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Thermal Hall effect of magnons in magnets with dipolar interaction
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Thermal Hall conductivity of magnons described by a noninteracting boson Hamiltonian is derived by the
linear response theory. The thermal Hall conductivity is expressed by the Berry curvature in momentum space,
which also has the prevailing form for bosonic systems. This theory covers various spin waves, such as spin waves
in antiferromagnets and magnetostatic spin waves. As an example, we calculate the thermal Hall conductivity by
the magnetostatic spin wave in yttrium iron garnet and reveal its dependence on a magnetic field and temperature.
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I. INTRODUCTION

A magnon (spin wave) is a low-energy collective excitation
in magnetically ordered media [1,2]. Particularly in insulating
magnets such as yttrium iron garnet (YIG), magnons can
carry spin information for a long distance without dissipation
by Joule heating [3]. With these characteristics, magnons
attract much attention in the field of spintronics [4,5], and
nowadays lead us to a new field of physics called “magnonics”
[6–9]. This field aims to control and process information
using magnons and a number of magnonic devices have
been proposed. For these purposes, a precise manipulation
of spin-wave propagation is vital.

Recently, the thermal Hall effect due to a transversal
magnon current (magnon Hall effect) has been studied both
theoretically [10–12] and experimentally [13,14]. It was
theoretically predicted that the transversal current appears by a
gradient of magnetic field in a noncoplanar spin structure [10]
and by a temperature gradient even in a collinear ferromagnet
with a particular lattice structure, such as a kagome lattice
[11]. In experiments, the thermal Hall effect is observed in
Lu2V2O7, a ferromagnetic insulator with pyrochlore structure
[13], and in various ferromagnetic insulators [14] with the
Dzyaloshinskii-Moriya (DM) interaction, where topological
aspects of the Hall effect has been suggested.

Using an analogy between a semiclassical equation of
motion for an electron wave packet [15] and that for a magnon
wave packet, two of the authors recently identified a correction
term to the thermal Hall conductivity, which was missing in
the previous theories [11,13]. The term physically results from
orbital motions of the magnon wave packet, which can also
be derived by the linear response theory with spatial gradients
of temperature [16]. With this correction term, they revealed
that the thermal Hall current of magnons is indeed generated
by the so-called Berry curvature associated with Bloch wave
functions for spin-wave bands in the momentum space. All
of these preceding theories, however, are applicable only to
those magnets where a magnon’s current and density operators
respect a continuity equation.

Nonzero Berry curvature for spin-wave bands usually
results from interactions with “spin-orbit locking,” i.e., locks
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of a relative rotation between spin space and orbital space. This
transfers a complex valued character in spin-wave functions
(one of the three Pauli matrices) into wave functions in the
orbital space, leading to a finite Berry curvature in the mo-
mentum space. In magnetic insulators, either the short-ranged
DM interaction [11,13,14] or a long-ranged dipole-dipole
interaction [12,17,18] plays such a role. Apart from some
exceptions [11,13], these spin-orbit-locking interactions break
global spin-rotation symmetry completely, so that systems do
not have any axis with a continuous spin-rotational symmetry;
spin-wave Hamiltonians with spin-orbit lockings usually do
not conserve the total number of magnons and a continuity
equation for the magnon’s density and current no longer holds
true. This prevents us from utilizing the previous theories.

In the present paper, we develop a comprehensive theory
for the magnon Hall effect in magnets where a magnon
number is not necessarily conserved. Following a theory of
thermal Hall effect in superconductors [19–21], we begin
with a continuity equation for the magnon’s energy density, to
introduce a thermal current associated with magnon transport.
Using the linear response theory developed by Smrčka and
Středa [16], we derive the thermal transport coefficient. It is
shown that the thermal Hall conductivity is directly related
to the Berry curvature [17,18] in momentum space (Secs. II
and III). Our theory is widely applicable to various types of
magnets, including dipolar ferromagnets with magnetostatic
spin waves and antiferromagnets with the DM interaction.
Armed with this theory, we next calculate the magnetic-field
and temperature dependence of the thermal Hall conductivity
in ferromagnetic thin films (Sec. IV). We clarify that the
thermal Hall conductivity via the magnetostatic forward
volume wave [6–9] is mostly independent of the temperature.
Throughout this paper, we assume that magnons do not interact
with each other.

II. NONINTERACTING BOSON HAMILTONIAN

A spin-wave system considered in this paper is described by
a noninteracting boson Hamiltonian. It is given by a quadratic
form of a magnon field (creation/annihilation operator):

H ≡ 1

2

∫
d r�†(r)H0�(r), (1)

where H0 is an arbitrary 2N × 2N Hermite matrix, �†(r) =
[β†

1(r), . . . ,β†
N (r),β1(r), . . . ,βN (r)], β

†
i (r) and βi(r) (1 �

i � N ) are the bosonic (magnon) creation and annihilation
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operators, [βi(r),β†
i (r ′)] = δr r ′δij , and N is a number of

bosons within a unit cell (or a number of spin-wave bands). In
the presence of the spin-orbit-locking interactions, the spin-
wave Hamiltonian usually contains particle-particle pairing
terms, β

†
i β

†
j or βiβj , so that the total number of magnons is

not conserved. A fermionic counterpart of this Hamiltonian
is known as a Bogoliubov-de Gennes Hamiltonian, which
describes superconductors. Under the Fourier transformation,

βi(r) = 1√
N�

∑
k

eik·rβi,k, (2)

β
†
i (r) = 1√

N�

∑
k

e−ik·rβ†
i,k, (3)

the Hamiltonian is written as

H = 1

2

∑
k

(β†
kβ−k)Hk

(
βk

β
†
−k

)
, (4)

where β
†
k = (β†

1,k, . . . ,β
†
N,k) and Hk is a Fourier transfor-

mation of H0. N� is a number of the unit cells. Though a
lattice model is adopted for simplicity, it is straightforward to
apply our theory to a continuous model. The Hamiltonian is
diagonalized by a paraunitary matrix Tk [22],

H = 1

2

∑
k

(γ †
kγ −k)Ek

(
γ k

γ
†
−k

)
=

∑
k

N∑
n=1

εnk

(
γ
†
nkγnk + 1

2

)
,

(5)

where γ
†
k = (γ †

1,k, . . . ,γ
†
N,k), εnk is the nth band energy, and(

γ k

γ
†
−k

)
= T −1

k

(
βk

β
†
−k

)
, (6)

Ek = T
†
k HkTk =

(
Ek

E−k

)
, (7)

Ek =

⎛
⎜⎝

ε1k

. . .

εNk

⎞
⎟⎠. (8)

Since the matrix Tk diagonalizes the Hamiltonian, it can
be regarded as an alignment of the eigenstates. The boson
commutation relation for γ k requires that Tk must satisfy the
paraunitary conditions,

T
†
k σ3Tk = σ3, (9)

Tkσ3T
†
k = σ3, (10)

where σ3 = (1N×N 0
0 −1N×N

). As seen from Eq. (7), the Hamilto-
nian consists of two copies of the same eigenstates. In analogy
with superconductors for fermions, we refer to the space with
indices n = 1, . . . ,N as particle space and that with indices
n = N + 1, . . . ,2N as hole space.

III. THERMAL TRANSPORT COEFFICIENT

In this section, we calculate thermal transport coefficients
and the thermal Hall conductivity. In Sec. III A, we review

the linear response theory with a temperature gradient and
calculate the thermal current operator from the continuity
equation. The operator is separated into two parts: one is
independent of an external field and the other is linear in the
field. They, respectively, produce thermal transport coefficients
which we calculate in Secs. III B 1 and III B 2, and their sum
is the total coefficient. Finally, the thermal Hall conductivity is
derived from the coefficient in Sec. III B 3. The thermal Hall
conductivity is expressed by the Berry curvature in momentum
space, whose properties are also discussed in Sec. III B 4.

A. Pseudogravitational potential and thermal current operator

Theoretical treatment of the linear response to the tem-
perature gradient requires some care. In the standard linear
response theory to an external field, the field should en-
ter the Hamiltonian as a perturbation. On the other hand,
the temperature gradient does not affect the Hamiltonian
but affects the Boltzmann factor e−H/(kBT ), where H is a
Hamiltonian and kB is the Boltzmann constant. Luttinger
showed that the introduction of a fictitious pseudogravitational
potential [16,23] removes this difficulty. A force due to a
gradient of the pseudogravitational potential is defined to
be proportional to the particle energy, due to the following
reason. In the Boltzmann factor e−H/(kBT ), the temperature
gradient T (r) = T0[1 − χ (r)], where T0 is a constant and χ

is a space-dependent small parameter, can be regarded as a
space-dependent prefactor to the Hamiltonian,

e−H/[kBT (r)] � e−(1+χ)H/(kBT0). (11)

Thus, χH is regarded as a perturbation to the Hamiltonian due
to the temperature gradient, and its gradient(∇χ )H represents
a force which is proportional to the energy. In this way, one
can incorporate the temperature gradient into the Hamiltonian
as a perturbation by using the pseudogravitational potential.
In this sense, the pseudogravitational potential is a dynamical
force and the temperature gradient is a statistical force; the
former exerts a force to a particle, while the latter does not but
affects a particle motion through the distribution function. This
is analogous to the situation in which the transport coefficients
from the chemical potential in electron systems are derived
from the response to the electric field.

Since we are interested in the linear response, we assume the
pseudogravitational potential χ to be linear in the position and
expand the response in terms of ∇χ . By using this potential,
a perturbing field from the temperature gradient is written as

F ≡ 1

4

∫
d r�†(r)(H0χ + χH0)�(r), (12)

and the total Hamiltonian HT is

HT = H + F. (13)

Thermal transport coefficients are calculated as a lin-
ear response to the gradient of the pseudogravitational
potential [23],

〈
J Q

μ

〉 = Lμν

(
T ∇ν

1

T
− ∇νχ

)
, (14)

where Lμν is the thermal transport coefficient and μ,ν = x,y.
〈J Q

μ 〉 is a macroscopic thermal current [16] where J Q
μ is defined
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as J Q
μ ≡ 1

V

∫
d rjQ

μ (r), with jQ
μ (r) being a thermal current

density operator, V being a volume of the system, and 〈·〉
denoting a thermal and quantum-mechanical average. The
thermal Hall conductivity κμν is expressed as

κμν = Lμν

T
. (15)

Hereafter, we take the system volume V and � to be 1 and
restore them as necessary.

To calculate the thermal Hall conductivity, let us first
calculate the thermal current density (operator) in the presence
of the pseudogravitational field ∇χ . Since χ is small, the total
Hamiltonian is rewritten as

HT = 1

2

∫
d r

(
1 + χ

2

)
�†(r)H0

(
1 + χ

2

)
�(r). (16)

From the conservation of the energy density, the continuity
equation is

ḣT + ∇ · jQ(r) = 0, (17)

where hT = 1
2 (1 + χ

2 )�†(r)H0(1 + χ

2 )�(r) is an energy den-
sity. From Eq. (17), the thermal current operator up to the linear
order in the external field ∇χ is derived as the following (see
Appendix A for details):

jQ
μ (r) = j

Q
0,μ(r) + j

Q
1,μ(r), (18)

where

j
Q
0,μ(r) = 1

4
�†(r)(Vμσ3H0 + H0σ3Vμ)�(r), (19)

j
Q
1,μ(r) = − i

8
∇νχ�†(r)(Vμσ3Vν − Vνσ3Vμ)�(r)

+ 1

8
∇νχ [�†(r)(xνVμσ3 + 3Vμσ3xν)H0�(r)

+�†(r)H0(3xνσ3Vμ + σ3Vμxν)�(r)], (20)

xμ is a position operator, and Vμ = 1
i�

[xμ,H0] is a velocity
operator. Thermal current density consists of two parts:
j

Q
0,μ(r) is independent of ∇χ and j

Q
1,μ(r) is linear in ∇χ .

They both contribute to the thermal transport coefficients.

B. Calculation of thermal transport coefficients

From Eq. (14), the thermal transport coefficient is obtained
from a thermal and quantum-mechanical average of the
thermal current operator:〈

J Q
μ

〉 = 〈
J

Q
0,μ

〉 + 〈
J

Q
1,μ

〉
, (21)〈

J
Q
0,μ

〉 ≡ −Sμν∇νχ, (22)〈
J

Q
1,μ

〉 ≡ −Mμν∇νχ. (23)

J
Q
0/1,μ is given by the spatial integral of j

Q
0/1,μ over an entire

system [see Eqs. (B1) and (B2)]. The total thermal transport
coefficient is the sum of these two contributions: Lμν = Sμν +
Mμν . In the following, we derive an expression for the thermal
transport coefficients Sμν and Mμν in terms of the spin-wave
dispersion εn,k and the paraunitary matrix Tk.

1. Calculation of Sμν

The first term Sμν represents the usual Kubo-Greenwood
contribution to Lμν . Because J

Q
0,μ is independent of ∇χ , the

linear response coefficient Sμν is calculated from the deviation
of the density matrix out of equilibrium due to ∇χ . This
contribution reads [24,25]

Sμν = −δ
〈
J

Q
0μ

〉
δ∂νχ

= − lim

→0

P R
μν(
) − P R

μν(0)

i

. (24)

Now that Ḟ = i
�

[H,F ] = J
Q
0,μ∇μχ , P R

μν(
) is a retarded
current-current correlation function. It is also given by the
imaginary time-ordered correlation function as

P R
μν(
) = Pμν(i
 → 
 + i0), (25)

with

Pμν(i
) = −
∫ β

0
dτei
τ

〈
TτJ

Q
0,μ(τ )J Q

0,ν(0)
〉
. (26)

Here, β = 1/kBT , Tτ is a time-ordering operator, and J
Q
0,μ(τ )

is an interaction representation of the thermal current opera-
tor: J

Q
0,μ(τ ) = eτHJ

Q
0,μe−τH. From these equations, the Kubo

contribution to the thermal transport coefficient is derived (see
Appendix C for details) as

Sμν = − i

8

N∑
n,m=1

∑
k

[
g(εnk) − g(εmk)

(εnk − εmk)2
(εnk + εmk)2(T †

k Vk,μTk)nm(T †
k Vk,νTk)mn

− g(εnk) − g(−εm,−k)

(εnk + εm,−k)2
(εnk − εm,−k)2(T †

k Vk,μTk)n,m+N (T †
k Vk,νTk)m+N,n

− g(−εn,−k) − g(εmk)

(εn,−k + εmk)2
(εn,−k − εmk)2(T †

k Vk,μTk)n+N,m(T †
k Vk,νTk)m,n+N

+ g(−εn,−k) − g(−εm,−k)

(εn,−k − εm,−k)2
(εn,−k + εm,−k)2(T †

k Vk,μTk)n+N,m+N (T †
k Vk,νTk)m+N,n+N

]
, (27)

with Vk,μ ≡ 1
�

∂Hk
∂kμ

. g(ε) is the Bose distribution function g(ε) = 1/[exp(ε/kBT ) − 1].
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2. Calculation of Mμν

The second term Mμν is associated with orbital motions of magnons [12]. Generally speaking, in a system with the time-reversal
symmetry breaking, there is a circulation of heat current, leading to an additional contribution to the thermal transport coefficient
which is called an energy magnetization term [20,26,27]. Mμν is calculated from the expectation value of Eq. (20) with respect
to the unperturbed (∇χ = 0) distribution function,

Mμν = −δ
〈
J

Q
1μ

〉
δ∂νχ

= i

8

N∑
n,m=1

∑
k

[g(εnk)(T †
k Vk,μTk)nm(T †

k Vk,νTk)mn − g(εnk)(T †
k Vk,μTk)n,m+N (T †

k Vk,νTk)m+N,n

− g(−εn,−k)(T †
k Vk,μTk)n+N,m(T †

k Vk,νTk)m,n+N + g(−εn,−k)(T †
k Vk,μTk)n+N,m+N (T †

k Vk,νTk)m+N,n+N ]

− (μ ↔ ν) − 1

2

N∑
n=1

∑
k

{[T †
k (xνVk,μ + Vk,μxν)Tk]nnεnkg(εnk) + [T †

k (xνVk,μ + Vk,μxν)Tk]n+N,n+Nεn,−kg(−εn,−k)}.

(28)

Mμν is related to Mz
Q in Ref. [26] as Mxy = 2Mz

Q.

3. Expression of thermal transport coefficients in terms of Bloch eigenstates

In the following, we rewrite Eqs. (27) and (28) in terms of the Bloch eigenstates Tk. In terms of Eq. (28) and Eq. (D13) derived
in Appendix D, Mμν can be explicitly calculated as

Mxy = i
∑

k

∫ ∞

−∞
dη̃Tr

[
δ(η̃ − σ3Ek)σ3

∂T
†
k

∂kx

σ3
∂Tk

∂ky

]
·
∫ η̃

0
ηg(η)dη

− i

8

∑
k

∫ ∞

−∞
dη̃Tr

[
δ(η̃ − σ3Ek)σ3

∂T
†
k

∂kx

(3σ3η̃
2 − 2η̃Hk − Hkσ3Hk)

∂Tk

∂ky

]
g(η̃) − (x ↔ y). (29)

Similarly, Sxy is rewritten as

Sxy = − i

8

∑
k

∫ ∞

−∞
dηg(η)Tr

[
δ(η − σ3Ek)σ3

∂T
†
k

∂kx

(η + Hkσ3)2σ3
∂Tk

∂ky

− (x ↔ y)

]
. (30)

These lead to Lxy as

Lxy = Sxy + Mxy = − i

2

∑
k

∫ ∞

−∞
dη̃Tr

[
δ(η̃ − σ3Ek)σ3

∂T
†
k

∂kx

σ3
∂Tk

∂ky

− (x ↔ y)

] ∫ η̃

0
η2 dg(η)

dη
dη. (31)

Finally, the thermal Hall conductivity in a clean limit is expressed as follows (see Appendix D for details):

κxy = −k2
BT

�V

∑
k

N∑
n=1

{
c2[g(εnk)] − π2

3

}

nk. (32)

Here, c2(x) is defined as

c2(x) ≡
∫ x

0
dt

(
ln

1 + t

t

)2

= (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2Li2(−x), (33)

where Li2(x) is a polylogarithm function Lin(x) for n = 2. 
nk is the Berry curvature in momentum space for a noninteracting
boson Hamiltonian, which is defined as [17]


nk ≡ iεμν

[
σ3

∂T
†
k

∂kμ

σ3
∂Tk

∂kν

]
nn

(n = 1,2, . . . ,2N ). (34)

Equation (32) is the central result of this paper. The thermal Hall conductivity is given by the sum of the conductivities from each
of the Bloch eigenstates. Each contribution is a product of the Berry curvature 
nk and c2[g(εnk)] − π2

3 , which is a function of

the Bose distribution function g(εnk). This function c2[g(ε)] − π2

3 is a monotonically decreasing function of ε. It has maximum

value 0 at ε = 0 and minimum value −π2

3 at ε → ∞.
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4. Properties of the Berry curvature and thermal Hall conductivity

Equation (32) is written only with the Berry curvature in
particle space: 
nk(1 � n � N ). To obtain Eq. (32), we used
a formula


nk = −
n+N,−k, (35)

which relates the Berry curvature in the hole space (N + 1 �
n � 2N ) with that of the particle space. It is natural to have
such a relation between the particle space and hole space
because the hole space is a copy of the particle space. The
formula comes from the following particle-hole symmetry
associated with the boson commutation relation:

Hk = σ1(H−k)tσ1, (36)

σ1 =
(

0 1N×N

1N×N 0

)
. (37)

The derivation of Eq. (35) is shown in Appendix F. In the
absence of the particle-particle pairing terms, namely the off-
block-diagonal terms in Hamiltonian Hk, one can retrieve from
Eq. (32) the previous results [12].

When the momentum integral in Eq. (32) is taken over
the first Brillouin zone (a closed surface), which is the case
in a two-dimensional system with spatial periodicity, Cn ≡
2π
V

∑
k∈BZ 
nk is quantized to be an integer m, which is called

the first Chern integer [17,28,29]. The integer determines a
number of chiral edge modes for spin-wave propagations,
whose dispersion crosses a band gap for the spin-wave band
[17,18,30–32]. Using the quantization, one can further prove
that a sum of the Chern integer over the particle bands
(1 � n � N ) reduces to zero [17]. In such a case, we can
drop π2/3 within the curly brackets in the right-hand side of
Eq. (32). However, when the momentum integral in Eq. (32)
is not taken over the closed surface (as we show an example
below), the sum is not required to be quantized, and thus one
needs to keep π2/3 in the right-hand side of Eq. (32).

IV. APPLICATION TO THE
MAGNETOSTATIC SPIN WAVES

In this section, we apply the above theory to the mag-
netostatic spin wave. When a wavelength of the spin-wave
excitation gets into the micrometer length scale, the short-
range exchange interaction becomes relatively less dominant.
Instead, the spin-wave propagation is mainly driven by the
long-range dipole-dipole interaction (dipolar regime). Playing
the role of the spin-orbit locking, the dipolar interaction brings
about a finite Berry curvature and thermal Hall effect in
magnets.

In the following, we consider a two-dimensional (2D)
ferromagnetic film (e.g., YIG film) in the dipolar regime,
where the exchange interaction is negligible. Take the 2D
plane to be the xy plane. The saturation magnetization Ms and
internal static magnetic field H0 are parallel to the z direction;
H0 = Hex − Ms, where Hex is an external magnetic field. The
spin-wave mode with this geometry is called the magnetostatic
forward volume wave (MSFVW) [33]. We assume the spin-
wave mode to be a plane wave and write the magnetization in
the xy direction as m(r,t) = (mx (z)

my (z)) exp[i(k · r‖ − ωt)], where

r‖ = (x,y), k is a wave vector and ω is a frequency of the
spin wave. The magnetization obeys the following equation of
motion [34] with the SI units:

ωH m(z) − ωM

∫ L/2

−L/2
dz′Ĝ(z,z′)m(z′) = ωσzm(z),

(38)

σz ≡
(

1 0
0 −1

)
, m(z) ≡ 1√

2

(
mx(z) − imy(z)
mx(z) + imy(z)

)
.

L is a thickness of the film, ωH ≡ γH0, ωM ≡ γMs, and γ is
the gyromagnetic ratio. Ĝ(z,z′) is the 2 × 2 complex-valued
matrix of the Green’s function, which comes from the magnetic
dipole-dipole interaction:

Ĝ(z,z′) = −1

2
GP (z,z′)

(
1 e−2iϕ

e2iϕ 1

)
, (39)

GP (z,z′) = k

2
exp(−k|z − z′|). (40)

ϕ specifies a direction of the wave vector k as k ≡
k(cos ϕ, sin ϕ). This integral equation includes the Landau-
Lifshitz equation d M/dt = −γ (M × H) (here we do not
take into account the damping term), Maxwell equation in
the magnetostatic limit ∇ × H = 0, ∇ · B = 0, and the usual
boundary conditions for H and B. By assuming the form of
the magnetic potential of the inside and outside of the thin
film in the conventional way [33,35], Eq. (38) gives a band
structure ωnk, where n denotes the band index.

Equation (38) is nothing but a generalized eigenvalue
problem, ∫

dz′H k
z,z′ mnk = σ3ωnkmnk, (41)

H k
z,z′ ≡ ωHδ(z − z′) − ωMĜ(z,z′), (42)

where mnk is the nth eigensolution with its eigenfrequency be-
ing ωnk. In the present case, H k

z,z′ = σ1(H−k
z,z′ )∗σ1 holds, which

is equivalent to Eq. (36). This leads to
∫

dz′H k
z,z′ (σ1m∗

n,−k) =
−σ3ωn,−k(σ1m∗

n,−k). Including these counterparts in the hole
space, Eq. (41) more generally takes the following form:∫

dz′H k
z,z′Tz′ = σ3TzẼ, (43)

Tz ≡ (
m1,k · · · mN,k σ1m∗

1,−k · · · σ1m∗
N,−k

)
, (44)

Ẽ ≡
(

Ek

−E−k

)
, (45)

Ek ≡

⎛
⎜⎝

ω1,k

. . .

ωN,k

⎞
⎟⎠ , (46)

with a normalization condition∫
dzT †

z σ3Tz = σ3.

Here the number of eigenmodes should be bounded, N < ∞,
by the exchange interaction length lex. Namely, for a larger
mode index n, the corresponding wave function mnk has many
nodes along the z direction, where the short-range exchange
interaction becomes more relevant than the dipole-dipole
interaction in the Landau-Lifshitz equation. On the other hand,
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Eq. (38) ignores the short-range interaction from the outset,
so that the usage is limited for those eigenmodes, which have
nodes along the z direction much less than L/lex.

Now we calculate the thermal Hall conductivity of the
ferromagnetic film. The Berry curvature for the MSFVW mode
is given as [12]


nk = 1

2ωH

1

k

∂ωnk

∂k

(
1 − ω2

H

ω2
nk

)
· (σ3)nn, (47)

whose behavior as a function of k is shown in Ref. [12]. With
Eqs. (32) and (47), the thermal Hall conductivity κxy of the
ferromagnetic film is derived as follows:

κxy = − πk2
BT

(2π )2�ωH

N∑
n=1

∫ √
ωH (ωM+ωH )

ωH

dωnk

×
{
c2[g(�ωnk)] − π2

3

}(
1 − ω2

H

ω2
nk

)
. (48)

Here we note that all energy bands of the MSFVW mode begin
from ωH at k = 0 and approach

√
ωH (ωM + ωH ) at k → ∞

[33]. To show the results in a universal way, we introduce
the following dimensionless parameters: κ̃xy ≡ κxy/( kBωMN

4π
),

r ≡ H0/Ms denoting a ratio between the internal magnetic
field H0 and saturation magnetization Ms, and u ≡ kBT /�ωM

denoting a ratio between the temperature and the saturation
magnetization. N is an upper bound of n. By using these
parameters, Eq. (48) is rewritten as

κ̃xy = −u

r

∫ √
r(1+r)

r

dx

[
c2

(
1

ex/u − 1

)
− π2

3

](
1 − r2

x2

)
.

(49)

κ̃xy converges to zero in the zero-temperature limit. However,
in most realistic cases, u � r holds true (e.g., when T = 300
K and H0 = 1 T in YIG film, u/r = kBT /�ωH = 1.5 × 105),
so that Eq. (49) is approximated to

κ̃xy � 1

2
− r

2
ln

(
1 + 1

r

)
. (50)

This shows that the thermal Hall conductivity via the MSFVW
seldom depends on the temperature. Figure 1 shows a plot of
Eq. (50). It is easily shown that κ̃xy → 1/2 when r → 0 and
κ̃xy → 0 when r → ∞.

The magnitude of the thermal Hall conductivity via the
MSFVW is determined not only by the ratios among saturation
magnetization, internal static field, and temperature, but also
by the ratio between the exchange length lex and thickness of
the film L. Namely, when the wavelength in the direction
normal to the film becomes shorter than exchange length
lex, spin-wave bands are mainly determined by the short-
range exchange interaction, where no finite Berry curvature
is expected. Since the nth spin-wave band obtained from
Eq. (38) has n nodes along the z direction [34], the upper
bound of n should be roughly estimated as N = L/lex, where
lex = 1.72 × 10−8 m for YIG film. A typical value for a film
much thicker than lex is κxy/L = 5.9 × 10−8 W/Km, where
parameters are set as γ = 2.8 MHz/Oe, Ms = 1750 G, T =
300 K, Hex = 3000 Oe. It is almost temperature independent
above �ωH /kB ∼ 27 mK.

FIG. 1. (Color online) Dependence of the thermal Hall con-
ductivity on a magnetic field. κ̃xy ≡ κxy/( kBωMN

4π
) and r ≡ H0/Ms

denote a dimensionless thermal Hall conductivity and magnetic field,
respectively. r = 0 (H0 = 0) corresponds to the field at the saturation
field; Hex = Ms . The inset shows a geometry of the thermal Hall
effect via the MSFVW mode.

At a glance, one may think it strange that the thermal Hall
conductivity is almost independent of the temperature because
more and more magnons are excited as the temperature
increases. This arise from the energy scale of magnons,
as we see below. First, in Eq. (48), we assumed that the
spectrum of the spin wave is bounded at the maximum value√

ωH (ωM + ωH ). This value is in the range of gigahertz, which
is much less than 1 K. This means that there are a number of
magnons and g(ε) → ∞ even at T = 1 K. Thus, even if the
temperature increases in an energy scale much higher than the
characteristic energy scale of magnons, the resulting increase
of the magnon number is much smaller than the total magnon
number already excited, and barely affects the thermal Hall
conductivity. Furthermore, when we take into account the
exchange interaction, magnons with higher energy do not
contribute to the thermal Hall conductivity. This is because
the exchange coupling does not give rise to a nonzero Berry
curvature.

V. CONCLUSIONS

We derived the thermal current operator and thermal
Hall conductivity for magnons described by the general
noninteracting boson Hamiltonian. κxy is expressed by the
Berry curvature in the momentum space. We applied our
theory to the magnetostatic spin wave in YIG and clarified the
dependence of the thermal Hall conductivity on temperature
and magnetic field. The present theory also can be widely
applied to magnons described by the noninteracting boson
Hamiltonian. This includes magnons in ferromagnets with
DM interactions or dipolar interactions, as well as magnons
in ferrimagnets and antiferromagnets with noncollinear or
noncoplanar spin structures. It is also applicable to other
bosonic systems such as phonons or photons, as long as their
Hamiltonian is given by a noninteracting boson Hamiltonian.
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APPENDIX A: DERIVATION OF THERMAL
CURRENT OPERATOR jQ

Here we derive the thermal current operator in Eqs. (18)–
(20) from the continuity equation

ḣT + ∇ · jQ(r) = 0. (A1)

We consider a lattice model for simplicity. The Hamiltonian is
expressed as Eq. (1),

H = 1

2

∑
r

�†(r)H0�(r), (A2)

where

H0 =
∑

δ

Hδe
i p̂·δ, (A3)

Hδ =
(

hδ �δ

�∗
δ ht

−δ

)
, (A4)

�i(r) =
{

βi(r) (i = 1, . . . ,N)

β
†
i−N (r) (i = N + 1, . . . ,2N ),

(A5)

[βi(r),β†
j (r ′)] = δij δr,r ′ , (A6)

and N is the number of degrees of freedom within the unit cell
(e.g., sublattice and orbital degrees of freedom). Here, hδ and
�δ represent hopping terms between sites belonging to unit
cells apart by δ with a translation operator:

ei p̂·δβi(r) = βi(r + δ). (A7)

H0 is a Hermitian operator so that Hδ satisfies

H
†
δ = H−δ. (A8)

Thanks to the bosonic commutation relations, Hδ satisfies

σ1Hδσ1 = Ht
−δ, (A9)

where σ1 is defined as

σ1 =
(

0 1N×N

1N×N 0

)
. (A10)

Note that Eq. (A5) satisfies the following commutation
relations:

[�i(r),�†
j (r ′)] = (σ3)ij δr,r ′ , (A11)

[�†
i (r),�†

j (r ′)] = −i(σ2)ij δr,r ′ , (A12)

[�i(r),�j (r ′)] = i(σ2)ij δr,r ′ , (A13)

with

σ2 =
(

0 −i1N×N

i1N×N 0

)
, (A14)

σ3 =
(

1N×N 0
0 −1N×N

)
. (A15)

Under a pseudogravitational potential χ , the total Hamiltonian
is written as

HT =
∑

r

hT(r), (A16)

where hT(r) is a Hamiltonian density operator

hT(r) ≡ 1
2 �̃†(r)H0�̃(r), (A17)

with �̃(r) ≡ (1 + χ

2 )�(r). Now the continuity equation leads
to

ḣT(r) = i

�
[HT,hT(r)] = i

4�
{[HT,�̃†(r)]H0�̃(r) + �̃†(r)[HT,H0�̃(r)] + H.c.}

= i

8�

⎧⎨
⎩

∑
δ,δ′

�̃†(r + δ)σ1H
t
δ (−iσ2)

[
1 + χ (r)

2

]2

Hδ′�̃(r + δ′) + �̃†(r − δ)Hδσ3

[
1 + χ (r)

2

]2

Hδ′�̃(r + δ′)

− �̃†(r)Hδσ3

[
1 + χ (r + δ)

2

]2

Hδ′�̃(r + δ + δ′) + �̃†(r)Hδ(−iσ2)

[
1 + χ (r + δ)

2

]2(
Ht

δ′
)
σ1�̃(r + δ − δ′) + H.c.

⎫⎬
⎭

= i

4�

∑
δ,δ′

∑
μ=x,y

{
∇μ

[
δμHδ�̃(r + δ)

]†
σ3

[
1 + χ (r)

2

]2

Hδ′�̃(r + δ′) + H.c.

}
. (A18)

In Eq. (A18), we have used �̃(r) = σ1�̃
†(r) and �̃†(r) = σ1�̃(r). In terms of a velocity operator Vμ,

Vμ ≡ 1

i�
[xμ,H0] = i

�

∑
δ

δμHδe
i p̂·δ, (A19)

one obtains the thermal current operator jQ
μ (r) from Eq. (A18),

jQ
μ (r) = 1

4
�†(r)

[
1 + χ (r)

2

]{
Vμσ3

[
1 + χ (r)

2

]2

H0 + H0

[
1 + χ (r)

2

]2

σ3Vμ

}[
1 + χ (r)

2

]
�(r). (A20)

By using a relation χ (r) = r · ∇χ and expanding (A20) in terms of ∇χ , one obtains Eqs. (19) and (20).
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APPENDIX B: FOURIER TRANSFORMATION

The Hamiltonian is defined in Eqs. (A2)–(A6) and the Fourier transformation is introduced as Eqs. (2) and (3). Substituting
these equations into Eq. (A2), one obtains the Fourier transformation of the Hamiltonian in Eq. (4) with Hk ≡ ∑

δ Hδe
ik·δ .

Similarly, one can obtain the Fourier transformation of the total thermal current operators from Eqs. (19) and (20),

J
Q
0,μ ≡

∫
d rjQ

0,μ(r) = 1

4

∑
k

�
†
k(Vk,μσ3Hk + Hkσ3Vk,μ)�k, (B1)

J
Q
1,μ ≡

∫
d rjQ

1,μ(r) = − i

8
∇νχ

∑
k

�
†
k(Vk,μσ3Vk,ν − Vk,νσ3Vk,μ)�k + 1

8
∇νχ

∑
k

[�†
k(xνVk,μσ3 + 3Vk,μσ3xν)Hk�k

+�
†
kHk(3xνσ3Vk,μ + σ3Vk,μxν)�k], (B2)

where Vk,μ ≡ ∑
δ

i
�
δμHδe

ik·δ = 1
�

∂Hk
∂kμ

and

�i,k =
{

βi,k (i = 1, . . . ,N)

β
†
i−N,−k (i = N + 1, . . . ,2N ).

(B3)

By using the basis defined in Eq. (6), one can rewrite the bosonic field operator �k as

�i,k =
N∑

n=1

(Tk)inγnk +
N∑

n=1

(Tk)i,n+Nγ
†
n,−k, (B4)

�
†
i,k =

N∑
n=1

(T †
k )niγ

†
nk +

N∑
n=1

(T †
k )n+N,iγn,−k. (B5)

These equations are useful to calculate the thermal transport coefficients Sμν and Mμν .

APPENDIX C: CALCULATION OF Sμν

In this section, we show how to calculate Eq. (26). It is written as

Pμν(i
) = − 1

16

∫ β

0
dτei
τ

∑
k,k′

〈Tτ [�†
k(τ ′ + τ )Xk,μ�k(τ ′ + τ )�†

k′(τ ′)Xk′,ν�k′ (τ ′)]〉

= − 1

16

∫ β

0
dτei
τ

∑
k,k′

(Xk,μ)α,β(Xk′,ν)γ,δ[〈Tτ�
†
α,k(τ ′ + τ )�δ,k′(τ ′)〉〈Tτ�β,k(τ ′ + τ )�†

γ,k′(τ ′)〉

+ 〈Tτ�
†
α,k(τ ′ + τ )�†

γ,k′(τ ′)〉〈Tτ�β,k(τ ′ + τ )�δ,k′(τ ′)〉 + 〈Tτ�
†
α,k(τ ′ + τ )�β,k(τ ′ + τ )〉〈Tτ�

†
γ,k′(τ ′)�δ,k′(τ ′)〉],

(C1)

where 
 = 2πn/β, n ∈ Z, Tτ is a time-ordering operator, and Xk,μ ≡ Vk,μσ3Hk + Hkσ3Vk,μ. The last term in the right-hand
side of Eq. (C1) does not contribute since it cancels out via integration over τ . The remaining contraction, for example
〈Tτ�

†
α,k(τ ′ + τ )�δ,k′(τ ′)〉, is calculated as follows:

〈Tτ�
†
α,k(τ ′ + τ )�δ,k′(τ ′)〉 =

N∑
n=1

[(T †
k )n,α(Tk)δ,ne

τεnkg(εnk) − (T †
k )n+N,α(Tk)δ,n+Ne−τεn,−kg(−εn,−k)]. (C2)

We have used relations

〈γ †
n,kγm,k〉 = δn,mg(εnk), 〈γn,kγ

†
m,k〉 = −δn,mg(−εnk). (C3)

By integrating over τ in Eq. (C1), we get Eq. (27).

APPENDIX D: DERIVATION OF THERMAL TRANSPORT COEFFICIENT Lμν

Here we calculate the thermal transport coefficient. It consists of two parts:〈
J Q

μ

〉 = 〈
J

Q
0,μ

〉 + 〈
J

Q
1,μ

〉 ≡ −(Sμν + Mμν)∇νχ, (D1)

where Sμν and Mμν are written as Eqs. (27) and (28), respectively. The total thermal transport coefficient is obtained by Lμν =
Sμν + Mμν . In the following, we first separate the coefficients into two parts, respectively, to avoid complexity: Sμν = S(1)

μν + S(2)
μν
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and Mμν = M (1)
μν + M (2)

μν . Here, the sum S(2)
μν + M (2)

μν cancels out and thus what we should calculate are the remaining parts. Next
we calculate M (1)

μν in the same manner as Smrčka and Středa [16]. Finally, we obtain Lμν , which is expressed by the Berry
curvature in momentum space 
nk.

Now we start the calculation. Using the relation (εnk ∓ εmk)2 = (εnk ± εmk)2 ∓ 4εnkεmk in Eq. (27), we decompose Sμν as
Sμν = S(1)

μν + S(2)
μν , which corresponds to ∓4εnkεmk and (εnk ± εmk)2, respectively. Mμν is also decomposed as Mμν = M (1)

μν +
M (2)

μν , where M (1)
μν denotes the term containing T

†
k (xνVk,μ + Vk,μxν)Tk in Eq. (28). Then one finds that Sμν and Mμν cancel out

partially, S(2)
μν + M (2)

μν = 0 and thus Lμν = S(1)
μν + M (1)

μν . The remainder, S(1)
μν and M (1)

μν , are written, respectively, as follows:

S(1)
μν = − i

2

2N∑
n,m=1

∑
k

(
(T †

k Vk,μTk)nm

{
(Ek)nnEk

[(σ3Ek)nn − Ekσ3]2

}
mm

(T †
k Vk,νTk)mn[g(σ3Ek)]nn

)
− (μ ↔ ν)

= − i

2

∑
k

∫ ∞

−∞
ηg(η)Tr

{
δ(η − σ3Ek)σ3

[
T

†
k Vk,μTk

Ek

(η − σ3Ek)2
T

†
k Vk,νTk

]}
dη − (μ ↔ ν)

= − i

2

∑
k

∫ ∞

−∞
ηg(η)Tr

[
δ(η − σ3Ek)σ3

∂T
†
k

∂kμ

Hk
∂Tk

∂kν

]
dη − (μ ↔ ν), (D2)

M (1)
μν = −1

2

2N∑
n=1

∑
k

[T †
k (xνVk,μ + Vk,μxν)TkEkg(σ3Ek)]nn = −1

2

∑
k

∫ ∞

−∞
ηg(η)Tr[σ3(xνVk,μ − xμVk,ν)δ(η − σ3Hk)]dη. (D3)

In Eq. (D2), we have used the relation T
†
k σ3Tk = σ3 and T −1

k f (σ3Hk)Tk = f (σ3Ek), where f (x) is an arbitrary function. The term
{ (Ek)nnEk

[(σ3Ek)nn−Ekσ3]2 }mm means εnkεm,−k

(εnk+εm,−k)2 for 1 � n � N and N + 1 � m � 2N , for example. Here we also present the expression

for M (2)
μν = −S(2)

μν , although it does not affect the following calculation due to the cancellation:

M (2)
μν = −S(2)

μν = i

8

N∑
n,m=1

∑
k

[g(εnk)(T †
k Vk,μTk)nm(T †

k Vk,νTk)mn − g(εnk)(T †
k Vk,μTk)n,m+N (T †

k Vk,νTk)m+N,n

− g(−εn,−k)(T †
k Vk,μTk)n+N,m(T †

k Vk,νTk)m,n+N + g(−εn,−k)(T †
k Vk,μTk)n+N,m+N (T †

k Vk,νTk)m+N,n+N ] − (μ ↔ ν) (D4)

= − i

8

∑
k

∫ ∞

−∞
dη̃Tr

[
δ(η̃ − σ3Ek)σ3

∂T
†
k

∂kμ

(σ3η̃
2 − 2η̃Hk + Hkσ3Hk)

∂Tk

∂kν

]
g(η̃) − (μ ↔ ν). (D5)

Here we have completed the calculation of S(1)
μν . In the following, we further calculate M (1)

μν to express it in terms of the
spin-wave dispersion εnk and the paraunitary matrix Tk. We follow Smrčka and Středa [16] to introduce the two functions Aμν(η)
and Bμν(η) as

Aμν(η) ≡ iTr

[
σ3Vk,μ

dG+

dη
σ3Vk,νδ(η − σ3Hk) − σ3Vk,μδ(η − σ3Hk)σ3Vk,ν

dG−

dη

]
, (D6)

Bμν(η) ≡ iTr[σ3Vk,μG+σ3Vk,νδ(η − σ3Hk) − σ3Vk,μδ(η − σ3Hk)σ3Vk,νG
−], (D7)

where G± is defined as G± ≡ 1
η±i0−σ3Hk

. They obey the following identity:

Aμν(η) − 1

2

dBμν(η)

dη
= 1

4π
Tr[σ3Vk,μ(G+)2σ3Vk,νG

+ − σ3Vk,μ(G−)2σ3Vk,νG
−] − (μ ↔ ν)

= i

4π
Tr[xμG+σ3Vk,νG

+ − xμ(G+)2σ3Vk,ν − xμG−σ3Vk,νG
− + xμ(G−)2σ3Vk,ν] − (μ ↔ ν)

= 1

4πi
Tr{xμ[(G+)2 − (G−)2]σ3Vk,ν} − (μ ↔ ν)

= −1

2
Tr

[
σ3(xνVk,μ − xμVk,ν)

d

dη
δ(η − σ3Hk)

]
. (D8)

To see this, we have used the relations G+ − G− = −2πiδ(η − σ3Hk) and Vk,μ = i[xμ,σ3(G±)−1]. We now integrate Eq. (D8)
to obtain

Tr[σ3(xνVk,μ − xμVk,ν)δ(η − σ3Hk)] = 2
∫ ∞

η

dη̃

[
Aμν(η̃) − 1

2

dBμν(η̃)

dη̃

]
= −2

∫ η

−∞
dη̃

[
Aμν(η̃) − 1

2

dBμν(η̃)

dη̃

]
, (D9)
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where the magnon spectrum is supposed to be bounded. The last equality in Eq. (D9) is based on the following identity:∫ ∞

−∞
dη̃

[
Aμν(η̃) − 1

2

dBμν(η̃)

dη̃

]
= i

∫ ∞

−∞
Tr

[
σ3Vk,μ

dG+

dη̃
σ3Vk,νδ(η̃ − σ3Hk) − σ3Vk,μδ(η̃ − σ3Hk)σ3Vk,ν

dG−

dη̃

]
dη̃

= −i

∫ ∞

−∞

2N∑
n=1

(σ3)nnδ[η̃−(σ3Ek)nn]

{
T

†
k Vk,μTk

1

[(σ3Ek)nn−σ3Ek]2
σ3T

†
k Vk,νTk

}
nn

dη̃ − (μ ↔ ν)

= −i

∫ ∞

−∞
Tr

[
δ(η̃ − σ3Ek)σ3

∂T
†
k

∂kμ

σ3
∂Tk

∂kν

]
dη̃ − (μ ↔ ν) = −

2N∑
n=1


nk = 0. (D10)

Here 
nk is a Berry curvature in momentum space,


nk ≡ iεμν

[
σ3

∂T
†
k

∂kμ

σ3
∂Tk

∂kν

]
nn

, (D11)

which can be naturally defined in terms of a projection operator [17,36]. In fact, the Berry curvature thus introduced satisfies the
following sum rule, which was used in Eq. (D10):

2N∑
n=1


nk = iTr

[
σ3

∂T
†
k

∂kμ

σ3
∂Tk

∂kν

− (μ ↔ ν)

]
= iTr

[
σ3

∂T
†
k

∂kμ

σ3Tkσ3T
†
k σ3

∂Tk

∂kν

− (μ ↔ ν)

]

= −iTr

[
σ3T

†
k σ3

∂Tk

∂kμ

σ3
∂T

†
k

∂kν

σ3Tk − (μ ↔ ν)

]
= −

2N∑
n=1


nk = 0. (D12)

Now we calculate M (1)
μν in Eq. (D3). By using Eq. (D9),

M (1)
μν = −

∑
k

( ∫ ∞

0
dη

∫ ∞

η

dη̃ +
∫ 0

−∞
dη

∫ −∞

η

dη̃

)
ηg(η)

[
Aμν(η̃) − 1

2

dBμν(η̃)

dη̃

]

= −
∑

k

∫ ∞

−∞
dη̃

[
Aμν(η̃) − 1

2

dBμν(η̃)

dη̃

]
·
∫ η̃

0
ηg(η)dη = i

∑
k

∫ ∞

−∞
dη̃Tr

[
δ(η̃ − σ3Ek)σ3

∂T
†
k

∂kμ

σ3
∂Tk

∂kν

]
·
∫ η̃

0
ηg(η)dη

− i

2

∑
k

∫ ∞

−∞
dη̃Tr

[
δ(η̃ − σ3Ek)σ3

∂T
†
k

∂kμ

σ3(η̃ − σ3Hk)
∂Tk

∂kν

]
η̃g(η̃) − (μ ↔ ν). (D13)

Finally, from Eqs. (D2) and (D13), the total thermal transport coefficient Lμν is calculated as follows:

Lμν = S(1)
μν + M (1)

μν = i

2

∑
k

∫ ∞

−∞
dη̃Tr

[
δ(η̃ − σ3Ek)σ3

∂T
†
k

∂kμ

σ3
∂Tk

∂kν

][
2
∫ η̃

0
ηg(η)dη − η̃2g(η̃)

]
− (μ ↔ ν)

= −1

2

∑
k

2N∑
n=1

∫ (σ3Ek)nn

0
η2 dg(η)

dη
dη
nk = −

∑
k

N∑
n=1

(kBT )2

{
c2[g(εnk)] − π2

3

}

nk. (D14)

Here, c2(x) is defined in Eq. (33) and we have used c2(∞) = π2/3 in Eq. (D14). These results are identical to Eq. (32).

APPENDIX E: SUM RULE OF THE CHERN INTEGER
OVER ALL PARTICLE BANDS

To show the sum rule for the Chern integer over particle
bands, we follow the argument given in Ref. [17] hence-
forth. We first separate a 2N × 2N bosonic Hamiltonian as
follows:

Hk ≡
(

Ak Bk

B∗
−k A∗

−k

)
= tk12N×2N + Ck, (E1)

where Ck is a traceless part of Hk. We suppose Hk to be
paraunitarily positive definite for any k. This leads to tk > 0.

We introduce a parameter λ as

Hk(λ) = tk12N×2N + λCk,

= (1 − λ)tk12N×2N + λHk, (E2)

with Hk(1) = Hk and Hk(0) = tk12N×2N . While changing λ

from zero to one, Hk(λ) keeps unitarily positive definite for
any k; the eigenvalues of Hk(λ) are the sum of the eigenvalues
of λHk and (1 − λ)tk, both of which are positive.

Being unitarily positive definite, Hk(λ) is also paraunitarily
positive definite [22]. Thus, there always exists a band gap
between particle bands (1 � n � N ) and hole bands (N + 1 �
n � 2N ) during λ = 0 to λ = 1. This guarantees that the sum
of the Chern integer for all positive bands is invariant during
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the interpolation,

N∑
n=1

Cn(λ) = const. (E3)

On the other hand, Eq. (E3) vanishes at λ = 0, which leads to

N∑
n=1

Cn(λ = 1) = 0. (E4)

Namely, provided that Hk is paraunitarily positive definite, the
sum of the Berry curvature over the Brillouin zone (BZ) and
over all particle bands is always zero.

APPENDIX F: RELATION OF THE BERRY CURVATURE
BETWEEN PARTICLE SPACE AND HOLE SPACE

In order to derive the relation given by Eq. (35), we first
study the relation between Tk and T−k. From Eq. (4), the
particle-hole symmetry leads to

Hk = σ1(H−k)tσ1. (F1)

By using the paraunitarity T
†
k σ3Tk = σ3, the eigenvalue prob-

lem [Eq. (7)] is written as

HkTk = σ3Tk

(
Ek

−E−k

)
. (F2)

By the replacement of k → −k and utilizing Eq. (F1), Eq. (F2)
becomes

Hkσ1T
∗
−kσ1 = σ3σ1T

∗
−kσ1

(
Ek

−E−k

)
. (F3)

The equation means that σ1T
∗
−kσ1 also satisfies the

same eigenvalue equation as Tk. Thus, σ1T
∗
−kσ1 can be

expressed as

Tk = σ1T
∗
−kσ1Mk. (F4)

Here, Mk is, in generic situations, a diagonal matrix with
its diagonal elements being a phase factor. Imposing the
paraunitarity onto the right-hand side, one finds that Mk is
an unitary matrix:

M
†
kMk = 12N×2N, (F5)

or, equivalently, (Mk)ij = δij exp[iθj,k]. On the other hand,
applying a replacement k → −k and taking the complex
conjugate of Eq. (F4), one obtains T ∗

−k = σ1Tkσ1M
∗
−k. By

substituting this equation into Eq. (F4) again, one finds

σ1M
∗
−kσ1Mk = 12N×2N, (F6)

which means θj,k = θj+N,−k for 1 � j � N .
Now we investigate the relation between the Berry cur-

vature of the particle space and that of the hole space. It is
convenient to introduce a gauge field Aν

n,k as

Aν
n,k ≡ iTr(�nσ3T

†
k σ3∂kν

Tk), (F7)

where (�n)ij ≡ δij δin. Then, Eq. (F4) leads to

Aν
n,k = −iTr

[
∂kν

(
Mt

kσ1T
†
−k

)
σ3T−kσ1M

∗
kσ3�n

]
= iTr

[
�n

(
∂kν

Mt
k

)
M∗

k

] − iTr[�n+NT
†
−kσ3∂kν

T−kσ3]

= −∂kν
θn,k + Aν

n+N,−k, (F8)

where we used a relation (∂kν
T

†
k )σ3Tk + T

†
k σ3(∂kν

Tk) = 0.
Because the gauge field generates the Berry curvature as

nk = ∂kx

A
y

n,k − ∂ky
Ax

n,k, the Berry curvature of the hole
space 
n+N,k is related to that of the particle space as


n,k = −
n+N,−k. (F9)

[1] F. Bloch, Z. Phys. 61, 206 (1930).
[2] C. Kittel, Phys. Rev. 73, 155 (1948).
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