In any
event, for acoustic phonon scattering, D takes the form [30]

D = E2
akBT

ρv2a3
≡ D0T , (4)

where Ea is the elastic deformation potential, ρ is the material
density, v is the speed of sound, a is the lattice spacing,
and T is the temperature. The linear T dependence reflects
the increased thermal population of phonons with increasing
temperature. Other scattering processes (e.g., electron-electron
scattering, inelastic phonon scattering) depend on T differ-
ently; generally, D ∝ T p where p varies from 0.5 to 3 (see
Ref. [31] and references therein).
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Joule heating may increase the importance of thermal
effects: for current density J flowing through a material with
resistivity r , thermal conductivity κ , and length L along the
current direction (in this case, the ŷ direction), the spatially
averaged temperature increases by a factor on the order of
J 2L2r/κ . To stabilize the out-of-plane magnetic orientation
requires a current density of αγMstF /2g [32], where g is the
current-induced torque per current, α is the damping, γ is
the gyromagnetic ratio, Ms is the saturation magnetization of
the ferromagnet layer, and tF is the thickness of the ferro-
magnet layer. For the no-canting system, the current-induced
torque per current is g = 0.05μB/e. According to this estimate
and typical material parameters, this leads to a critical current
density on the order of 1012 A/m2. Taking r = 10−7 � m, κ =
50 W/(m K),L = 50 nm leads to only a modest increase in
temperature of less than 10 K. The other parameters of Eq. (4)
for metals are typically Ea = 10 eV,ρ = 104 kg/m3, v =
5000 m/s, a = 0.35 nm. In total, we find a D parameter on
the order of 10−5 to 10−4 eV2. In light of Fig. 5, this implies
that elastic phonon scattering does not immediately destroy the
current-induced torque for the no-canting system. On the other
hand, the much weaker current-induced torque per current
of the 3Q system (g = 4 × 10−4 μB/e) requires a 100-fold
increase in the current to stabilize the out-of-plane orientation,
a current density which exceeds the maximum these systems
can accommodate.

We have observed that the current-induced torque decays
as 1/D for the no-canting system. This is not universal
behavior. Indeed, the current-induced torque in the 3Q system
is nonmonotonic with scattering parameter D [33]. Despite
its nonuniversality, we find it instructive to assume such a
dependence in order to derive closed-form expressions for
the maximum current-induced torque as a function of applied
current density. Recalling that D is proportional to T , we find
that the absolute current-induced torque �abs (units of torque)
varies with current as

�abs(J ) = �0J

1 + AD0(T0 + BJ 2)
, (5)

where �0 is the current-induced torque in the absence of
scattering (recall �0 has units of torque per current), T0

is the sample temperature in the absence of current, B =
L2r/κ describes the system’s susceptibility to current-induced
heating, and D0 is defined in Eq. (4) [26]. The absolute
current-induced torque has a maximum—for current densities
that are too large, the magnitude of the current-induced torque
decreases due to increased scattering from Joule heating. The
maximum absolute current-induced torque is given by

�max
abs = �0

3L

√
2κ

ρD0A(1 + D0T0A)
. (6)

The parameters �0 and A are entirely system specific and
related to the spin-dependent transport properties of a system
and their robustness with respect to scattering. If the above
maximum torque exceeds the damping torque αγMstF /2g,
then the out-of-plane configuration can be stabilized by
the current-induced torque. Intuitively, it is advantageous
to use a low Ms material in order to reduce the critical
current and a thin multilayer to reduce heating. For scattering
processes with different functional dependence on T , a similar
line of reasoning applies, although the specific form of the
maximum absolute current-induced torque will differ. It is
straightforward to show that a T p dependence of D results
in a maximum current-induced torque expression similar to
Eq. (6), where the expression inside the square root is taken to
the power 1/2p.

IV. CONCLUSION

This work demonstrates the role of symmetry and phase co-
herence effects in the current-induced torque present between
ferromagnet and antiferromagnetic layers with a compensated
interface. Basic symmetry arguments identify the fixed points
of the current-induced torque. We demonstrate that for an
antiferromagnetic layer with a 3Q spin structure, the current-
induced torque has a complex angular dependence, and the
fixed points for the current-induced torque are generally
only local attractors. This is important because experiments
designed to drive the ferromagnet to these fixed points must
initialize the ferromagnet sufficiently nearby. We also show,
via explicit calculations, the primary role played by phase
coherence for these torques and show an inverse relationship
between the magnitude of the current-induced torque and the
phase-breaking scattering parameter. In the antiferromagnetic
system with planar spins (the no-canted system), we find the
current-induced torque to be sufficiently robust to scattering
to stabilize the out-of-plane magnetic orientation, while for
the 3Q ordered antiferromagnet, the current-induced torque is
too weak to stabilize this orientation. We expect that the ro-
bustness of this torque to scattering should be system specific,
determined by which scattering processes are dominant and
the system electronic structure.
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[4] A. S. Núñez, R. A. Duine, Paul Haney, and A. H. MacDonald,

Phys. Rev. B 73, 214426 (2006).

[5] P. M. Haney, R. A. Duine, A. S. Nez, and A. H. MacDonald, J.
Magn. Magn. Mater. 320, 1300 (2008).

[6] P. M. Haney, D. Waldron, R. A. Duine, A. S. Núñez, H. Guo,
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