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Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential
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Silicene, the silicon-based counterpart of graphene with a two-dimensional honeycomb lattice, has attracted
tremendous interest both theoretically and experimentally due to its significant potential industrial applications.
From the aspect of theoretical study, the widely used classical molecular dynamics simulation is an appropriate
way to investigate the transport phenomena and mechanisms in nanostructures such as silicene. Unfortunately, no
available interatomic potential can precisely characterize the unique features of silicene. Here, we optimized the
Stillinger-Weber potential parameters specifically for a single-layer Si sheet, which can accurately reproduce the
low buckling structure of silicene and the full phonon dispersion curves obtained from ab initio calculations. By
performing equilibrium and nonequilibrium molecular dynamics simulations and anharmonic lattice dynamics
calculations with the new potential, we reveal that the three methods consistently yield an extremely low thermal
conductivity of silicene and a short phonon mean-free path, suggesting silicene as a potential candidate for
high-efficiency thermoelectric materials. Moreover, by qualifying the relative contributions of lattice vibrations in
different directions, we found that the longitudinal phonon modes dominate the thermal transport in silicene, which
is fundamentally different from graphene, despite the similarity of their two-dimensional honeycomb lattices.
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I. INTRODUCTION

Graphene, as the first two-dimensional atomic crystal
available to us, possesses extreme mechanical strength, ex-
ceptionally high electrical and thermal conductivities, as well
as many other supreme properties, all of which make it
highly attractive for numerous applications [1]. Inspired by the
prospective properties of graphene, there has been increasing
interest in investigating other two-dimensional honeycomb
lattices, for example, silicene. Actually, silicene—the silicon
counterpart of graphene—also has a two-dimensional structure
that leads to a host of interesting physical and chemical
properties of significant utility [2–5]. In particular, in terms of
thermoelectric application, silicene is even more exciting than
graphene. Graphene has been reported to possess the highest
intrinsic limit of electrical mobility at room temperature [6],
which is a good motivation for thermoelectric applications.
However, the experimentally measured thermal conductivity
of suspended single-layer graphene is reported to be as high
as �(4.84 ± 0.44) × 103 to (5.30 ± 0.48) × 103 W/mK at
room temperature [7], which is almost the highest thermal
conductivity of the existing materials. Although the extremely
high thermal conductivity is useful for heat dissipation in
electronics, it hinders graphene as an efficient thermoelectric
material, because energy conversion efficiency is inversely
proportional to the thermal conductivity. Even worse, the
Seebeck coefficient of graphene is very small due to its
zero band gap [8]. Silicene, however, may be very promising
for thermoelectric energy conversion. First of all, from an
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electronic structure point of view, ab initio calculations suggest
that silicene is equivalent to graphene [9], i.e., the electrical
conductivity of silicene is as high as that of graphene. Second,
in contrast to graphene, silicene has a buckled atomic structure,
leading to a nonzero energy gap and enhanced Seebeck
coefficient [10]. Therefore, there is an urgent demand to
quantify the thermal transport property of silicene.

In addition to thermoelectric applications, silicene, with
supreme electronic properties similar to those of graphene,
has also shown great potential for other applications, such
as nanoelectronics [11–13]. More importantly, compared to
graphene, silicene is more easily integrated with existing
silicon-based electronic devices and technologies.

Experimental studies on the physical properties of silicene
are recent, and many important mechanisms have not been
explored due to the technical challenges for experimental
scientists. From the aspect of theoretical study, the widely
used classical molecular dynamics simulation is an appropriate
way to investigate the transport phenomena and mechanisms in
nanostructures such as silicene. Unfortunately, we found that
no available interatomic potential can precisely characterize
the unique features of silicene, e.g., reproducing the low
buckling structure and the corresponding buckling distance
confirmed by both experiments [14] and ab initio calculations
[15]. Even worse, the widely used Stillinger-Weber (SW)
potential [16] cannot maintain the hexagonal structure of the
single-layer Si sheet. Therefore, it is necessary to develop a
new set of empirical potentials to be used in the molecular
dynamics simulation [17]. Tersoff [18,19] and SW potentials
[16] have been extensively used to investigate the silicon-based
materials, which can be used as candidates for parameter
optimization for silicene. Compared with the Tersoff potential,
the SW potential has a simpler form and fewer parameters to
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FIG. 1. (Color online) Comparison of the crystal structures be-
tween graphene and silicene. (a) Top view and (b) side view of
graphene. (c) Top view and (d) side view of silicene. The graphene
has perfect planar structure, while silicene has a low buckling in
out-of-plane direction (buckling distance indicated by h).

fit, so it is faster and more appropriate for parameter fitting.
Based on the advantages above, we choose the SW potential
model for silicene.

In this paper, we present new SW potential parameters opti-
mized for silicene, which reproduce the buckling structure and
full phonon dispersion curves from ab initio calculations. We
further perform detailed investigations of the lattice thermal
conductivity of silicene using our optimized SW potentials.
In Sec. II, we briefly describe the approach of parameter
optimization and present the optimized SW parameters. In
Sec. III, we report the lattice thermal conductivity of silicene
using the fitted SW parameters by equilibrium molecular
dynamics (EMD) and nonequilibrium molecular dynamics
(NEMD) simulations and by the anharmonic lattice dynamics
(ALD) method. In Sec. IV, we further analyze the contributions
to lattice thermal conductivity from each normal mode and
from different vibrational directions. In Sec. V, we present a
summary and conclusion.

II. PARAMETER OPTIMIZATION

The ab initio calculation is first carried out using the Quan-
tum ESPRESSO package [20]. The Perdew-Zunger [21] local
density approximation is chosen for the exchange-correlation
functional, and the norm-conserving pseudopotential [22] is
used. The calculation is performed with a unit cell containing
two silicon atoms. The height of the cell is larger than 10 Å to
avoid the interaction between different layers. A 16 × 16 × 1 k-
point mesh is used for the Brillouin zone integration. Geometry
optimization is performed until the force on each atom is
smaller than 0.0257 eV/Å (0.001 Ry/Bohr). Here, our ab
initio calculation shows that the bond length is 2.2420 Å, and
the buckling distance is 0.4269 Å, which is comparable with
previous ab initio simulations [23,24]. The optimized crystal
structure of silicene from ab initio calculations is shown in
Fig. 1, together with the graphene structure. Note that we did
not consider the bond length difference between graphene and
silicene in Fig. 1. It can be seen that both graphene and silicene
are hexagonal honeycomb lattices, and the major difference
between silicene and graphene is the buckling distance (h). For

TABLE I. Two sets of optimized SW parameters for silicene (see
text for different fitting strategies). For units, ε is in electron volts,
and σ is in angstroms. The rest parameters are dimensionless.

Original SW Optimized SW1 Optimized SW2

ε (eV) 2.1683 2.1683 2.1683
σ (Å) 2.0951 2.00336 1.99751
a 1.8 1.774753 1.8
λ 21.0 15.662962 22.275515
γ 1.2 1.181855 1.2
cos(θ0) −0.333333333333 −0.44561015 −0.44561011
A 7.049556277 6.0 5.834064
B 0.6022245584 0.618328 0.602225
p 4 4 4
q 0 0 0
tol 0 0 0

graphene, h = 0; while for silicene, h=0.4269 Å. Note that
there are also other reported values for the buckling distance,
ranging from 0.02 to 0.046 nm [23–26]. For silicene, the low
buckling structure and the corresponding buckling distance h

is an important physical quantity to fit.
For a thermal transport study by classical potential, phonons

are assumed to be the most important energy carriers, and
phonon dispersion is of great significance for the investigation
of thermal transport. Thus, we also focus on fitting the parame-
ters for the phonon dispersion of silicene to the ab initio results,
which is calculated with the density functional perturbation
theory [27] implemented in the Quantum ESPRESSO package.
The GULP [28] program was used to fit the SW potential
parameters. The phonon frequencies of 31 k-points in the
Brillouin zone along � → K → M → � are used as the target
properties in the parameters fitting. In order to accelerate the
convergence of the fitting procedure, we used the original SW
potential [16] parameters as an initial guess.

The new SW potential parameters optimized for silicene
are given in Table I, as compared with original values. Note
that we present two sets of optimized SW parameters, namely,
optimized SW1 and optimized SW2, using different fitting
strategies. The optimized SW1 parameters are fitted to all the
phonon dispersion curves, and the optimized SW2 parameters
are fitted to only the acoustic phonon dispersion curves. The ab
initio phonon dispersion of silicene and the results calculated
by the optimized SW1 and optimized SW2 parameters are
compared in Fig. 2. We see that the overall the phonon
dispersion curves are fitted quite well by the optimized SW1
parameters, and the optical phonon branches are perfectly
reproduced. However, the acoustic phonon branches are better
fitted by the optimized SW2 parameters than the optimized
SW1 parameters, while the dispersion curves of optical
phonons remain almost unchanged. Nevertheless, the buckling
distance (0.4269 Å), bond length (2.2420 Å), and bond angle
(116.46°) obtained from our ab initio calculations are precisely
reproduced by both sets of optimized SW parameters.

III. THERMAL CONDUCTIVITY CALCULATION

Using the optimized SW potentials, we first performed
both EMD and NEMD simulations using the LAMMPS [29]
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FIG. 2. (Color online) Full phonon dispersion curves of silicene
in the Brillouin zone. The solid black and blue lines are calculated
by the optimized SW1 and optimized SW2 parameters, respectively.
The red triangles are the results from ab initio calculations.

package to calculate the thermal conductivity of silicene. In
all simulations performed herein, a time step of 0.5 fs was
used.

In the EMD simulation, periodic boundary conditions are
used in the x and y directions (in-plane), and a free boundary
condition is used in the z direction (out-of-plane). The thermal
conductivity was estimated by the Green-Kubo method [30]

κMD = V

3kBT 2

∫
〈 �J (0) · �J (t)〉dt, (1)

where V is volume, kB is the Boltzmann constant, T is
temperature, �J is heat flux, and 〈〉 denotes the time average.
The heat flux �J was calculated by

�J = 1

V

[∑
i

Ei �υi −
∑

i

��Si �υi

]
, (2)

where Ei is the total energy (kinetic and potential) of the atom

i, �υi is the velocity of the atom i, and ��Si is the symmetric stress
tensor of the atom i defined as [29]

��S =

⎡
⎢⎣

Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz

⎤
⎥⎦ , (3)

with

Sαβ = −1

2

N2∑
n=1

(r1αf1β + r2αf2β)

− 1

3

N3∑
n=1

(r1αf1β + r2αf2β + r3αf3β), (4)

where α and β denote the x, y, or z direction. The first and
second terms in the definition of Sαβ define the contribution
from the two-body and three-body interactions, respectively.
The thickness of silicene was chosen as 4.2 Å in calculating
the system volume, equal to the van der Waals diameter
of the Si atoms [5]. To achieve a good convergence for the
thermal conductivity of silicene, we took every successive

0.5 ns of heat current data as different samples and calculated
the thermal conductivities of these samples. Furthermore,
using the method just described, we ran ten independent
simulations with different initial atomic velocities. Typically,
for each simulation, we used 50–500 ns of heat current data
to calculate the thermal conductivity. We first calculated the
average thermal conductivity of all the heat current samples in
each simulation, and then the final thermal conductivity result
was taken as the average over the ten runs for a correlation
time between 20 and 50 ps.

In the NEMD simulation, the periodic boundary condition
was used in the x (transverse) direction, and a free boundary
condition was used in the z (out-of-plane) direction. We set
1-nm-long regions at both ends in the y (longitudinal) direction
as a rigid wall. In the first stage of NEMD simulations,
we relaxed the system at 300 K for 0.5 ns with the walls
moving freely along the y direction, corresponding to zero
pressure, using a Nosé-Hoover thermostat [31,32]. After NPT
(constant particles, pressure, and temperature) relaxation, we
froze the walls and continued to relax the system with the
NPT ensemble for another 0.5 ns, and in this stage, we only
allowed the system to relax in the x direction. After that,
we continued to relax the system with the NVE (constant
particles, volume and no thermostat) ensemble for another
0.5 ns. Following equilibration, we computed the thermal
conductivity of the system using the NEMD method. It is
well known that using the NEMD method to compute thermal
conductivity relies on a steady heat flux, which must be
established along the desired direction. Currently, to realize
it, there are two different methods: (1) constant heat flux,
e.g., the Jund and Jullien algorithm [33] or the Müller-Plathe
algorithm [34] in which the heat current or flux is an input
parameter and the resulting temperature gradient is calculated;
and (2) constant temperature gradient, i.e., the heat source and
heat sink are connected to constant temperature thermostats
(thus, the temperature gradient is known in advance), and the
resulting heat flux is calculated. In our simulation, we adopted
the second method because for a constant heat flux method, the
temperature difference in the model system cannot be easily
estimated and usually the heat flux parameters must be tried
many times to achieve an appropriate temperature difference.
To establish a temperature gradient along the longitudinal
direction, we set another 5-nm-long region next to the rigid
wall as a heat source and heat sink. The temperature gradient
is realized by using Nosé-Hoover thermostats to keep the
temperature of heat source and heat sink at 320 and 280 K,
respectively. To calculate the heat flux along the longitudinal
direction, we record the input and output energy for the heat
source and heat sink at each step, and the averaged heat power
divided by the cross-sectional area is considered to be the heat
flux. Again, the thickness of silicene was chosen as 4.2 Å in
calculating the cross-sectional area [5].

The thermal conductivity of silicene from the NEMD is
calculated by Fourier’s law

κNEMD = − JL

∂T /∂y
, (5)

where JL is the averaged heat flux in the longitudinal direction
and ∂T /∂y is the temperature gradient determined from a
linear fitting of the time-averaged temperature profile along
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the longitudinal (y) direction. We did not observe a noticeable
nonlinear temperature profile due to the small temperature
difference in our model system, so we used all the temperature
data to calculate the temperature gradient. A typical heat-
source heat-sink run took about 10 ns to establish steady heat
flow and an additional 50–500 ns for averaging the temperature
profile and heat flux, depending on the system size.

Since the classical molecular dynamics is not valid for the
system temperature below the Debye temperature, quantum
corrections must be applied to the temperature and the thermal
conductivity predicted by the MD simulations. We considered
the quantum effect in the reported EMD and NEMD results
according to the following expression [35]

TMD = 1

kB

∫ νmax

0
D(ν)

[
1

exp(hν/kBTqc) − 1
+ 1

2

]
hνdν,

(6)

where ν is phonon frequency; D(ν) is the normalized vibra-
tional density of states (VDOS) of silicene calculated by taking
the Fourier transform of the atomic velocity autocorrelation
function (VACF) from the MD simulation [36]; νmax is the
maximal phonon frequency of VDOS; 1/[exp(hν/kBTqc) − 1]
is the Bose-Einstein distribution and h is the Planck constant;
dν is the minimum frequency interval of VDOS; and TMD

and Tqc are the MD and quantum-corrected temperature,
respectively. In our simulation, Tqc is calculated to be 230 K for
TMD = 300 K. The quantum-corrected thermal conductivity is
calculated by [37]

κqc = κMD
∂TMD

∂Tqc

. (7)

The results of the in-plane thermal conductivity of silicene
calculated by EMD and NEMD using the optimized SW1
and optimized SW2 parameters are reported in Fig. 3. Note
that we only used the optimized SW1 parameters for EMD
calculations. We first notice that the size effect of the thermal
conductivity of silicene from EMD simulation with the
optimized SW1 parameters is minimal, and it stabilizes around
5.5 W/mK for all sizes considered. In addition, the thermal
conductivity in the zigzag and armchair directions does not
show any difference. However, for the NEMD results, there is a
significant length dependence in the thermal conductivity. The
thermal conductivity increases rapidly with the silicene length
below 300 nm and then increases very slowly when the length
becomes longer. The thermal conductivity of the infinitely long
silicene (κ∞) and the effective phonon mean-free path (MFP, l)
were obtained by fitting the data using the equation [30]

1

κqc

= 1

κ∞

(
l

Ly

+ 1

)
. (8)

It is worth pointing out that we only used the data with
the silicene length longer than 80 nm to fit Eq. (8) because
the system size used for fitting should be much larger than the
phonon MFP to avoid an unphysical prediction for κ∞, as
suggested in a previous study [38]. Finally we obtained κ∞
= 8.64 W/mK and l = 23.76 nm for the optimized SW1
parameters and κ∞ = 11.77 W/mK and l = 17.94 nm for the
optimized SW2 parameters. We did not find a more significant
increase in κ∞ for the optimized SW2 parameters than that for

FIG. 3. (Color online) The thermal conductivity of silicene as a
function of sample size. The left/bottom and right/top axes correspond
to the result calculated by EMD and NEMD simulations, respectively.
All results correspond to the real system temperature of 230 K
after quantum correction. The black solid and dotted lines are the
ALD results at the same temperature for the optimized SW1 and
optimized SW2 parameters, respectively. The red dash-dotted lines
are the curves fitting to Eq. (8).

the optimized SW1 parameters. Note that both κ∞ and l are
functions of the lattice orientation and temperature. Hence, the
obtained value only corresponds to the case of silicene along
the zigzag direction at 230 K.

We also noticed that the results for the EMD and NEMD
methods are not the same, even if we have extrapolated
the thermal conductivity to infinitely long for the NEMD
simulation. Actually, this is a general issue existing in
calculations of the thermal conductivity using the classical
molecular dynamics simulation [39]. Nevertheless, from both
EMD and NEMD results, we can confirm that the thermal
conductivity of silicene is extremely low, which is around
20 times less than the value of bulk silicon (�150 W/mK from
experiments) and is comparable to that of silicon nanowires
[40–42]. The exceptionally low thermal conductivity makes
silicene a promising candidate for thermoelectrics.

We further calculate the thermal conductivity of silicene
using the single-mode relaxation time (SMRT) model derived
from Boltzmann transport equation

κ =
∑

p

cpυ2
g,pτp, (9)

where c is the heat capacity, υg is group velocity, τ is
the phonon relaxation time, and the subscript p goes over
all phonon modes in this system. The group velocities of
phonons are calculated using a central difference method,
and phonon relaxation time values are obtained using ALD.
The ALD method calculates the scattering rates of all the
three-phonon processes from the anharmonic force constants,
which are obtained by a finite difference method with a silicene
supercell with 60 atoms. The details of ALD can be found in
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FIG. 4. (Color online) The percentage contribution to thermal
conductivity as a function of phonon MFP for the optimized SW1
and optimized SW2 parameters at 230 and 300 K.

other references [43–45] and will not be presented here. It
is generally believed that only Umklapp phonon scattering
process will contribute to thermal resistance, so there are
suggestions that only Umklapp process should be considered
when the relaxation time is calculated. However, it was noticed
that if only Umklapp process were considered, the thermal
conductivity would be significantly overestimated using the
SMRT model, because the normal process can help populate
the long wavelength modes that carries the majority of the
heat [46]. Here, both normal and Umklapp phonon-phonon
scattering processes are included when calculating the phonon
relaxation time τ , as was the case for most ALD calculations
[43–45,47]. The interactions of silicon atoms are described by
our optimized SW potentials, and the single-point energies
are calculated using the LAMMPS package [29]. Since the
SW parameters have a relatively short cutoff, we considered
a 7-Å cutoff for harmonic force constants and 5-Å cutoff
(third nearest neighbor) for anharmonic force constants. For
Brillouin zone integration, we considered a 16 × 16 grid
of wave vectors. The thermal conductivity values at 300 K
predicted using Eq. (9) are 3.33 W/mK for the optimized
SW1 parameters and 5.43 W/mK for the optimized SW2
parameters. To compare with the MD results with quantum
correction, we also evaluated the thermal conductivity values
at 230 K, which are 3.75 W/mK for the optimized SW1
parameters and 6.11 W/mK for the optimized SW2 parameters.
These values are shown in Fig. 3 for comparison with MD
results. The thermal conductivity calculated by ALD is smaller
than those from MD simulations. The discrepancy is mainly
attributed to the strong normal scattering near the zone center
in two-dimensional materials, as also seen in graphene [46].

IV. CONTRIBUTIONS OF DIFFERENT MODES AND
DIRECTIONAL VIBRATIONS

Anharmonic lattice dynamics allows us to determine the
mode-specific contributions to thermal conductivity. There-
fore, we plot the percentage contribution to thermal conduc-
tivity as a function of phonon MFP, as shown in Fig. 4. We
can see that the phonon MFP smaller than 10 nm actually
contributes to almost 80% of the total thermal conductivity

for the optimized SW1 parameters and about 50% for the
optimized SW2 parameters. No matter which potential is
considered, this value is much smaller than the case of bulk
silicon, for which the representative phonon MFP is about
1 μm at 300 K [44]. Note that the MFP calculated by ALD is
a little smaller than that obtained from NEMD results, which
is probably due to the difference in definitions.

Our ALD calculations predict that the phonon modes of
silicene with a wavelength less than 10 nm contribute more
than 50% of the overall thermal conductivity. However, this
does not imply that the NEMD process can converge in a
few nanometers. From Fig. 3, we can see that the thermal
conductivity of silicene calculated by NEMD converges at
about 300 nm, because MFP is not the only factor that is
important to the NEMD simulation size. Wavelength is also
a concern. A larger system has longer wavelength phonons.
These phonons may not contribute much to the heat conduction
by carrying heat themselves, but they contribute a great
deal to the heat conduction process by scattering with other
phonons. Therefore, to include these long wavelength phonons
is also important to the convergence of the NEMD process.
A previous study on Lennard-Jones argon also shows that
the NEMD process usually converges at a length one order
of magnitude larger than the bulk MFP [43]. The same
phenomena have been found in other low-dimensional systems
[48–50].

Another interesting question is how much the out-of-plane
flexural (or ZA) modes contribute to the thermal conductivity.
In graphene, it is known that ZA mode has a major contri-
bution to its high thermal conductivity [51]. However, since
silicene has a buckled structure, the normal modes cannot
be categorized into pure out-of-plane or in-plane modes. We
have observed that the eigenvectors corresponding to the
quadratic phonon branch in Fig. 2 contains both in-plane and
out-of-plane vibrations, so they are not pure ZA modes (we
will see details later). Nevertheless, we quantify the relative
contributions of lattice vibrations in the x, y, and z directions
to the total heat flux of silicene, by using the NEMD-based
method we proposed recently [5,50,52,53]

JA→B,α = − 1

2S

∑
i∈A

∑
j∈B

Fijα(υiα + υjα), (10)

where α is x, y, or z direction, A and B are the left and right
side of a virtual interface located at the middle of silicene
in the y direction, JA→B,α is the heat flux from A to B due
to lattice vibrations in α direction, S is the cross-sectional
area, Fijα is the α component of the force acting on atom i

due to atom j , and υiα is the α component of the velocity
of atom i. Although the above formula is based on two-
body interactions and the SW potential used is a three-body
potential, it has been demonstrated that the three-body forces
can be decomposed into two-body components [5,52]. We
have verified that the long-time average heat flux calculated by
Eq. (10) is technically equal to JL in Eq. (5). The directional
contribution (percentage) to the total heat flux for different
lengths of silicene is compared in Fig. 5. It is clearly seen that
for all lengths of silicene, as much as 80% of the total heat
flux is contributed by the lattice vibration in the y direction
(i.e., the longitudinal modes). The lattice vibration in the
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FIG. 5. (Color online) Relative contribution (percentage) of lat-
tice vibrations in the x (transverse), y (longitudinal), and z (out-of-
plane) directions to total heat flux in the NEMD simulation. Inset:
atomic displacements of a typical out-of-plane acoustic (ZA) phonon
mode in silicene at the M-point of the first Brillouin zone.

x direction (i.e., the in-plane transverse modes) takes the
remaining 20%, and the lattice vibration in the z direction
(i.e., the out-of-plane flexural modes) contributes nearly zero.
This behavior is fundamentally different from graphene, where
the out-of-plane flexural acoustic modes dominate (�70%)
the thermal transport [5,51]. The weak contribution of the
out-of-plane flexural phonon modes can be attributed to two
combined aspects: (1) the main reason is anticipated to be the
buckling structure in silicene, which leads to strong coupling
between out-of-plane modes and in-plane modes; and (2) the
bonding strength of Si-Si bonds is much weaker as compared
with C-C bonds in graphene, which leads to a significantly
lower group velocity of the ZA modes in silicene. It is
worth pointing out that such a difference in the mode-specific
contribution is expected from the different atomic structure
between silicene and graphene (buckled vs planar), as the
buckled structure of silicene implies that the ZA modes may
behave differently in silicene than in graphene; therefore, the
negligible ZA contribution to the overall phonon transport in
silicene is understandable. In fact, we have observed that a
considerable amount of the ZA phonon modes in silicene are
not pure flexural modes. In the inset of Fig. 5, we show the
atomic displacements of a typical ZA phonon mode at the M

point of the first Brillouin zone. We can clearly see that the

base atoms do not exactly vibrate along the out-of-plane (z)
direction, instead there is an in-plane (x) component, i.e., TA
mode, coupled with the flexural mode. Such coupling is the
general case for ZA modes with the k-point along � → M .
We also found that the LA modes couple with other modes for
k-point along � → K → M . The strong coupling between the
out-of-plane flexural modes and the in-plane transverse modes
could hinder the heat conduction carried by the ZA modes,
which leads to the negligible contribution of ZA modes to the
overall phonon transport, shown in Fig. 5.

V. SUMMARY AND CONCLUSION

In summary, we have optimized SW parameters for silicene,
and the new parameters successfully reproduce the low
buckling structure of silicene and the phonon dispersion curves
from ab initio calculations. We then calculated the thermal
conductivity of silicene by both EMD and NEMD simulations,
as well as the ALD method. The mode-specific contribution
to lattice thermal conductivity is analyzed using the ALD
method, and we found that the thermal conductivity of silicene
is mainly contributed by phonons with MFP smaller than
10 nm, which is quite different from bulk silicon. Moreover,
by qualifying the relative contributions of lattice vibrations
in different directions, we found that the longitudinal phonon
modes dominate the thermal transport in silicene, which is
fundamentally different from graphene, despite the similarity
of their two-dimensional honeycomb lattices. We expect that
our new optimized SW potential will arouse great interest
in investigating the physical properties of silicene using the
classical molecular dynamics simulation.
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