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We present a theoretical analysis of the rate equations for irreversible growth with a monomer influx, desorption,
and a power-law dependence of the capture coefficients on the number of monomers s. Special emphasis is given
to the size distribution shapes and their time invariance in terms of a new variable which is distinctly different
from the conventional s/s∗ ratio, with s∗ being a representative size in the distribution. Our results can be briefly
formulated as follows. First, we generalize the earlier results to systems with desorption. Second, the analytical
size distributions are obtained by applying the transformation to a certain invariant size variable (ρ) for which
the regular growth rate is independent of the cluster size, and the Green function in the form of Gaussian with a
spreading dispersion. Third, the size distribution shapes reflect the time dependence of the monomer concentration
inverted in terms of the z − ρ variable, with z as a representative invariant size. Fourth, the fluctuation-induced
broadening of these spectra depends critically on the growth law. Fifth, the obtained distributions show a refined
time-invariant scaling in the appropriate variables for a broad range of conditions and for all but very small z,
while the scaling in terms of ρ/z works only in the formal limit z → ∞.
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I. INTRODUCTION

There has been large interest in theoretical modeling of
the diffusion-induced irreversible growth in open systems,
particularly in connection with size distributions (SDs) of
two-dimensional (2D) surface islands during vapor deposition
at a low coverage [1–22]. These studies are essential for
understanding general properties of irreversible aggregations
and maintaining the necessary control over the island mor-
phology. It should be noted that similar growth models
apply also to three-dimensional (3D) systems, for example,
liquid droplets in supersaturated vapor surroundings (such
as catalyst droplets during the vapor-liquid-solid growth of
nanowires [23]) or one-dimensional (1D) polymer chains in
3D liquid solutions [24]. The most straightforward way to
obtain the time-dependent SDs of “clusters” is applying the
mean field rate equations (REs) [1–3,5,9,10,12–14,16–24]
with a monomer influx (vapor flux for 2D islands) and sink
(desorption) and certain “capture coefficients” which depend
on the mechanism of material transport into the clusters.
This approach should work well at a low temperature and
coverage, where the growing clusters are terminated by distinct
boundaries and do not coalesce. Of course, the mean field
treatment fails when subtle correlations between island size
and separation affect the effective capture coefficients and thus
control the SD shapes [7,18].

The core assumption of irreversible growth models is the
effective absence of cluster decay. Strictly speaking, there are
no physical systems without decay since it is against thermo-
dynamics. Indeed, the growth and evaporation rate constants
should be related to each other through the detailed balance
involving the cluster formation energy, as usual in general

*Corresponding author: dubrovskii@mail.ioffe.ru

nucleation theory [23,25–35]. This brings about the notions
of supersaturation, the supersaturation-dependent critical size,
the nucleation barrier, and the Zeldovich nucleation rate which
is extremely sensitive to supersaturation. The entire growth
process can be divided into distinctly different steps (see
Ref. [36] for the review in the case of crystal growth far
from equilibrium), separated due to a timescale hierarchy.
One can distinguish the nucleation stage [23,25–31], the
regular growth stage [23,30,32], and the Ostwald ripening
[33], where the nucleation stage is the shortest under a material
influx [23,26–28,31]. Therefore, the assumption of irreversible
growth can apply only within a certain interval of time and
relates to the case of very high supersaturation, with the critical
size close to one [3]. As supersaturation drops down, the
critical size starts increasing, the Zeldovich nucleation rate
rapidly tends to zero so that further nucleation is disabled.
When decay is neglected, the monomer concentration tends to
zero rather than to a certain equilibrium value, while clusters
of all sizes always continue growing [5,6,15–22].

This fundamental difference leads to rather dissimilar SD
shapes. In nucleation theory with decay, the SDs are more or
less symmetrical (Gaussian) around their most representative
size and rapidly decreasing for both large and small sizes
[23,26,27,31,32,34,35], while they feature a very long left
tail in irreversible growth models [5–10,17,18]. Without
desorption, the scaled SD does not even vanish for small
sizes [6,18]. In this respect, the assumption of no decay in the
REs for irreversible growth should be considered much less
justified than the mean field RE approach itself and can hardly
work in the large time limit. On the other hand, it can be well
applied for systems with very high diffusivity but for modest
growth times, where many-particle correlation effects can be
neglected. Here, one of the most interesting features of the SDs
discussed in the literature is the so-called scaling properties
[4,5,6,12,15,17]. This scaling has an important impact on
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the asymptotic spectrum shapes and even on the activation
energies of elementary processes on solid surfaces [37].

There are several formulations of scaling in irreversible
growth of 2D surface islands given, e.g. by Vicsek and Family
[4] and then developed by Korner et al. [17], or those consid-
ered by Bartelt and Evans [5,6]. With neglect of desorption
and at a low coverage, the Bartelt-Evans formulation [5] can
be put as follows. In the limit of large ratios of diffusion
constant over deposition rate, the ratio of the SD (fs) to
the concentration of free monomers (f1) is expected to be a
unique function of the ratio s/s∗, where s∗ is the representative
size in the SD (say, proportional to the average size 〈s〉:
s∗ = B〈s〉, with B independent of time), for all but short times:
fs/f1 = ϕ(s/s∗). More generally, scaling can be searched for
in the form (fs/ν

1/2)sη
∗ = ϕ(s/s∗), with a certain power index

η and ν being proportional to the diffusion coefficient D

[6,17]. Another equivalent formulation [4,5,15] states that
fs = [G/s2

∗]ϕ(s/s∗), where G is the surface coverage. It
has been shown then that, in the case of size-independent
capture coefficients, the irreversible growth model yields a
mathematical singularity of the SDs in terms of such scaling
variables [5]. This result follows from the corresponding
REs and is supported by kinetic Monte Carlo simulations.
Subsequent work, summarized, for example, in the review
paper [18], suggested that breaking the scaling property is the
fundamental drawback of the model with size-independent
capture coefficients, which is why it is unable to qualitatively
reproduce the SDs. According to this view, only the correct
account for both the size and the coverage dependence of the
capture coefficients allow for the adequate description of the
SDs with REs.

In this paper, we address several fundamental properties
of the SDs described within REs for irreversible growth with
desorption and at a low coverage. In the case of surface islands,
desorption sets a limitation on the adatom diffusion length
[23], which may disable competition for the diffusion fluxes
and thus better justify the mean field approach at an early
growth stage. Our analysis of the REs is based on the approach
developed earlier in general nucleation theory with decay of
clusters [23,26–28,30–32] which, to the best of our knowledge,
has not been used in the irreversible growth models so far.
Compared to the analytical and numerical methods treating
the island SD fs(t) as a function of the “natural variables” s,
t and then searching the time-invariant solutions in the form
fs(t) = ν1/2s

−η
∗ ϕ(s/s∗) (usually with neglect of desorption)

[5,15,18,22], our approach is based on a special transformation
of variables [23]. Following Kuni [26], we eliminate the
nonlinearity of the REs caused by the time dependence of the
monomer concentration and then get rid of the SD deformation
due to the size dependence of the capture coefficients. This
allows one to use the Green function method [30–32] and
to find a refined scaling which gives a more detailed picture
of the SD behavior under different conditions. This scaling
does not require the assumptions of high diffusivity and no
desorption.

The paper is organized as follows. Section II presents the
basic REs in the form which is most convenient for further
analyses. In Sec. III, we reconsider the irreversible growth
model with size-independent capture coefficients, for which
the exact solution is easily obtained for the discrete REs [5]

also when desorption is included. We show that the continuum
(large size) asymptote of this solution is a time-invariant (or
“scaling”) function of a variable which is distinctly different
from s/s∗ or s/〈s〉. When plotted in the s/s∗ variable, the
solution features the Bartelt-Evans singularity in the large
time limit or for high diffusivity, showing simply that such a
representation is not time-invariant for all s. However, scaling
in terms of s/s∗ holds for the long left tail of the SDs at
small enough s, i.e. for most clusters except those near the
distribution maximum and on an abrupt right tail. In Sec. IV,
we consider 1D, 2D, and 3D clusters (linear chains, nanowires,
islands, and droplets) in 2D and 3D environments and show
that the relevant size dependence of the capture coefficients
in the continuum limit (s � 1) has the power law form
s(m−1)/m [15,23], with the growth index m ranging typically
from 1 to 3.

Section V presents the analytical solutions to the continuum
RE with a power law size dependence of the capture coeffi-
cients, based on the linearization of the RE, the transformation
to the so-called invariant SD gs [23,26–32] and the Green
function method [30–32]. It is shown that the obtained contin-
uum solutions immediately yield the universal, time-invariant
shapes of the SDs which depend only on the growth index m.
This behavior follows from the mathematical properties of the
continuum REs. Namely, the time invariance is preserved in
terms of the variables gs/ν

1/2 and s
1/m
∗ − s1/m for m � 2 or

(gs/ν
1/2)sη

∗ and (s1/m
∗ − s1/m)/s1/m−1/2

∗ for m < 2, depending
on whether kinetic fluctuations are effective or not. When
fluctuations broaden the SDs, the power exponent η is different
from that of 1/f1 due to this broadening. In Sec. VI, the
asymptotic solutions for the monomer concentration, cluster
density, average size, and ultimately the SDs are obtained in
complete condensation regime for different m. Finally, the
analysis of Sec. VII shows that the time-invariant scaling in
terms of the s/s∗ variable is generally broken regardless of
the particular size dependence of the capture coefficients. As
in the case m = 1, the usually postulated scaling holds only
when s is far enough from the most representative size (i.e. on
the longest left tail of the SDs) and in the limit of infinitely
long growth time or infinitely high diffusivity.

II. RATE EQUATIONS OF IRREVERSIBLE GROWTH

In modeling the time-dependent concentrations ns(t) of the
immobile 2D or 3D clusters As consisting of s monomers (size
s for brevity), we assume that the clusters are fed by the mobile
monomers A1 that have the diffusion coefficient D, arrive to
the system at a time-independent rate I , and “desorb” with
the characteristic time tA. We neglect the decay of clusters
on the timescale of interest, in which case the cluster growth
proceeds irreversibly: As + A1 → As+1 for s = 1,2,3 . . .. The
corresponding growth rates are given by Dσs , with σs as
the corresponding capture coefficients. Of course, for 3D
systems, the capture coefficient should be proportional to a
certain characteristic length from dimensional considerations.
To write down the REs in the dimensionless form and to
reduce the number of control parameters, we introduce the
effective “diffusion length” λ = √

σ1DtA, the dimensionless
time τ = t/tA, and the normalized concentrations fs = λ2ns

for all s = 1,2,3 . . . including monomers.
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The discrete REs describing the time evolution of the SD
are given by [1–24]

df1

dτ
= ν − f1 − 2f 2

1 − f1

∞∑
s=2

ksfs, (1)

dfs

dτ
= f1(ks−1fs−1 − ksfs), s = 2,3,4 . . . , (2)

with

ks = σs

σ1
, (3)

as the effective dimensionless capture coefficients. The control
parameter

ν = λ2I tA = σ1DIt2
A (4)

has a clear meaning of the number of monomers arriving
due to the influx I onto the area (or into the volume)
λ2 = σ1DtA during the lifetime tA. Equation (1) shows that the
concentration of free monomers changes due to the influx, sink,
and monomer consumption by the growing clusters, where the
dimer formation requires two monomers. The prefactors in
the desorption (−f1) and the dimerization (−f 2

1 ) terms are
the same due to the specific choice of the effective diffusion
length which contains σ1. The chain of Eq. (2) shows that
the concentration fs for each s � 2 increases when monomers
attach to s − 1-mers and decreases when monomers attach
to s-mers. These equations should be solved with zero initial
conditions fs(0) = 0 for all s = 1,2,3 . . . corresponding to the
beginning of the growth process at τ = 0.

Let us introduce the total number (or the density) of all
immobile clusters F and the total number of monomers in
all immobile clusters G (both normalized by multiplying the
corresponding dimensional values to λ2) by definitions

F =
∞∑

s=2

fs ; G =
∞∑

s=2

sfs. (5)

In the 2D case, G has the meaning of the dimensionless
surface coverage. As follows from Eqs. (1) and (2), the cluster
density changes in time only by dimerization, while the total
number of monomers in the system changes only due to the
external fluxes

dF

dτ
= f 2

1 , (6)

d

dτ
(f1 + G) = ν − f1. (7)

Very importantly, Eq. (6) shows that the nucleation rate
in the irreversible growth model equals f 2

1 because nucleation
occurs whenever two mobile monomers meet. This is distinctly
different from classical nucleation theory [23,25–32] where
the Zeldovich nucleation rate dF/dτ = J is a steep exponen-
tial function of supersaturation ζ = f1/feq − 1, with feq as the
equilibrium monomer concentration at a given temperature.

III. SIZE-INDEPENDENT CAPTURE COEFFICIENTS

We first consider the simplest case of size-independent
capture coefficients ks = 1 for all s = 1,2,3 . . .. Since

∑∞
s=2 ksfs = ∑∞

s=2 fs = F , Eqs. (1) and (6) now constitute
the closed system for the determination of f1 and F

df1

dτ
= ν − f1 − 2f 2

1 − f1F, (8)

dF

dτ
= f 2

1 , (9)

with f1(τ = 0) = F (τ = 0) = 0, depending on the sole con-
trol parameter ν.

We now introduce the new time-dependent variable z ≡ s∗
instead of time τ by definition

dz

dτ
= f1, z(τ = 0) = 0. (10)

Since all the growth rates in Eq. (2) now equal f1 and
are s independent, the physical meaning of the z variable is
very simple: it corresponds to the right boundary of the SD
(i.e. to the maximum possible size of clusters having emerged
at τ = 0) in the deterministic limit [23,26–28] where the SD
shape is not affected by kinetic fluctuations [30]. This will be
important in what follows.

Equations (2) for the cluster concentrations become linear
in terms of the z variable

dfs

dz
= fs−1 − fs, s = 2,3.4 . . . (11)

The exact solutions to this system are easily obtained by
implying the generating function for concentrations, as in
Refs. [5,35]

fs+2(z) = 1

s!

∫ z

0
dxf1(z − x)xse−x, s = 0,1,2 . . . (12)

The monomer concentration f1 should be obtained as a
function of τ from Eqs. (8) and (9) and then inverted as a
function of z by means of Eq. (10).

Graphs in Fig. 1 show the normalized monomer concentra-
tion f1/ν

1/3 and the island density F/ν2/3 as functions of the
dimensionless time τ at different v [obtained from numerically
solving Eqs. (8) and (9)], compared to their large time asymp-
totes f1(τ )/ν1/3 = (3τ )−1/3 and F (τ )/ν2/3 = (3τ )1/3 (see the
asymptotic analysis given below). The discrete concentrations
of differently sized clusters, calculated by means of Eqs. (12),
are shown by dots in Fig. 2 for different z at the fixed ν and
vice versa. These results demonstrate the two major properties.
First, the monomer concentration reaches its maximum (which
is noticeably smaller than ν) soon after the beginning of
deposition at ν � 1 as in complete condensation regime
with negligible desorption [3]. In contrast, the incomplete
condensation regime at ν 
 1 relates to the saturation of f1

at f1, max
∼= ν, followed by a very slow regression for longer

growth times [3,38]. The cluster density increases faster for
larger ν. The asymptotic stage (corresponding to the dashed
curves in Fig. 1) is reached almost immediately after passing
the maximum of the monomer concentration at large enough
ν, as in Ref. [5]. Second and more important, the SDs shown in
Fig. 2 feature the shapes that are very similar to the f1 shapes
in Fig. 1, inverted in such a way that the time moment τ = 0
corresponds to the maximum size present in the SDs. Indeed,
the SDs decay very abruptly after passing their maxima, with
a much slower regression toward smaller s. This observation
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FIG. 1. (Color online) Graphs of (a) the normalized monomer
concentration f1/ν

1/3 and (b) cluster density F/ν2/3 versus dimen-
sionless time τ at different ν, compared to the asymptotic solutions
(the dotted lines). The asymptotic stage is established very quickly
for large ν, which is the regime with negligible desorption and at high
diffusivity.

is fundamental for understanding the SD shapes in general, as
will be discussed shortly.

We now consider the behavior of the exact solution given
by Eq. (12) at large z. From Eq. (8), at small enough f1, one
obtains the asymptotic behavior of the monomer concentration
in the form f1

∼= ν/F . Using this in Eqs. (9) and (10), we arrive
at the well-known results [5,23]

F ∼= (3ν2τ )1/3; f1
∼=

(
ν

3τ

)1/3

; z ∼= ν1/3

2
(3τ )2/3, (13)

showing that the cluster density scales with time as τ 1/3 while
the monomer concentration decreases as τ−1/3. Using the last
two equations, we can invert f1 as a function of z

f1
∼=

(
ν

2z

)1/2

. (14)

The limit of high diffusivity and negligible desorption
is the particular case of Eqs. (13). Indeed, returning to
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FIG. 2. (Color online) Size distributions at (a) fixed ν = 1 and
different z and at (b) fixed z = 80 and different ν. The dots show the
discrete SDs and the solid lines represent the continuum SDs obtained
from Eqs. (16) and (17). The continuum approximation works better
for larger z and ν.

the dimensional island density N = F/λ2 and the monomer
concentration n1 = f1/λ

2, using Eq. (4) for ν and t = tAτ ,
we get the well-known asymptotic behavior [5,15,23]: N ∼=
[(3I 2t)/(σ1D)]1/3 and n1

∼= [I/(3σ 2
1 D2t)]1/3. The desorption

time tA does not enter these expressions. Therefore, systems
with desorption and arbitrary diffusivities show the same
limiting behavior at long growth times as systems without
desorption at large diffusivities and finite growth times.
Equation (13) for z yields z ∼ (DI )1/3t2/3, hence the z value
must be much larger than one in both cases.

Substitution of Eq. (14) into Eq. (12) yields

fs+2(z) =
(

ν

2

)1/2 1

s!

∫ z

0
dx

xse−x

(z − x)1/2
. (15)

Strictly speaking, this equation is not valid in the neighbor-
hood of z because the monomer concentration near τ = 0
is not described by its large z asymptote. However, one
can assume that the abrupt right tail of the SD is resumed
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due to the rapidly decreasing Gaussian exponent under the
integral. The continuum representation of Eq. (15) at s � 1
and z � 1 is easily obtained by applying the Stirling formula
s! ∼= (2πs)1/2exp(s ln s − s) and presenting the function under
the integral as xsexp(−x) = exp(s ln x − x) ∼= exp(s ln s −
s)exp[−(s − x)2/(2s)]. This yields the result of Bartelt and
Evans [5], rewritten in terms of the z variable

f (s,z) ∼=
(

ν

2π

)1/2 1

(2z)1/4
ϕ

(
s − z√

2z

)
, (16)

where the function ϕ(p) is defined as

ϕ(p) =
∫ ∞

p

dx
e−x2

(x − p)1/2
= e−p2

∫ ∞

0
dy

e−y2−2py

y1/2
. (17)

It is evident that ϕ(p) is continuous and has continuous
derivatives at p = 0.

This SD reaches its maximum slightly to the left from the
point s = z, showing that the z value is only slightly larger than
the most representative cluster size in the SD. The spectrum
has the characteristic width (2z)1/2 near the maximum and
decreases as a power law function at z − s � z1/2 and
exponentially at s − z � z1/2. These properties follow from

f (s,z) ∼= ν1/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
[2(z−s)]1/2 , z − s � √

2z

�( 1
4 )

27/4π1/2
1

z1/4 , s = z

1
2(s−z)1/2 e

− (s−z)2

2z , s − z � √
2z

. (18)

The comparison of the discrete and continuum SDs shown
in Fig. 2 demonstrates that Eqs. (16) and (17) provide a
reasonable fit to the discrete SDs at large ν (i.e. in the regime
of complete condensation) and for large z, while at ν = 1, the
shape of the discrete SD is resumed with a more noticeable
downward shift.

It is clear that the continuum SD given by Eq. (16) already
has the time-invariant “scaling” form

f (s,z)

μν1/2
z1/4 = ϕ

(
s − z√

2z

)
, (19)

where μ = 1/(23/4π1/2) is the constant and ϕ is the unique,
time-invariant function of its variable. More precisely, scaling
in the general case should be considered as z invariance, where
large z relates to either long growth times or high diffusivities
as discussed above. This invariance is demonstrated in Fig. 3.
When normalized to f1(z), this continuum SD is not a
z-invariant function of the unique variable s/z, as suggested,
e.g. in Refs. [5,6]. This property holds only for the long
left tail of the spectrum at z − s � √

2z where, in view of
Eqs. (18) and (14), f (s,z)/f1(z) ∼= 1/(1 − s/z)1/2. When fs(z)
is divided by f1(z) [which tends to zero as z−1/2 according to
Eq. (14)], and is considered as a function of s/z in the formal
limit z → ∞ (relating to either τ → ∞ or ν → ∞ at finite
τ ), the perfectly continuum physical spectrum indeed acquires
a singularity at s = z

f (s,z)

f1(z)
∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(1− s

z
)1/2 , 1 − s

z
� z−1/2

�( 1
4 )

25/4π1/2 z
1/4, s = z

1
21/2( s

z
−1)1/2 e

−(z/2)(s/z−1)2
, s

z
− 1 � z−1/2

, (20)
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FIG. 3. (Color online) Collapse of the f (s,z)z1/4 function to the
unique value ϕ[(s − z)/z1/2] (ν = 1). The curves at z � 100 cannot
be distinguished.

which is exactly the result of Ref. [5]. This property is
demonstrated in Fig. 4. Of course, since the average size 〈s〉 is
proportional to z at large z (we will show later that 〈s〉 ∼= (2/3)z
in this particular case), the difference between s/z and s/〈s〉 is
just a multiplying factor and therefore is inessential for scaling.

IV. GROWTH RATES

Likewise in Ref. [30], we now turn to the analysis of
different growth systems in the continuum limit s � 1 to see
the possible dependences of the capture coefficients (or the
growth rates) ks on s. The latter are assumed to be dictated
by the space dimensions, geometries, and mechanisms of
material transport into an isolated cluster. Such an analysis
is restricted to situations described within the mean field
approach, i.e. neglecting the dependence of ks on the coverage,
island separation, concentrations, etc. [17,18]. We start with a
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FIG. 4. (Color online) Collapse of the f (s,z)(2z)1/2 to a nonan-
alytic function of s/z demonstrating the absence of z invariance in
these variables (ν = 1).
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FIG. 5. (Color online) Schematics of different growth regimes
yielding the power-law size dependences of the capture coefficients
ks ∝ s(m−1)/m with m = 1, 3/2, 2, and 3. Yellow areas show the
feeding zones of the clusters.

2D island growing in the diffusion regime where the effective
diffusion length λ is much larger than the linear island size
R. In this case, the islands consume adatoms from the entire
diffusion ring πλ2 irrespective of their size. With neglect of a
minor logarithmic correction [13,23], the growth rate ds/dτ is
independent of s. This yields ks

∼= 1, i.e. the case considered
in the previous section. The same size independence holds
for 3D surface islands growing in the diffusion regime.
Other examples of s-independent capture coefficients include
1D linear chains in 3D space which can attach monomers
only from their ends [24] and freestanding 1D “nanowires”
growing perpendicular to the substrate by surface diffusion
[23] [Fig. 5(a)]. Of course, the capture coefficients should
also be size independent in the case of highly anisotropic 1D
surface diffusion, e.g. along the steps [5].

When a 3D island with a fixed shape is fed from the adatom
“sea” on a substrate surface in the ballistic regime such that
the adatom diffusion length is much smaller than the radius
of the island base R, the growth rate ds/dτ is proportional
to R or s1/3. This is also the case when, rather than from the
adatom sea, 3D surface islands are fed from a strained wetting
layer [23]. The same growth law applies to 3D clusters in 3D
vapor environments in the diffusion regime. These systems
are thus characterized by the capture coefficients ks ∝ s1/3

[Fig. 5(b)]. For a 2D island growing in the ballistic regime at
λ 
 R [36], the growth rate is proportional to its perimeter,
yielding ks ∝ s1/2 [Fig. 5(c)]. Finally, when a 3D cluster grows
in the ballistic regime from a 3D environment, the growth rate
is proportional to the droplet surface area, i.e. ks ∝ s2/3. The
same dependence applies when a 3D droplet or island is seated
on a substrate surface [Fig. 5(d)]. We note that in 3D systems
as well as for vertical nanowires growing from a substrate,
the coverage is usually very low, which justifies the use of
RE approach for much longer times compared to 2D surface
islands extending laterally.

It is seen that the capture coefficients of sufficiently large
clusters (s � 1) feature the power law dependence on s which

can be presented as

ks = ms(m−1)/m, (21)

with the “growth index” m = 1, 3/2, 2, and 3 in the typical
cases shown in Fig. 5. The growth rates ds/dτ thus equal
ksf1, where f1 is an analogue of supersaturation [23,25–33] in
irreversible growth. Below in this paper, we will use Eq. (21)
with arbitrary m between 1 and 3. However, generalization
of our results to a more complex dependence ks = φ(s) is
rather straightforward. The mean field REs (without desorption
and in the limit of large ratios of diffusion constant over
deposition rate) with the power-law size dependence of the
capture coefficients σs = sp with 0 � p < 1/2 were studied
earlier by Vvedensky [15]. In our notations, p = 1 − 1/m

and hence the Vvedensky solution corresponds to m < 2. It
is important that the power-law ks is itself a scaling function
of s.

V. SIZE-DEPENDENT CAPTURE COEFFICIENTS:
SOLUTIONS FOR CONTINUUM SIZE DISTRIBUTION

Introducing the z variable according to Eq. (10), the discrete
REs given by Eq. (2) take the form

dfs

dz
= ks−1fs−1 − ksfs. (22)

Continuum RE at s � 1 is obtained simply by expanding
the ks−1fs−1 near s and leaving only the first and the second
derivatives with respect to size

∂f (s,z)

∂z
= − ∂

∂s

{
ksf (s,t) − 1

2

∂

∂s
[ksf (s,z)]

}
. (23)

This kinetic equation is of the Fokker-Plank type, where
the term with the first derivative describes the regular growth
(ds/dz) at the rate ks , while the second derivative stands for
kinetic fluctuations. In what follows, we apply Eq. (21) for
ks uniformly for all s � 1. As usual in nucleation theory
[23,26,27,30–32], we eliminate the trivial deformation of the
SD due to the size dependence of the regular growth rate by
introducing the new “invariant size” ρ by definition

ρ = s1/m. (24)

Obviously, dρ/dz = (dρ/ds)(ds/dz) = (dρ/ds)ks = 1,
while in terms of τ , Eqs. (10) and (24) yield
dρ/dτ = dz/dτ = f1, i.e. differently sized clusters now
grow at exactly the same rate. For arbitrary homogeneous s

dependence of the capture coefficients ks = φ(s), the invariant
size would be defined as

ρ =
∫ s

0

ds ′

φ(s ′)
. (25)

The new continuum SD in terms of the ρ variable should
be introduced as

f (s,z)ds = g(ρ,z)dρ, (26)

so that the number of clusters in the intervals from s to s + ds

and from ρ and ρ + dρ is preserved.
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From Eqs. (24) and (26), the continuum RE given by
Eq. (23) in terms of the invariant size takes the form

∂g(ρ,z)

∂z
= − ∂

∂ρ

{
g(ρ,z) − ∂

∂ρ

[
g(ρ,z)

2mρm−1

]}
. (27)

The cluster density and the total number of monomers in
all clusters in the continuum approximation are defined as

F (z) =
∫ ∞

0
dρg(ρ,z); G(z) =

∫ ∞

0
dρρmg(ρ,z), (28)

where we use Eq. (26) and s = ρm. Using the continuum size
distribution g(ρ,z), one can introduce the averages of ρn by
definition

〈ρn〉 =
∫ ∞

0 dρρng(ρ,z)∫ ∞
0 dρg(ρ,z)

, (29)

for arbitrary n. In particular, this yields

G = F 〈ρm〉. (30)

As shown in Ref. [30], the Green function g0(ρ,z) of
Eq. (27) describing the evolution of the SD from the point
source g(ρ,z = 0) = δ(ρ) can be approximated as

g0(ρ,z) = 1√
2πψ(z)

exp

[
− (ρ − z)2

2ψ(z)

]
,

(31)

ψ(z) = z2−m

m(2 − m)
, m < 2,

and

g0(ρ,z) = δ(ρ − z), m � 2. (32)

These results show that the SDs are broadened by the
kinetic fluctuations at m < 2, while at m � 2, the SDs are
not affected by fluctuations and remain purely deterministic.
For m < 2, the dispersion of the SDs increases as a power law
function of z. The threshold value of the growth index m = 2
corresponds to an almost negligible logarithmic broadening.
The corrections to Eq. (31) asymptotically tend to zero at
large z as

√
2ψ(z)/z ∼ z−m/2. The spectrum width either

stays constant as growth proceeds (at m � 2) or increases
more slowly than z (at m < 2). It is also seen that, in view
of

√
2ψ(z)/z 
 1, one can swap the variables z and ρ in

the dispersion ψ in Eq. (31) by writing ψ(z) ∼= ψ(ρ) in the
essential part of the spectrum |ρ − z| �

√
2ψ(z).

Of course, the Green functions given by Eq. (31) at m < 2
and Eq. (32) at m � 2 meet neither initial nor boundary
conditions of our problem. The initial condition in open
systems is trivial: no clusters should be present in the system
at z = 0. We also imply the condition that the SD vanishes
at ρ → ∞. The most important is the boundary condition at
ρ = 0. In nucleation theory with the Zeldovich nucleation rate
dF/dτ = J , this boundary condition would imply that the
stationary SD has the drift form g(ρ = 0,z) = J/(dρ/dτ ).
This corresponds to the clusters with zero size emerging
randomly at the rate J and surpassing the nucleation barrier
with a size-independent velocity dρ/dτ [23,24,26,27,29].
Since in our case J = f 2

1 and dρ/dτ = f1, a similar boundary
condition applies, i.e. g(ρ = 0,z) = f1(z). Rather than a
formal limit for the continuum SD at ρ → 0 that matches

the monomer concentration at a given z, this boundary
condition should be treated as the self-consistency criterion
for irreversible growth with the quadratic dependence of the
nucleation rate on the monomer concentration. Therefore, the
relevant set of the initial and boundary conditions to Eq. (27)
is given by

g(ρ,z = 0) = 0; g(ρ = ∞,z) = 0; g(ρ = 0,z) = f1(z).

(33)

The unknown f1(z) should now be obtained from the con-
tinuum equations following from Eqs. (1), (6), (10), (21), (24),
and (29)

df1

dτ
= f1

df1

dz
= ν − f1 − mf1F 〈ρm−1〉; dF

dz
= f1. (34)

Whenever the SD is a solution to Eq. (27) with the boundary
conditions given by Eqs. (33) and f1(z) → 0, it is easy to prove
that

d

dz
(F 〈ρm〉) = mF 〈ρm−1〉 (35)

for any m. Using this in the first equation in Eq. (34), we arrive
at Eq. (7) with G given by Eq. (30). Integration of Eq. (7) in
view of Eq. (10) yields the material balance in the form

f1 + z + G = ντ. (36)

This formula shows simply that the monomers that have
arrived to the system from a material influx by the moment of
time τ can either remain as free monomers or desorb or get
incorporated into the growing clusters.

Using the Green functions given by Eqs. (31) or (32), it is
easy to construct the solutions to Eq. (27) which satisfy the
required initial and boundary conditions defined by Eqs. (33)

g(ρ,z) = 1√
π

∫ ∞

p

dxe−x2
f1[

√
2ψ(z)(x − p)],

(37)

p = ρ − z√
2ψ(z)

, m < 2,

g(ρ,z) = f1(z − ρ), m � 2. (38)

When f1(z) is given by Eq. (14), Eq. (37) is reduced to
Eqs. (16) and (17) at m = 1 and ρ = s. The “deterministic”
solution in Eq. (38) is the particular case of the SD obtained by
Kuni for m = 3 [24], with the simplified stationary distribution
f1 in irreversible growth. Thus, the complete description of
the SDs requires only the determination of the monomer
concentration f1(z) at a given m. If wanted, these solutions
can be inverted in terms of s and 〈s〉 by means Eqs. (24)
and (26)

f (s,〈s〉) = 1

ms1−1/m
g(s1/m,s1/m

∗ ) = 1

ms1−1/m
g(s1/m,〈s〉1/m)

(39)

for large s, because ρ = s1/m and z = s
1/m
∗ is proportional

to 〈s〉1/m. Scaling properties of the obtained SDs at z → ∞
will be discussed in detail in the foregoing sections. However,
it is already clear that the appropriately normalized SDs
should be the unique functions only of the combination of
(ρ − z)/

√
2ψ(z) at m < 2 or (ρ − z) at m � 2, but not of

ρ/z. Indeed, the simplest deterministic SD at m � 2 given
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by Eq. (38) could be a scaling function in terms of variables
g(ρ,z)/f1(z) and ρ/z = (s/s∗)1/m = ξm(s/〈s〉)1/m if and only
if the f1(z) is a power law function of z. However, this cannot
be the case because the monomer concentration increases with
time at the beginning of growth and then decreases at the
asymptotic stage [as in Fig. 1(a)]. Therefore, it cannot be
presented as a single power law function of z: a combination
of at least two power law functions is required to describe the
f1(z) dependence with a maximum.

VI. ASYMPTOTIC ANALYSIS

Let us now consider the asymptotic growth stage at f1(z) →
0 which, for large enough values of ν, should hold for all but
short times. The material balance given by Eq. (36) is now
reduced to

G ∼= ντ, (40)

i.e. the total volume of islands (or the coverage in 2D case)
increasing linearly with time. As follows from Eqs. (37)
and (38), the SDs either remain entirely deterministic (at
m � 2) or broaden slower than the maximum deterministic
size z (at m < 2). Therefore, at large enough z, the average
value 〈ρm〉 = 〈s〉 must be proportional to zm with a negligible
correction for the spectrum dispersion, i.e.

〈ρm〉 ∼= Bmzm, (41)

with Bm independent of z.
We now search the asymptotic solution for f1(z) in the

power-law form

f1(z) ∼= Am

zβ
, (42)

where the power index β and the coefficient Am need to be
determined. Using this in Eqs. (10) and (34), Eq. (30) together
with Eq. (41) and Eq. (40), respectively, yields the results

β = m

2
; Am =

[
1

Bm

(
1 − m

2

1 + m
2

)
ν

]1/2

; (43)

so that the Am coefficients are expressed through Bm. On the
other hand, applying Eq. (35) at 〈ρm〉 given by Eq. (41) leads
to the recurrent formula

Bm = m

1 + m/2
Bm−1. (44)

Since B0 = 1 by definition, we are able to determine the
Bm coefficients for integer m, in particular: B1 = B2 = 2/3,
showing that the mean size 〈ρm〉 = 〈s〉 equals two-thirds of
the maximum deterministic size for m = 1 and 2. In the
case of arbitrary fractional m, the Bm coefficients can be
determined for a particular analytical SD [15] or numerically.
Using Eq. (43) in Eqs. (42), (10), and (40) and the second
equation in Eq. (34), we find the asymptotic growth laws in

the form

f1(z) ∼= Am

zm/2
; F (z) ∼= Am

1 − m
2

z1−m/2;

(45)

G(z) ∼= ν

Am

(
1 + m

2

)z1+m/2; τ (z) ∼= z1+m/2

Am

(
1 + m

2

) , m < 2.

Here, the coefficients Am are defined by the second equation
in Eq. (43). These results are reduced to the corresponding
Eqs. (13) and (14) in the particular case of m = 1.

We now note that Eqs. (45) is relevant only for m < 2
because the solution for the cluster density starts decreasing
for m > 2 [the threshold value of m = 2 corresponds to only
a logarithmic increase of F (z)]. This means that, rather than
increasing infinitely at large z, the cluster density saturates
at a certain maximum value Fmax when m > 2. Repeating
the above procedure at a time-independent Fmax instead of
an increasing F (z), we arrive at a rather different limiting
behavior

f1(z) ∼= Cm

zm−1
; F (z) ∼= Fmax;

(46)

G(z) ∼= Fmaxz
m; τ (z) ∼= zm

Cmm
, m > 2.

Here, the Cm coefficients are expressed through Fmax as

Cm = ν

mFmax
, (47)

while the value of Fmax can be easily obtained for a particular
SD at a given m, as will be discussed shortly.

VII. ANALYTICAL SIZE DISTRIBUTIONS AND SCALING
PROPERTIES

With the obtained asymptotic behaviors, the simplified
equation describing the evolution of the monomer concen-
tration writes down as

df1

dτ
= f1

df1

dz
∼= ν − f1 − f1 ×

{(
ν

Am

)
zm/2, m < 2

mFmaxz
m−1, m > 2

,

(48)

with f1(0) = 0. Here, we assume that the power law asymp-
totes for F and 〈ρm−1〉 can be applied uniformly from τ = 0.
Even with this simplification, Eq. (48) cannot be integrated
analytically for arbitrary m, so we have to resort to some
approximations. In the regime of complete condensation with
ν � 1, the relevant approximations are given by a combination
of the two power-law functions that resume correctly the small
time interpolation f1

∼= ντ [where the τ (z) dependence is
determined from either Eq. (45) or Eq. (46)] and the large
z asymptotes. These approximate solutions are given by

f1(z) ∼= ν1/2 amz1+m/2

1 + bmz1+m
; am =

[
Bm(

1 + m
2

)(
1 − m

2

)]1/2

;

(49)

bm = Bm

1 − m
2

, m < 2;
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f1(z) ∼= ν1/2 cmzm

1 + dmz2m−1
;

(50)

cm = 1

m1/2

[∫ ∞

0

dxxm

1 + x2m−1

] 2m−1
2(m+1)

; dm = mc2
m ; m > 2.

Here, the cm coefficients at m > 2 were obtained from the
normalization condition

Fmax =
∫ ∞

0
dzf1(z). (51)

We have also extracted the large ν1/2 multiplying factor so
that all other coefficients in these expressions for f1(z) are of
the order of one.

Applying Eq. (49) with the substitution of 1 − m/2 to
1 in the denominators of am and bm (corresponding to the
integration

∫
dz/z = lnz) to the threshold case with m = 2 at

B2 = 2/3, we obtain the simple analytical expression

f1(z) ∼=
(

ν

3

)1/2
z2

1 + 2z3/3
, m = 2. (52)

Integration of this f1(z) leads to the logarithmic increase of
the cluster density, as discussed earlier

F (z) ∼= 1

2

(
ν

3

)1/2

ln

(
1 + 2

3
z3

)
, m = 2. (53)

This completes the analytical description of f1(z) for all m.
It is seen that the cluster density scales as ν1/2, which is also
the case for Fmax at m > 2.

The obtained analytical expressions were checked by
comparing the results for f1(z) based on Eqs. (49), (50),
or (52), the numerical solution of Eq. (48), and numerical
integration of the initial discrete system given by Eqs. (1)
and (2), for different m and ν. In particular, Fig. 6 shows
the corresponding f1(z) at ν = 100 for m = 1 and 3/2. It is
seen that, while the maximum values of f1(z) cannot be fitted
precisely by both approximations, the positions of the maxima
as well as the large z asymptotes are described fairly well. Our
calculations with different parameters reveal that the exact
solution for f1(z) near the maximum (the red curves in Fig. 6)
are always bound between the solution to Eq. (48) (the blue
curves) and the analytical approximations (the black curves),
with the discrepancy decreasing toward larger ν.

Based on the above analysis, we first consider the analytical
SDs in the deterministic case m � 2, where the general
solution is given by Eq. (38). Using Eqs. (50) and (52) for
f1(z), one obtains

g(ρ,z)

cmν1/2
∼=

{
(z−ρ)m

1+dm(z−ρ)2m−1 , 0 � ρ � z

0, ρ > z
, m � 2, (54)

where c2 = 1/31/2 and d2 = 2/3 for m = 2. This solution
shows the z-independent scaling for the SD expressed in
terms of the g/ν1/2 and ρ − z = s1/m − s

1/m
∗ variables at

large enough z because the right-hand side collapses to the
unique, ν-independent function of ρ − z after the SD at ρ → 0
becomes close to zero.

When expressed in terms of the conventional scal-
ing variables g/f1∞ and ρ/z = (s/Z)1/m [where f1∞(z) =

0 2 4 6 8 10 12
0
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Analytical solution (49)
 Numerical solution of Eq. (48) 
 Numerical integration of Eqs. (1),(2)

f 1(z
)

z

m=3/2, =100

(b)

(a)

0 5 10 15 20
0

2

4

6

8

m=1, ν=100 

Numerical solution of Eq. (48)
 Analytical solution (49) 
 Numerical integration of Eqs. (1), (2)

f 1(z
)

z

FIG. 6. (Color online) Monomer concentration f1 as a function
of z at the fixed ν = 100, (a) m = 1 and (b) m = 3/2, obtained
from different equations. In the case of m = 3/2, the coefficient B3/2

equals approximately 0.8 from Eq. (41).

ν1/2(cm/dmzm−1) = Cm/zm−1 is the asymptote of f1(z) at large
z as given by the first equation in Eq. (46)], Eq. (54) takes the
form

g(ρ,z)

f1∞(z)

∼= (1 − ρ/z)m

1/(dmz2m−1) + (1 − ρ/z)2m−1

z→∞−−−→ 1

(1 − ρ/z)m−1
.

(55)

The formal limit at z → ∞ gives the extreme case of the
Bartelt-Evans singularity [5], where the purely deterministic
function in the right-hand side tends to infinity at ρ → z

and equals zero for all ρ > z (because clusters with sizes
larger than z cannot be present in the SD). As in the case of
size-independent capture coefficients considered in Sec. III,
this singularity arises because the SD near its maximum is
not described by the same power-law function as on its left
tail. Searching such a z-independent solution for all ρ is
equivalent to assuming that the monomer concentration has
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FIG. 7. (Color online) Deterministic SDs at ν = 100 and m = 2
showing how the spectrum develops the maximum and then moves
along the ρ axis without changing its shape as z increases.

never evolved from zero at the beginning of growth and has
never reached its maximum but has been always decreasing
as a power-law function of time, which is obviously not the
case. The two different ways of presenting the SD at m = 2
are given in Figs. 7 and 8, showing a very similar behavior to
the graphs in Figs. 3 and 4, although the capture coefficients
are no longer size independent. It is also seen that that the
SD given by Eq. (54) at finite z describes very well the
so-called “nucleation catastrophe” [23], where the maximum
of the spectrum develops and propagates to the right along
the size axis as the growth time increases (Fig. 7). In terms

of the ρ − z variable, this situation is also described by the
time-invariant distribution which is offcut by the condition
ρ � 0, as in nucleation theory with the Zeldovich nucleation
rate [26,27]. Compared to Fig. 3, the SDs shown in Fig. 7 are
not affected by fluctuation-induced broadening, as is should
be for m = 2.

In the case of m < 2, the SD is given by Eq. (37) which
contains a rapidly decreasing Gaussian exponent under the
integral. Due to this exponential decay, one can use the large z

interpolation given by the first equation in Eq. (45) uniformly
under the integral. This reduces Eq. (37) to

g(ρ,z) ∼= μmν1/2 1

z(m/2)(1−m/2)
ϕm(p); (56)

p = ρ − z√
2ψ(z)

=
[
m

(
1 − m

2

)]1/2 (ρ − z)

z1−m/2
; (57)

where the ϕm(p) function is defined as

ϕm(p) =
∫ ∞

p

dx
e−x2

(x − p)m/2
. (58)

The coefficients μm are given by

μm = m1/4
(
1 − m

2

)3/4

[
πBm

(
1 + m

2

)]1/2 . (59)

Here, we use explicitly the z dependence of the dispersion,
given by the second Eq. (31). Of course, this result is reduced
to Eqs. (16) and (17) at m = 1.

This SD features the following asymptotic behaviors:

g(ρ,z) ∼= μmν1/2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π1/2

[m(1− m
2 )]1/4

1
(z−ρ)m/2 , z − ρ � √

2ψ(z)

�( 1
2 − m

4 )
2

1
z(m/2)(1−m/2) , ρ = z

γm

z(m−1)(1−m/2)

exp[−m(1− m
2 ) (ρ−z)2

z2−m ]

(ρ−z)1−m/2 , ρ − z � √
2ψ(z)

, (60)

i.e. the power-law form on the long left tail and the exponential
Gaussian decay on the abrupt right tail. The refined scaling
therefore holds in terms of the variables

g(ρ,z)

μmν1/2
z(m/2)(1−m/2) = ϕm

{[
m

(
1 − m

2

)]1/2 (ρ − z)

z1−m/2

}
, (61)

where the right-hand side is the unique function of (ρ −
z)/z1−m/2. Such a scaling is distinctly different from the
deterministic case [Eq. (54)] because the scaling variable
contains the fluctuation-induced denominator z1−m/2.

Vvedensky [15] obtained the following asymptotic solution
for m < 2 in terms of the “natural” variables

f (s̃,G) = Qm

G

〈s〉2

1

s̃1−1/m(1 − ξms̃1/m)m/2
, (62)

where G is the coverage, s̃ = s/〈s〉 and Qm, ξm are the
coefficients which depend on the growth index m. From
Eqs. (43) and (45), our solution yields G = C × ν1/2z1+m/2

(where C is a constant) because Am scales as ν1/2. Using

Eq. (60) for the left tail of the SD and Eq. (39), we get

f = C × G

z1+ms1−1/m

1

(1 − ρ

z
)m/2

, (63)

where the prefactor depends on m. The equivalence of
Eqs. (62) and (63) follows upon the substitution ρ = s1/m

according to Eq. (24) and z = 〈s〉1/m/ξm. Furthermore, a more
detailed analysis shows that the coefficients Qm and ξm in the
Vvedensky formula given by Eq. (62) and in our solution are
exactly identical.

If normalized to the asymptotic f1(z) at large z as in Ref. [5],
the SD becomes

g(ρ,z)

f1(z)
= C × zm2/4ϕm

(
ρ − z√
2ψ(z)

)
, (64)

which gives the zm2/4 singularity at z → ∞ for ρ = z. We saw
this discontinuity earlier in Sec. III in the particular case m =
1. It is clear that the additional power index m2/4 arises due
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FIG. 8. (Color online) Same distribution as in Fig. 7 replotted in
terms of the g/f1 and ρ/z variables. The red line at z = 1000 gives
the singular asymptote 1/(1 − ρ/z) which is a good approximation
at the left tails of the SDs for large enough z.

to kinetic fluctuations. As in the deterministic case, presenting
the right-hand size of Eq. (64) in terms of the g/f1 and ρ/z

variables at z → ∞ basically reduces the normalized SDs to
their asymptote on the left tail

g(ρ,z)

f1(z)
=

{
C

(1− ρ

z
)m/2 , ρ < z

0, ρ > z
. (65)

This is the Bartelt-Evans singularity which arises also in the
case of arbitrary growth index m, as was demonstrated earlier
in Ref. [15].

The obtained continuum SD is shown in Fig. 9 in the case
m = 3/2, compared to the results of numerical integration of
discrete REs given by Eqs. (10) to (12). The same continuum
distribution expressed in the refined scaling variables defined
by Eq. (61) is presented in Fig. 10, whereas Fig. 11 shows

0 5 10 15 20
0

2

4

Equations (56)-(59)
 Numerical integration

g(
,z

)

z

m=3/2, =100, z=8

FIG. 9. (Color online) Size distributions at m = 3/2, ν = 100,
and z = 8, obtained from Eqs. (56) to (59) and from numerical
integration of discrete Eqs. (10) to (12).
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16
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FIG. 10. (Color online) Continuum distribution at m = 3/2, ν =
100, and different z, presented in terms of scaling variables defined
by Eq. (61).

the SDs in the Bartelt-Evans coordinates. Qualitatively, the
picture remains the same as in Figs. 3 and 4 and demonstrates
that the z-independent scaling in terms of the g/f1 and ρ/z

variables cannot be resumed even when capture coefficients
are size dependent. Our analysis also shows that the choice
of the refined scaling variables at m < 2 must account
for fluctuations described by the second derivative in the
continuum RE.

In terms of the “natural” variables f (s,s∗), where s∗ is the
maximum size in the deterministic limit, related to the average
number of monomers in the clusters as 〈s〉 = Bms∗, our refined
scaling has the form

ms1−1/mf (s,s∗)

cmν1/2
= C × s1−1/mf (s,s∗)

G
s∗

= φm(s1/m
∗ − s1/m), m � 2; (66)
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FIG. 11. (Color online) Same distribution as in Fig. 12 replotted
in terms of the g/f1 and ρ/z variables.
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ms1−1/mf (s,s∗)

μmν1/2
s1/2−m/4
∗

= C × s1−1/mf (s,s∗)

G
s1+1/m−m/4
∗

= ϕm

(
s

1/m
∗ − s1/m

s
1/m−1/2
∗

)
, 1 � m < 2; (67)

Here, we use different formulations of scaling discussed
previously [4,5,15,17,18–22], i.e. through s∗ and ν ∝ D or
through s∗ and the coverage G. The unique scaling functions
in the right-hand sides are given by Eqs. (54) and (61),
respectively, with ρ = s1/m and z = s

1/m
∗ . Very importantly,

since both f and G are proportional to λ2 in our normalization,
the dependence on the control parameter ν and therefore of all
the physical parameters (D, I , tA) enters only the coverage
G(G ∝ ν1/2), while the scaling functions are independent of
ν. The factor s1−1/m arises due to the size dependence of the
capture coefficients and the deterministic deformation of the
SDs caused by it. The cause of the factor s

1/m−1/2
∗ in Eq. (67)

is kinetic fluctuations. When the coverage G is introduced into
the scaling expressions, the different power-law behaviors of
the s∗ factors is due to different dependences of G(s∗) and the
absence or presence of kinetic fluctuations at m � 2 or m < 2,
respectively.

In the formal limit z → ∞, which requires either infinite
growth time or infinitely high diffusivity, Eqs. (66) and (67)
can be reduced to the nonanalytic scaling functions of s/s∗
according to

f

(
s

s∗
,s∗,G

)
= C × G

s
3−2/m
∗

1(
s
s∗

)1−1/m[
1 − (

s
s∗

)1/m]m−1 ,

(68)
m � 2;

f

(
s

s∗
,s∗,G

)
= C × G

s2∗

1(
s
s∗

)1−1/m[
1 − (

s
s∗

)1/m]m/2 ,

(69)
1 � m < 2;

The constant prefactors depend on m and are easily deduced
from the expressions given above. Equation (69) is identical
to the Vvedensky solution [15], while Eq. (68) generalizes the
latter to the case m � 2. The scaling functions of s/s∗ in the
right-hand sides are singular only at s/s∗ = 1 for m = 1 and at
the two points s/s∗ = 0 and 1 for m > 1. Therefore, whenever
the capture coefficient is an increasing power-law function of
s, the s/s∗ scaling acquires the singularity not only for large but
also for small sizes. The functions given by Eqs. (68) and (69)
are shown in Fig. 12 for different m.

Summarizing, we have included desorption into the REs
for irreversible growth and constructed the corresponding
analytical solutions for the SDs by using the z variable instead
of time or coverage. It has been shown that the simplest
case of the size-independent capture coefficients (m = 1) is
affected by the purely Poissonian random broadening of the
SD, which is in fact well known in general growth theory [39].
We have considered the size-dependent capture coefficients
of the power-law form ms(m−1)/m and obtained the analytical
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FIG. 12. (Color online) Scaling functions of s/s∗ at different m.

solution for the SDs for arbitrary m. As in general nucleation
theory with decay [30], the fluctuation-induced broadening of
the SDs is present at m < 2 and absent at m � 2.

In any case, the appropriately normalized SDs feature the
unique scaling shapes in terms of the correct variables and
do not feature scaling for finite z if presented as functions
of ρ/z. This property holds only for the long left tail of the
SDs, i.e. for small enough clusters. In simple terms, it can
be said that the SD shapes reflect the time dependence of the
monomer concentration, which first rapidly increases and then
slowly decreases with time. The SDs are obtained roughly by
inverting the z-dependent f1(z) in terms of the z − ρ variable,
as has been known for a long time [26] in a more general
case. This refined scaling gives a more detailed picture of
the universal SD behaviors starting from the initial nucleation
step up to infinite z and does not require the assumptions of
large ratios of diffusion constant over deposition or desorption
rate. In the formal limit z → ∞, all the obtained SDs can be
presented as nonanalytic scaling functions in terms of the ρ/z

or s/s∗ variable, as discussed earlier [4,5,15]. At m = 1, the
scaling function is singular for large sizes [5], while at any
m > 1, it acquires the second singularity for small sizes [15].

The main results regarding the refined scaling and the
conventional scaling, converted into the “natural” variables,
are given by Eqs. (66)–(69), respectively. In both cases, the
dependence on the control parameter ν is contained only in
the coverage G, while the universal scaling functions depend
only on the growth index m.

Our results have been obtained based on the mean field
RE approach. A careful analysis of the cooperative effects
in the regimes with negligible desorption is required to
investigate whether the refined scaling would be relevant also
in this case. The obtained size distributions can be useful for
modeling concrete systems, including those with very high
diffusivity and in complete condensation regime, but also
systems with high desorption rates. We now plan to investigate
in more detail the regimes of incomplete condensation and to
consider particular growth processes from the viewpoint of the
obtained results. Another important generalization could be
more complex multicomponent systems described within the
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RE approach [40,41]. As a general conclusion, our analysis
shows that the commonly believed scaling at finite growth
times and diffusivities holds only at the long left tail of
the SDs. The asymmetry of the SDs is due to the no-decay
assumption and therefore is the most questionable among
other approximations. Consequently, an interesting direction is
including cluster decay for longer growth times, which would
shorten the left tail and could change completely the scaling
properties for smaller particles.
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