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Experiments on spin torque oscillators commonly observe multimode signals. Recent theoretical works have
ascribed the multimode signal generation to coupling between energy-separated spin wave modes. Here, we
analyze in detail the dynamics generated by such mode coupling. We show analytically that the mode-hopping
dynamics broaden the generation linewidth and makes it generally well described by a Voigt line shape.
Furthermore, we show that the mode-hopping contribution to the linewidth can dominate, in which case it
provides a direct measure of the mode-hopping rate. Due to the thermal drive of mode-hopping events, the
mode-hopping rate also provides information on the energy barrier separating modes and temperature-dependent
linewidth broadening. Our results are in good agreement with experiments, revealing the physical mechanism
behind the linewidth broadening in multimode spin torque oscillators.
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I. INTRODUCTION

Nanoscopic excitation of high-amplitude magnetization
dynamics has recently emerged due to the discovery of the
spin-transfer torque (STT) effect and advances in nanofab-
rication [1,2]. STT describes the momentum transfer from
spin-polarized electrons to a local magnetization and therefore
provides a direct coupling between dc charge currents and
magnetization dynamics. Depending on external conditions,
a rich variety of physical phenomena with technologically
interesting outcomes are possible, including different modes
of spin wave generation [3–8], vortex gyration [9–12], and
the nucleation and manipulation of magnetic droplet solitons
[13–16]. Regardless of the particular magnetization dynamics,
devices where a stable oscillatory state can be achieved
are generally referred to as spin torque oscillators [17,18]
(STOs) and are typically composed of two ferromagnetic
layers decoupled by a nonmagnetic spacer (although recent
studies also report on STOs based on single ferromagnet layers
[19]). STOs are engineered to enforce magnetization dynamics
in one of the ferromagnetic layers (the “free” layer), whereas
the second layer (the “fixed” layer) acts both as a polarizer and
a reference to probe the dynamics via magnetoresistive effects
[20–25].

STOs have been traditionally regarded as single-mode
oscillators [26,27] based on the mode selection imposed by the
balance of STT and magnetic damping as well as the survival
of the mode with the lowest threshold. However, recent
experiments have shown multimode generation in a large
variety of geometries [28–30], revealing evidence of mode
hopping [31–33], periodic mode transitions [5,7], and even
coexistence [8]. Furthermore, such a multimode generation
leads to broader linewidths ascribed to the reduction of the
magnetization dynamics coherence. In order to understand
the underlying physics of these observations, a multimodal
theoretical description is required.

*ezio.iacocca@physics.gu.se

A first step towards this goal was recently proposed
[32–34] by extending the Slavin-Tiberkevich auto-oscillator
theory [27] for two coupled modes. The general form of
such an extension was found to agree with the equations
describing multimode ring lasers [35,36] and thus support
mode hopping. However, the model equations remained
qualitative and their relation to experimental observables was
not explored. Here, we investigate multimode STOs with a
goal to quantitatively describe their generation linewidth and
thus provide a direct connection with experimental quantities,
revealing the underlying physical mechanism driving the
dynamics.

A central result of this paper is the derivation of the
expected linewidth of a two-mode oscillator in a mode-
hopping regime. We show that the linewidth is enhanced
by multimode generation and is described by a Voigt line
shape. Mode-hopping events can be described by a Poisson
process, providing a purely Lorenztian contribution to the
linewidth which dominates at high mode-hopping rates.
Such rates are well described by an Arrhenius distribu-
tion, providing information on the energy barrier between
the modes and furthermore explaining temperature-driven
linewidth broadening. The presented results offer means to
experimentally access previously unexplored features of STOs
and directly connect experiments with parameters in the
theory.

II. MULTI-MODE ANALYTICAL FRAMEWORK

The multimode model equations introduced in Ref. [32]
originate from first-principle calculations by considering,
e.g., two stable modes coupled by scattering processes in a
magnon bath [37]. As a consequence, additional damping,
torque, and coupling terms arise. Here, we further incorporate
thermal fluctuations following the scheme of Ref. [27], where
f̃ = f R + if I is a Gaussian distributed perturbation with
real and imaginary components and second moment given
by 〈f̃ (t)f̃ (t ′)〉 = pi�ωδ(t − t ′), where pi is the power of the
ith mode and �ω is the (linear) STO generation linewidth
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derived from the Slavin-Tiberkevich framework. Performing
some algebra (Appendix A), the coupled equations can be cast
in terms of the variables θ and ψ which map, respectively,
the modes’ energy and their phase difference onto a two-
dimensional phase space
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Here, the total power p = p1 + p2 is enforced to
be constant, given that p1 = p cos2 (θ/2 + π/4), p2 =
p sin2 (θ/2 + π/4), and the condition |θ | � π/2 is satis-
fied. The coefficients Q̄i and Q̄0 are the diagonal and
off-diagonal damping terms, whereas P̄i and P̄0 are the
diagonal and off-diagonal STT terms. They are related to the
auto-oscillator terms as �+(pi) = �G(1 + Q̄ipi + Q̄0pj ) and
�−(pi) = ξ�G(1 − P̄ipi − P̄0pj ), where i,j are indices for
each of the two modes, ξ = Idc/Ith is the supercriticality,
Idc is the bias current, Ith is the threshold current for auto-
oscillations, �G = αωo, α is the Gilbert damping, and ωo is the
ferromagnetic resonance (FMR) frequency. A coupling term
is included as a complex factor Keiφc , with amplitude and
phase K and φc, respectively. As we see below, these terms
determine the multimode dynamics and impact the generation
linewidth.

Despite the algebraic complexity of Eq. (1), two limiting
cases are readily obtained when the thermal fluctuations are
neglected (Appendix B). A single mode exists when θ = ±π/2
and K → 0, i.e., the coupling between modes is negligible
[Fig. 1(a)]. Note that ψ diverges in this limit since a phase
difference cannot be defined. From linear stability analysis
(Appendix B) we find that the modes are independently
stable if Q̄i + ξP̄i < Q̄0 + ξP̄0. On the other hand, periodic
mode transition and coexistence are possible when K > 0.
Linear stability analysis (Appendix B) demonstrates that each
scenario depends on the coupling phase φc, as indicated in
Fig. 1(c). Between the two limiting cases described above,
near-single modes and coexistence are possible [Fig. 1(b)].

FIG. 1. (Color online) Phase spaces spanned by θ and ψ for
(a) K = 0: single mode; (b) K = 0.2: near-single modes and co-
existence; and (c) K = 1: coexistence and periodic mode transitions.
For the case K = 0.2, the basins of attraction are shown for (d) φc = 0
and (e) φc = π/2. In the latter, the spiral feature is reminiscent of a
particle with friction in a double potential well.

The near-single-mode scenario is of particular interest since
each mode has a finite energy leading to thermally driven
mode hopping, as we show below. Furthermore, the basin of
attraction becomes strongly dependent on φc, as shown in
Figs. 1(d) and 1(e) when φc = 0 and φc = π/2. In the latter
case, the spiral feature is reminiscent of a particle with friction
in a double potential well [38], i.e., two stable modes separated
by an energy barrier. In the following, we set φc = π/2 in order
to favor a mode-hopping scenario between two near-single
modes.

A typical time-trace exhibiting thermally driven mode
hopping is shown in Fig. 2(a), where K = 0.3, and we assume
parameters consistent with the STO used in Ref. [33]. Such a
device consists of a 4.5-nm-thick Permalloy free layer with
saturation magnetization μoMS ≈ 0.88 T, exchange length
λex = 5 nm, and α = 0.01. An external field μoHa = 1 T
is applied at 80 deg with respect to the Permalloy film
plane. Whereas the current in Ref. [33] was confined to flow
perpendicular to the plane by patterning an elliptical 50 nm ×
150 nm nanocontact, we here, for simplicity, assume a circular
nanocontact of radius Rc ≈ 40 nm, which has a similar effec-
tive current-carrying area with an assumed supercriticality ξ ≈
1.1. In the two-mode oscillator framework, such parameters
are mapped to ωo/2π = 11.94 GHz, p ≈ 0.017, Q̄ ≈ 4.6ω,
P̄ ≈ ω, �G/2π ≈ 120 MHz, N0/2πω ≈ 68 GHz, ω/2π ≈
13.13 GHz, and �ω/2π = 0.6 MHz. These parameters agree
fairly well with the near-threshold generation of the real device.
In order to complete the analytical description, we assume
parameters for the off-diagonal terms Q̄0 = 2Q̄ and P̄0 = 2P̄ ,
providing stability for both modes.

A particular mode-hopping event is indicated by the black
box in Fig. 2(a) and detailed in Fig. 2(b). In this figure, the
intrinsic relaxation frequency of the STO is also apparent,
related to its strong nonlinear coefficient N0 (Appendix B). On
the other hand, the mechanism for the mode-hopping events
can be clearly illustrated in the (θ,ψ) phase space shown
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FIG. 2. (Color online) (a) Time trace of θ exhibiting mode-
hopping events between ±〈θo〉 (dashed lines, red online). The section
in the black box is detailed in panel (b), where the underlying
relaxation frequency is observed. The inset shows the exponential
distribution of the time difference between mode-hopping events, in
agreement with a Poisson process. (c) Phase space of the time trace (a)
showing that the stable modes (fixed points indicated by black dots)
are thermally driven to mode hop via saddle points (black crosses).

in Fig. 2(c). Here, the hopping between the different stable
fixed points (indicated by black dots) occur via saddle points
(indicated by black crosses). This picture also agrees with the
above-mentioned similarity between this system and a double
potential well.

III. GENERATION LINEWIDTH

The generation linewidth of the resulting dynamics can be
analytically estimated by means of the autocorrelation function
of the two-mode oscillator, defined as

K = 〈[c1(t) + c2(t)][c∗
1(t ′) + c∗

2(t ′)]〉, (2)

where ci = √
pie

iφi is the complex amplitude of each mode,
related to its power pi and phase φi . By manipulating the
phases of each mode, it can be shown that the autocorrelation
depends only on the second moment of the phase difference
ψ (Appendix C), thus providing a tractable expression for
K. Consequently, the problem is reduced to analyzing the
thermally induced behavior of ψ .

To proceed, two vastly different time scales are identified:
(i) the perturbation introduced by thermal fluctuations and
(ii) mode-hopping events. The former has a short time scale
and we assume that the perturbation is small. The latter occurs
as sharp phase jumps on a longer time scale (Fig. 2) and
cannot be analytically obtained from Eq. (1). Consequently, we
incorporate such events as an additional phase parametrized as
a random train of pulses. In the following we derive the second
moment contribution of each fluctuation source.

The perturbations of the phase difference can be estimated
from the linearized coupled equations in phase and power—as
suggested in Ref. [27]—by assuming a well-defined energy
state for each mode, 〈θo〉, as shown by dashed lines in Fig. 2(a).
Performing a lengthy algebraic manipulation (Appendix D),
we can express the power and phase fluctuations as the coupled
set of equations

δ̇p = Cppδp + Cpψδψ + fp, (3a)

˙δψ = Cψpδp + Cψψδψ + fψ, (3b)

where the coefficients are given in Appendix D, and it is
assumed that p = po + δp and ψ = ψo + δψ satisfy the
conditions δp 	 po and δψ 	 ψo.

In general, Eqs. (3) can be solved by the standard method
of variation of parameters, as detailed in Appendix E. Such a
solution leads to second moments proportional to exponential
functions of |τ | = |t ′ − t |. By performing a Taylor expansion
to second order, the self- and cross-correlation second mo-
ments are

〈ψi(t)ψi(t
′)〉 = γL,ii |τ | + γG,ii |τ |2, (4a)

〈ψi(t)ψj (t ′)〉
cos〈θo〉 = γL,ij |τ | + γG,ij |τ |2, (4b)

where the coefficients γL and γG are mode dependent
and are generally functions of the coefficients of Eq. (3)
(Appendix E).

On the other hand, mode-hopping events can be described
by a series of sudden jumps in the phase difference, separated
by random, long time intervals. This description is proper
for a Poisson process [39], which is only described by its
rate, λ. Indeed, the distribution of the relative time between
mode-hopping events is numerically found to agree with an
exponential distribution, as shown in the inset of Fig. 2(b).
Finally, it is known that the second moment of such a process
is simply λ, so the phase difference is enhanced by a factor
−λ|τ |.

By including the two contributions described above into
Eq. (2), we obtain the approximate yet insightful form of the
autocorrelation

2K ∝ (1 − sin〈θo〉)e−γL,ii |τ |e−γG,ii |τ |2e−λ|τ |

+ (1 − sin〈θo〉)e−γL,jj |τ |e−γG,jj |τ |2e−λ|τ |

+ cos〈θo〉(e−γL,ij |τ |e−γG,ij |τ |2 )cos 〈θo〉e−λ|τ |

+ cos〈θo〉(e−γL,ji |τ |e−γG,ji |τ |2 )cos 〈θo〉e−λ|τ |. (5)

Equation (5) is a central result of this paper. Clearly, as the
mode-hopping rate λ increases, there will be a crossover to the
temporal decay of the correlation dominated by decoherence
arising from mode hopping. The resulting line shape is ob-
tained by the Fourier transform of the autocorrelation Eq. (5),
from which the linewidth can be extracted. Each term of the
right-hand side has a similar form, which, after performing
the Fourier transform, leads to a Lorentzian line shape with
a linewidth given by γL,ij + λ, convoluted by a Gaussian
line shape with a linewidth given by 4

√
γG,ij ln2. Such a

convolution is defined as a Voigt line shape. Consequently,
the general line shape obtained from the Fourier transform of
Eq. (5) is expected to be a sum of Voigt functions. Note that the
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FIG. 3. (Color online) (a) Fourier transform of the autocorrela-
tion calculated from the numerical integration of Eq. (3) (black).
Mode-hooping events are included as a Poisson process with a mode-
hopping rate calculated from the numerical solution of Eq. (1) (red
[gray]). The best Voigt fit is shown in blue (gray). (b) Voigt linewidth
as a function of the coupling strength K , obtained from the best fit
of the autocorrelation (black) and including mode-hopping events
(blue [gray]). The analytical estimate is shown by red (gray) squares.
The mode-hopping events dominate the linewidth when K > 0.3. (c)
Experimentally measured linewdith (red [gray] circles) and linewidth
obtained from Eq. (6) (blue [gray] line) with �E = 52 meV extracted
from a single experimental linewidth data point at 303 K. This simple
fit shows a remarkably good agreement with the experimental data
trend as well as its magnitude.

mode-hopping rate λ enhances the linewidth of the Lorentzian
components, contributing to spectral broadening, as observed
experimentally [33]. On the other hand, the Gaussian contri-
bution here arises from the response of Eq. (3), which is found
to relax to zero (Appendix E); i.e., the autocorrelation is lost
after a finite time, leading to statistically independent modes
and thus uncorrelated mode-hopping events. This mechanism
has a different physical origin than the Gaussian line shape that
arises from a high-temperature limit [27] or 1/f noise [40].

IV. NUMERICAL INTEGRATION

Numerically, the line shape predicted from Eq. (5) can be
obtained from the autocorrelation of δψ(t) multiplied by the
Poisson factor with a mode-hopping rate λ estimated from the
time trace of Eq. (1a). Such a line shape is shown in Fig. 3(a)
by the red (gray) line for the parameters given earlier. We
find the best Voigt fit following the approach of Ref. [41], as
shown in the same figure by the blue (gray) line. For the chosen
STO parameters, a single Voigt fit provides a good estimate of
Eq. (5). The fitting procedure can be repeated as a function of
K , from which we obtain the Voigt linewidths, �f (half width

at half maximum), shown in Fig. 3(b) by blue (gray) circles.
These numerical results can be quantitatively compared with
the analytical estimates from Eqs. (5) and (4). For the chosen
parameters, we obtain γG,ii → 0 so that γL,ii provides a good
estimate for the linewidth, shown in Fig. 3(b) by red (gray)
squares. Clearly, the Voigt fit agrees well with the Lorentzian
estimates when K < 0.3, suggesting that the linewidth is
otherwise dominated by mode-hopping, i.e., �f → λ. A
second key result of this paper is that the obtained linewidth
values quantitatively agree with the reference experiment [33]
without any fitting parameters, but instead considering the
mode hopping as the physical mechanism behind linewidth
broadening.

To further test the analytical estimates, we fit the spectrum
of the phase difference autocorrelation shown by black lines
in Fig. 3(a). Multiple Voigt functions can be identified in this
case, in agreement with Eq. (5). In particular, there is a narrow
peak consistent with γL,21 ≈ γG,21 → 0. Note that sidebands
corresponding to the oscillatory relaxation of the system are
observed at about ±80 MHz (indicated by an arrow), which,
together with the large fluctuations, allow us to reliably fit only
two Voigt functions. Independently of these difficulties, the
wider Voigt linewidth [black marks in Fig. 3(b)] is observed
to follow the analytical trend, confirming that the linewidth
enhancement is due to mode-hopping events.

The linewidth enhancement is consistent with the experi-
mental observations close to a mode transition, indicating that
the mode coupling increases in such a regime. Consequently,
the linewidth provides a direct measure of λ. Assuming an
Arrhenius distribution for the mode-hopping rate, it is thus
possible to experimentally obtain information about the energy
barrier, �E, between two near-single modes, e.g., as a function
of the current,

�E(Idc) = kBT log
fa

λ
, (6)

where kB is the Boltzmann constant, T is the temperature,
and we assume that the attempt frequency fa = 160 MHz
corresponds to twice the intrinsic relaxation frequency since
the phase space is π/2 periodic in θ . Equation (6) reveals that
an exponential linewidth broadening is expected as a function
of T −1 near a mode transition, in contrast to single-mode
predictions [27]. Indeed, by estimating �E = 52 meV from a
single experimental data point at 303 K (Appendix F), we
obtain the correct linewidth trend by simple evaluation of
the Arrhenius equation [Fig. 3(c)]. A better fit would involve
possible changes in the fixed point position as a function of
temperature [42] and temperature dependence of the coupling
term [37]. However, these details are outside the scope of the
present paper.

In summary, we have presented an analytical description of
the generation linewidth of a multimode STO, based on a mul-
timode theory [32–34]. The model equations demonstrate that
mode-hopping events can dominate the generation linewidth
and thus provide the main mechanism behind linewidth
broadening. In particular, our results are in quantitative agree-
ment with current- and temperature-dependent linewidths
observed experimentally. Furthermore, we showed that the
linewidth is dominated by high mode-hopping rates, providing
means to determine the energy barrier separating both modes
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and the mechanism behind temperature-dependent linewidth
broadening. The presented results open up the possibility to
study and determine intrinsic properties of multimode STOs.
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APPENDIX A: DERIVATION OF THE COUPLED
EQUATIONS FROM AUTO-OSCILLATOR THEORY

The auto-oscillator equation [27], taking into account
thermal fluctuations and a coupling term to another oscillator,
can be written as

ċi + iωi(|ci |2)ci + [�+(|ci |2) − �−(|ci |2)]ci

= f̃ (t) + cjKeiφc , (A1)

where the subscripts i and j identify each oscillator, c is
the mode’s complex amplitude, and φ is the mode’s phase.
ω(|ci |2), �+(|ci |2), and �−(|ci |2) are, respectively, the power-
dependent oscillation frequency, damping, and negative damp-
ing. The perturbation term f̃ (t) represents thermal fluctuations
while the coupling term to the j th mode is parametrized
by a strength K and phase φc. For the multimodal model
equations the transformation Q̄2

i = ωi |ci |2 is performed under
the assumption of conserved total power p = p1 + p2 [32]. By
separating real and imaginary parts of Eq. (A1), four coupled
equations are obtained:

Q̇i = Qi�G(ξ − 1)

−Qi�G

[
(Q̄i + ξP̄i)

ωi

Q2
i + (Q̄0 + ξP̄0)

ωj

Q2
j

]

+QjK

√
ωi

ωj

cos(φc + φj − φi) + f R
i , (A2a)

φ̇i = ωo + NQi

ωi

+ K
Qj

Qi

√
ωi

ωj

sin(φc + φj − φi) + f I
i .

(A2b)

Here, �G = αωo, where α is the Gilbert damping and ωo is
the ferromagnetic resonance frequency (FMR); ξ = Idc/Ith is
the supercriticality where Idc is the bias currents and Ith is the
threshold current for auto-oscillations.

Furthermore, energy can be mapped into the variable |θ | �
π/2 by the transformations Q̄1 = √

p cos(θ/2 + π/4) and
Q̄2 = √

p sin(θ/2 + π/4). By scaling Eq. (A2a) by sin θ and
cosθ for each mode, we add Eq. (A2a) to obtain a differential
equation for θ , whereas we subtract Eq. (A2b) to obtain a
differential equation for the phase difference, ψ = φ2 − φ1.

APPENDIX B: LINEAR STABILITY ANALYSIS
OF THE MODEL EQUATIONS

For the linear stability analysis, the Jacobian of the model
Equations (1) is calculated. Consequently, the fixed points
stability is provided by s < 1, where the determinant is

s = Jθ (θ ) + Jψ (ψ)

2
±

[(
Jθ (θ ) − Jψ (ψ)

2

)2

+ Jψ (θ )Jθ (ψ)

]1/2

.

(B1)

For the limit K → 0, Eq. (B1) simply reduces to the mode-
independent stability conditions Q̄i + ξP̄i < Q̄0 + ξP̄0. On
the other hand, when K > 0 the fixed points are given by
θ = nπ and ψ = mπ for n,m = 0,1,2, . . . . The determinant
for this case can be written as

s = Y1 − (−1)n+m2Kβ1

2
±

√
Y 2

1

4
− K2β2

2 − (−1)n+mY2Kβ2,

(B2)

where we use Y1 = �Gp/2[X1ω
−1
1 − X2ω

−1
2 ], Xi = Q̄i −

Q̄0 + ξ (P̄i − P̄0), Y2 = pN0/2[ω−1
1 + ω−1

2 ], β1 = (a−1 +
a) cos φc, β2 = (a−1 + a) sin φc, and a = √

ω1/ω2. In general,
the stable state is observed to be closely related to the coupling
phase, φc. We can further look into two limiting cases. If
φc = π/2, β1 = 0, and β2 �= 0, the determinant of Eq. (B2)
can be imaginary or real for even or odd values of n + m.
Consequently, this case demonstrates the possibility of limit
cycles. On the other hand, if φc = lπ (where l = 0,1,2, . . . ),
β1 = (−1)l(a−1 + a), and β2 = 0, the solutions are always
real. Consequently, coexistent states are stable (unstable) if
n + m + l is even (odd).

APPENDIX C: DERIVATION OF THE
AUTO-CORRELATION FUNCTIONS

The auto-correlation functionK = 〈[c1(t) + c2(t)][c∗
1(t ′) +

c∗
2(t ′)]〉 can be expanded by mapping the complex

amplitudes into the variables θ and ψ . Noting that
ci = √

pie
iψi and introducing the variables � = φ1 +

φ2 and χ = θ/2 + π/4, we can expand the complex
amplitudes to c1 = √

p cos[χ (t)]ei[�(t)−ψ(t)]/2 and c2 =√
p sin[χ (t)]ei[�(t)+ψ(t)]/2. Here, we explicitly write the time

dependencies of the variables. It is assumed that the average
energy of each mode can be parametrized by ±〈θo〉 so that
〈cos[χ (t)]〉 = cos〈χ〉 and 〈sin[χ (t)]〉 = sin〈χ〉. Consequently,
the auto-correlation can be expressed as

K = p cos2 〈χ〉ei�/2〈e−i[ψ(t)−ψ(t ′)]/2〉
p sin2 〈χ〉ei�/2〈ei[ψ(t)−ψ(t ′)]/2〉
p

2
sin 2〈χ〉ei�/2〈e−i[ψ(t)+ψ(t ′)]/2〉

p

2
sin 2〈χ〉ei�/2〈ei[ψ(t)+ψ(t ′)]/2〉. (C1)

Expanding the exponential functions then leads to the
known property for stochastic functions

〈eiψ(t)〉 = e−〈ψ(t)2〉/2. (C2)

054402-5
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Without loss of generality, one can assume t ′ = 0 so that
〈ψ(t ′)2〉 = 〈ψ(t ′)〉2. Consequently, the averages contribute as
an additional proportionality constant whereas the line shape
originates from the form of the second moment 〈ψ(t)2〉. For
the purposes of this paper, the latter provides the relevant
information on the line shape and linewidth, and thus we
neglect the proportionality factors for the analytical discussion
in the main text.

APPENDIX D: DERIVATION OF THE COUPLED
PERTURBED MODEL EQUATIONS

The short time-scale fluctuations can be obtained by
linearizing Eq. (1). This can be achieved directly from Eq. (A2)
by expanding the power and phase as p = po + δp and
ψ = ψo + δψ , where po and ψo are average operating points.
Keeping only the perturbation terms leads to

δ̇p = Cppδp + Cpψδψ + fp, (D1a)

˙δψ = Cψpδp + Cψψδψ + fψ, (D1b)

where the coefficients are given by

Cpp = 2�G(ξ − 1) − po

2
�G

(Q̄1 + ξP̄1)

ω1
(1 − sin〈θo〉)2

− po

2
�G

(Q̄2 + ξP̄2)

ω2
(1 + sin〈θo〉)2

− po

2
�G(Q̄0 + ξP̄0)

(
1

ω1
+ 1

ω2

)
(1 − sin2 〈θo〉)

+K cos〈θo〉
[
a cos(φc + ψ) + 1

a
cos(φc − ψ)

]
,

(D2a)

Cpψ = poK cos〈θo〉
[
a sin(φc + ψ) − 1

a
sin(φc − ψ)

]
,

(D2b)

fp =
√

2po

[
cos

〈
θo

2

〉(
f R

2 + f R
1

) + sin

〈
θo

2

〉(
f R

2 − f R
1

)]
,

(D2c)

Cψp = −N0

2

[
1 + sin〈θo〉

ω2
− 1 − sin〈θo〉

ω1

]
, (D2d)

Cψψ = − K

cos〈θo〉
[

(1 − sin〈θo〉) 1

a
cos(φc − 〈ψ〉)

− (1 + sin〈θo〉)a cos(φc + 〈ψ〉)
]
, (D2e)

fψ = 1

cos〈θo〉

√
2

po

[
cos

〈
θo

2

〉(
f I

2 − f I
1

)

− sin

〈
θo

2

〉(
f I

2 + f I
1

)]
. (D2f)

Note that Eqs. (D2e) and (D2f) diverge if cos〈θo〉 = π/2.
Such a divergency is understandable from the fact that a
purely single-mode oscillation leads to an ill-defined phase
difference.

APPENDIX E: GENERAL SOLUTION OF THE COUPLED
PERTURBED MODEL EQUATIONS

The coupled set of Eqs. (3) can be generally solved by
the method of variation of parameters. By matrix algebra,
one can find the eigenvalues, λ±,i , and the eigenvector matrix
elements ηi with inverse matrix components η′

i for each mode
and solution. Consequently, we can write the temporal solution
for ψ(t) as

ψi(t) = ψo + η12,ie
λ+,i t

∫ t

0
[η′

11,ie
−λ+,i t

′
fp(t ′)

+ η′
21,ie

−λ+,i t
′
fψ (t ′)]dt ′ + η22,ie

λ−,i t

×
∫ t

0
[η′

12,ie
−λ−,i t

′
fp(t ′) + η′

22,ie
−λ−,i t

′
fψ (t ′)]dt ′.

(E1)

From Eq. (E1) it is possible to obtain the self- and
cross-correlation phase difference second moments by simple
integration. Noting that

〈fp(t)fp(t ′)〉 = 4p2�ωδ(t − t ′), (E2a)

〈fψ (t)fψ (t ′)〉 = 4�ω

cos2〈θo〉δ(t − t ′), (E2b)

we obtain the second moments as a function of |τ | = |t ′ − t |

〈ψi(t)ψi(t
′)〉 = Aii

2λ+,i

e−λ+,i |τ | + Bii

2λ−,i

e−λ−,i |τ |

+Cii

e−λ−,i |τ | + e−λ+,i |τ |

λ+,i + λ−,i

, (E3a)

〈ψi(t)ψj (t ′)〉
cos〈θo〉 = Aij

λ+,i + λ+,j

e−λ+,j |τ | + Bij

λ−,i + λ−,j

e−λ−,j |τ |

+ Cij e
−λ−,j |τ | + Cjie

−λ+,i |τ |

λ+,i + λ−,j

, (E3b)

where the coefficients are given by

Aij = 4�ωη12,iη12,j

[
η′

11,iη
′
11,jp

2 + η′
21,iη

′
21,j

cos2 〈θo〉
]
, (E4a)

Bij = 4�ωη22,iη22,j

[
η′

12,iη
′
12,jp

2 + η′
22,iη

′
22,j

cos2 〈θo〉
]
, (E4b)

Cij = 4�ωη12,iη22,j

[
η′

11,iη
′
12,jp

2 + η′
21,iη

′
12,j

cos2 〈θo〉
]
. (E4c)

The exponential function of Eqs. (E3) can be further
expanded to second order in |τ |, from which we obtain the
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Lorentzian and Gaussian coefficients

2γL,ij = Aijλ+,j

λ+,i + λ+,j

+ Bijλ−,j

λ−,i + λ−,j

+ Cijλ−,j + Cjiλ+,i

λ+,i + λ−,j

,

(E5a)

−4γG,ij = Aijλ
2
+,j

λ+,i + λ+,j

+ Bijλ
2
−,j

λ−,i + λ−,j

+ Cijλ
2
−,j + Cjiλ

2
+,i

λ+,i + λ−,j

.

(E5b)

APPENDIX F: ESTIMATE OF THE ENERGY BARRIER
FROM EXPERIMENTAL DATA

In this section we refer to the experimental results obtained
in Ref. [33] for a nanocontact STO. The same reference
experiment was used throughout the main text for the analytical
and numerical calculations. For our analytical estimate, we
assume that the linewidth close to a mode transition can be
fully described by the mode-hopping rate. Such an assumption
implies that the linewidth “floor” obtained from a single-mode
autocorrelation [black marks in Fig. 3(b)] is negligible in the
temperature range of the fit [Fig. 3(c)].

In the reference experiment, the linewidth was determined
as a function of temperature at a bias current, close to a
mode transition of 28.4 mA. For this particular bias current,
a linewidth of 22.2 MHz was experimentally measured at
303 K. From this single data point, we attempt to estimate
the temperature dependence of the linewidth. Assuming the
numerically obtained attempt frequency, fa = 160 MHz, it is
possible to estimate the energy barrier �E ≈ 52 meV at 303 K,
using Eq. (6). The same equation can be used to estimate
the temperature dependence of the linewidth, shown in
Fig. 3(c).

The performed estimate describes semiquantitatively the
experimental results and the agreement is remarkably good
for such a simple estimation. We stress that a the estimate
described above implicitly assumes that the energy barrier
is constant as a function of temperature, which can be an
oversimplification, as discussed in the main text. Indeed, we
observe from experiments that the energy barrier deviates
within 30% as a function of temperature. Consequently, careful
measurements are needed in order to extract �E and λ

reliably, but such an approach is well beyond the scope of this
paper.
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