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Interplay of Coulomb blockade and ferroelectricity in nanosized granular materials

O. G. Udalov,1,2 N. M. Chtchelkatchev,1,3,4 A. Glatz,5,6 and I. S. Beloborodov1

1Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, USA
2Institute for Physics of Microstructures, Russian Academy of Science, Nizhny Novgorod, 603950, Russia

3L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117940 Moscow, Russia
4Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow, Russia

5Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
6Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

(Received 26 November 2013; revised manuscript received 22 January 2014; published 10 February 2014)

We study electron transport properties of composite ferroelectrics—materials consisting of metallic grains
embedded in a ferroelectric matrix. In particular, we calculate the conductivity in a wide range of temperatures and
electric fields, showing pronounced hysteretic behavior. In weak fields, electron cotunneling is the main transport
mechanism. In this case, we show that the ferroelectric matrix strongly influences the transport properties through
two effects: (i) the dependence of the Coulomb gap on the dielectric permittivity of the ferroelectric matrix,
which in turn is controlled by temperature and external field, and (ii) the dependence of the tunneling matrix
elements on the electric polarization of the ferroelectric matrix, which can be tuned by temperature and applied
electric field as well. In the case of strong electric fields, the Coulomb gap is suppressed and only the second
mechanism is important. Our results are important for (i) thermometers for precise temperature measurements and
(ii) ferrroelectric memristors.
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I. INTRODUCTION

In the past years, composite materials, consisting of con-
ductive grains embedded into some insulating matrix, have at-
tracted continuously increasing attention due to the possibility
to combine different, and sometimes competing physical phe-
nomena in a single material and observe new fundamental ef-
fects [1,2]. The possible range of observable behaviors is very
broad and the following examples are by no means exhaus-
tive: granular metals can show the insulator-superconductor
transition [3–5] due to an interplay of superconductivity and
Coulomb blockade, giant magnetoresistance effects appear in
granular ferromagnets [6,7] because of the spin dependent tun-
neling of current carriers between grains, or the combination
of ferroelectric and ferromagnetic materials allows to produce
a strain mediated magnetoelectric coupling [8–10].

Besides those fundamental properties, composite materi-
als are promising candidates for concrete microelectronics
applications. Composite ferromagnets, for example, can be
used in magnetic field sensors, due to a high sensitivity
of their resistance to a magnetic field change. Granular
ferroelectrics—subject of this work—are useful in memory
[11,12] and capacitor [13,14] applications because of their
hysteresic behavior and their high dielectric permittivity.

The most interesting and complex aspects of these hybrid
systems are their electron transport properties. In particular,
in (nano) granular materials, several fundamental physical
phenomena have to be taken into account in order to develop
a theory for the electron conductivity. In this respect, the most
important are Coulomb blockade [15–17], grain boundaries
[2], and quantum interference effects [18,19]. The transport
properties of composite systems are determined by (i) the
material and the morphology of individual grains and (ii) the
nature of the coupling between grains. The conducting grains
themselves can be made out of metallic [16], superconducting
[3–5], or ferromagnetic [6,7] materials in various sizes and
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FIG. 1. (Color online) (Top) Sketch of a granular ferroelectric
(GFE) material with two metal contacts (source and drain). (Bottom)
Sketch of a pair of grains embedded in a FE matrix with radii R1

and R2 and distance 2r between them. The vector �P is the local
electric polarization of the FE matrix and the vector �Ei is the internal
electric field appearing in the system due to the presence of charged
impurities. The vector �Ee is the applied external electric field.

shapes. The effective coupling strength between grains can
be controlled by the materials in which the grains are
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embedded (the matrix), the grain shape and the nearest-
neighbor distance distribution. A typical matrix could be an
insulator, a semiconductor, or ligants keeping the grains apart.

Most investigations that address composite (nano) materials
dealing with transport physics consider the grains themselves
and the emerging transport properties of large grain arrays.
In contrast, here we investigate the situation, where the most
interesting features of the electron transport appear and are
controlled by the insulating matrix. In particular, we investigate
composite materials consisting of normal metallic grains
embedded in a ferroelectric (FE) matrix [8–10], see Fig. 1.
In the following, we refer to these systems as composite
ferroelectrics or more precisely as granular ferroelectrics
(GFEs).

Recently, composite materials and low-dimensional struc-
tures based on ferroelectric matrices attracted a lot of attention,
see, e.g., Refs. [1,20–27]. However, theoretical investigations
of the electron transport in GFEs was limited to the case
of rather large intergrain distances, where the GFEs are
practically insulators. It was shown that in the limit of weak
external electric fields the conductivity of GFEs strongly
depends on the correlation function of the local polarization
and the microscopic internal electric field [28].

In this paper, we study electron transport in GFEs in a wide
range of external parameters (electrical field and temperature)
that cover not only the insulating, but also the semiconducting
and the metallic regimes. In addition to the dependence of
the tunneling matrix elements on the electric polarization of
the ferroelectric matrix, which can be tuned by temperature
and applied electric field [28], we also consider two—so-far
unexplored—effects: (i) the dependence of the Coulomb gap
on the dielectric permittivity of the ferroelectric matrix, which
in turn is controlled by temperature and external field, and (ii)
the hysteresis behavior of the ferroelectric matrix.

Recently, transport properties of composite ferroelectric
materials were studied experimentally [12]. It was shown that
GFEs exhibit two important features: (i) switching between
different resistive states and (ii) a current voltage hysteresis.
At the end of this work, we will discuss these experimental
findings based on our theoretical results.

In the out-of-equilibrium regime, GFEs are particularly
interesting for applications and we will discuss the possibility
to use these materials as memristors (see, e.g., Ref. [27] and
references therein).

The paper is organized as follows. In Sec. II, we introduce
the model of GFEs and calculate the thermodynamic properties
of GFEs close to the transition point. In Sec. III, we study
transport properties of GFEs. We discuss our results in Sec. IV.
Our summary is given in the conclusion, Sec. V. Finally, we
present some estimates for typical materials and discuss the
applicability of our results in Appendix A.

II. MICROSCOPIC MODEL OF COMPOSITE
FERROELECTRICS

A. Model

Let us start with our model for composite ferroelectrics. An
important feature of GFEs is the electrostatic disorder in the
system. This disorder has two origins: (i) a spatially dependent

local anisotropy induced by the grain boundaries and (ii) a
strongly inhomogeneous microscopic internal electric field,
�Ei . This internal field, generated by charged impurities, see
Fig. 1, is effectively screened and its magnitude between two
particular grains is defined by the closest impurity located in
the FE matrix [2], | �Ei | = Ei ∼ e/(r2) ∼ 107–109 V/m with
r being the distance from the closest carrier trap, which is of
order of a few nanometers. This field interacts with the ferro-
electric matrix influencing the microscopic distribution of the
polarization �P of the ferroelectric order parameter and leading
to spatial fluctuations of the dielectric permittivity of the fer-
roelectric matrix. In addition to the internal, �Ei , and external,
�Ee, fields, the temperature, T , also influences the microscopic
structure of the polarization and the dielectric constant.

Granularity introduces additional energy parameters into
the problem [2]: each nanoscale cluster is characterized by
(i) the charging energy EC = e2/(εa), where e is the electron
charge, ε the dielectric constant, and a the granule size, and
(ii) the mean energy level spacing δ. The charging energy
associated with nanoscale grains can be as large as several
hundred Kelvins and we require that EC/δ � 1. This condition
defines the lower limit for the grain size: al = (ε/e2ν)1/(D−1),
where ν is the total density of states at the Fermi surface (DOS)
and D the grain dimensionality.

The internal conductance of a metallic grain is much larger
than the intergrain tunneling conductance, which is a standard
condition for granularity. The tunneling conductance is one of
the main parameters that controls the macroscopic transport
properties of the sample [2].

The most active regions in the FE matrix are those with the
smallest distance between neighboring grains where electrons
can tunnel, see Fig. 1. We describe these regions as quasi-
two-dimensional flat interfaces. In composite materials, each
grain has several neighbors and we enumerate different pairs
of grains (not the grains themselves) by index i. Each pair
of grains is characterized by its interface normal �ni = �ri/|�ri |,
where �ri is the vector connecting two grains. For grains of
equal sizes, there is no preferable direction (sign) of the local
normal �ni . Therefore we assume without loss of generality that
(�ni · �x0) > 0 where �Ee = Ee �x0 with �x0 being the direction of
x axis. This condition defines the direction of vector �ni .

For two-dimensional interfaces the electric polarization is
perpendicular to the interface, i.e., directed along the surface
normal. Since the correlation length of the ferroelectric order
parameter can be of the order of 1 nm for temperatures not
very close to the critical temperature we can assume that the
local polarization �P follows the local normal vectors �ni , see
Appendix A for details.

We also assume that external �Ee and internal �Ei electric
fields do not change the orientation of the polarization (only
the sign of the polarization can be changed by the electric
field). We describe the internal and external electric fields by
two angles θi,i and θe,i with respect to the normal �ni .

Next, we discuss important thermodynamic characteristics
controlling the electron transport in GFE. First, we discuss the
properties of local polarization and susceptibility concentrat-
ing on a single ferroelectric interlayer between pair of grains.
Second, we consider average quantities of GFE. Finally, we
discuss the hysteresis phenomena appearing in GFE.
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B. Local polarization and susceptibility

Next, we discuss the properties of local polarization and
susceptibility. To simplify our notations we will omit the grain
pair index i in the following.

The local polarization �P can be written as �P = P (E�n)�n
with E�n = Ee cos(θe) + Ei cos(θi). To describe the polariza-
tion P (E�n), we use the Landau-Ginzburg-Devonshire theory
[29–33] with the free energy density written in the form

F = F0 + αP 2 + βP 4 − E�nP . (1)

Here, F0 is the polarization independent part of the free
energy density. The validity of the mean-field theory in
thin ferroelectrics is discussed in Appendix A. Close to
the transition temperature TC the parameter α has the form
α = η(T − TC), and β does not depend on temperature [31].
Equation (1) does not take into account the nonuniformity of
the polarization P . All transport characteristics for an arbitrary
FE can be obtained if the function P (E�n) is known.

Above the transition temperature TC a nonzero polarization
P appears only for a finite electric field. Below TC a
spontaneous polarization appears even for zero electric field.

A hysteresis loop exists, as usual, only below the transition
temperature TC. Switching between two branches of hysteresis
loop occurs at the switching field Es = 4α

√|α|/6β/3.
The local dielectric susceptibility along the direction �n

is given by: [31] χ�n = ∂E�nP = [2α + 12βP 2(E�n)]−1. For
temperatures below the transition temperature, T < TC, the
dielectric susceptibility χ�n diverges at the points of the
polarization switching E�n = ±Es . For temperatures above TC

the permittivity χ�n is a smooth function without any singular-
ities. The above discussions are valid for local properties of
composite materials only.

C. Macroscopic susceptibility and correlation function

The electron transport in GFE is controlled by the average
electrical susceptibility χ and the correlation function of local
electric field and local polarization of FE matrix C = 〈( �Ei +
�Ee) · �P 〉. Using the microscopic model of FE matrix discussed

in Sec. II A, we calculate χ and C by averaging over the
mutual orientation of local normal �n, internal �Ei , and external
�Ee electric fields. The details of these calculations are located

into Appendix B.
The final result for temperature dependence of dielec-

tric susceptibility in Eqs. (B3) and (B4) is shown in
Fig. 2. The susceptibility has its maximum value χ‖ = χ⊥ =
42/3/(24β1/3E

2/3
i ) for temperature T = TC and zero external

field, Ee = 0, and it increases with decreasing internal field.
The derivative of susceptibility has a jump at the transition
point following from the divergence of the microscopic
susceptibility χ�n appearing at the Curie temperature TC.
However, in real ferroelectrics, this behavior is absent due
to order parameter fluctuations. Therefore the kink in the
average susceptibility χ is smeared. There is also another
peculiarity in the temperature dependence of the susceptibility
χ . at finite external electric field Ee due to the hysteresis
behavior of the polarization of FE matrix. This peculiarity
is located at the switching temperature TS, defined by the

FIG. 2. (Color online) Average dielectric susceptibility χ vs tem-
perature. The solid lines correspond to the longitudinal χ‖, Eq. (B3),
and the dash lines correspond to the perpendicular χ⊥, Eq. (B4),
components of susceptibility χ . The behavior is shown for both
hysteresis branches. Arrows indicate the path around the hysteresis
loop for fixed external electric field Ee = Ei/3. TC and TS are the
Curie and the switching temperatures, respectively. The derivative of
susceptibility has a jump at the transition point following from the
divergence of the microscopic susceptibility χ�n appearing at the points
of polarization switching (Es or TS). However, in real ferroelectrics,
this behavior is absent due to order parameter fluctuations. Therefore
the kink in the average susceptibility χ is smeared.

equation Es(TS) = 〈|E�n|〉, with Es being the switching field
and brackets standing for averaging over all pairs of grains.

The behavior of the correlation function C is shown in
the inset in Fig. 8. It has two branches below the critical
temperature TC due to hysteresis behavior of local polarization.
The upper branch corresponds to the case of local polarization
directed along the applied electric field, in this case the
correlation function is positive, C > 0. The lower branch
corresponds to the situation with local polarization directed
oppositely to the electrical field, in this case C < 0. Above
the Curie temperature TC the correlation function C has only
one branch and monotonically decreases with increasing the
temperature T .

D. Hysteresis

The properties of GFE depends on it’s history. To study the
hysteresis phenomena, we first apply a large positive external
electric field (Ee > 0) and then decrease its magnitude until
reaching a large negative field (Ee < 0) [upper branch], which
is finally reversed until the initial electric field value is reached
[lower branch], thus closing the hysteresis loop. As a result
the temperature dependence has two branches.

III. ELECTRON TRANSPORT IN COMPOSITE
FERROELECTRICS

In this section, we discuss the transport properties of com-
posite ferroelectrics. The ferroelectric matrix influences the
transport properties in two ways: (i) through the dependence
of the local tunneling conductance between two grains g̃t

on the polarization, g̃t = g0
t {1 + ζ [( �Ei + �Ee) · �P ] + μ[( �Ei +

�Ee) · �r]( �P · �r)} with g0
t being the tunneling conductance in the

paraelectric state and ζ , μ being phenomenological constants,
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and �r being the vector connecting the grains (see Fig. 1).
(ii) Through the dependence of Coulomb gap

EC = e2/(εa). (2)

The Coulomb blockade leads to the appearance of the Mott
gap, EC, allowing for an additional control of the transport
properties by external electric field and temperature. This
effect is especially pronounced for weak external electric
fields and low temperatures, where transport is due to electron
cotunneling [2]. For strong external fields, the Coulomb
blockade is suppressed, thus leading to a weak dependence
of the conductivity on the dielectric permittivity.

There are several transport regimes in composite mate-
rials depending on the coupling between the grains. For
weak coupling, low temperatures, and small electric fields
the electron transport is due to electron cotunneling. This
mechanism involves electron energy levels inside the Mott gap.
At higher temperatures electrons can be excited directly above
the Coulomb gap. Thus the activation transport mechanism
becomes important. At even higher temperatures, T � EC, the
electron transport becomes metallic.

We mention that for temperatures approaching the tran-
sition temperature TC the dielectric permittivity ε increases
leading to a decrease of the charging energy EC = e2/εa,
with ε being the permittivity of the whole sample including
the ferroelectric matrix and metallic grains. Assuming that
the metal dielectric constant is very large (infinite) at zero
frequency, we can write for sample permittivity

ε = εfe(�/�fe), εfe = 1 + 4πχ, (3)

were � and �fe are the sample and ferroelectric matrix
volumes, respectively.

The value of the dielectric permittivity εA, where activation
transport becomes important, is εA = e2ξ/(a2 kB T ), where
ξ is the electron localization length defined below [2].
If the maximum of ε = 1 + 4πχ is large at temperatures
approaching TC, ε > εA then one observes activation transport
in a temperature region T<

A < T < T>

A , where temperatures T<

A

and T>

A are defined by the condition ε(T 〈,〉
A ) = εA(T 〈,〉

A ). For grain
sizes a = 4 nm and temperature T ≈ 400 K, one finds εA ≈ 9.
Metallic regime appears for temperatures TM � e2/[ε(TM)a].
Usually ferroelectrics have a very large dielectric constants in
the vicinity of the transition temperature leading to the metallic
transport in this temperature region.

Another important parameter controlling the GFE conduc-
tivity is the external electric field, Ee. The phonon mediated
electron cotunneling occurs for weak external electric fields,
Ee < E∗ = T/(eξ ) ≈ 106–108 V/m. For electric fields Ee >

E∗, the electron cotunneling is mediated by external electric
field and does not depend on temperature. In addition, there
is another characteristic field ED = e/(a2ε) ≈ 106–108/ V/m.
For external fields larger than ED, the electron transport is
metallic. The ratio of the two fields is ED /E∗ = (EC /T ) (ξ/a).

We summarize the different transport regimes of granular
ferroelectrics as a function of external electric field and
temperature in the reversible case in Fig. 3 for the following set
of parameters: TC = 400 K, η = 0.01 K−1, β = 3 × 10−2, this
corresponds to BaTiO3; parameter ζ = 10−10 is chosen to be
small such that hysteresis effects can be neglected; gt

0 = 0.2,
a = 5 nm, �/�fe = 1.5, the last parameter corresponds to a

FIG. 3. (Color online) Transport phase diagram of granular ferro-
electrics in coordinates of the external electric field Ee vs temperature
T . TC is the Curie temperature. AC (shaded region) denotes the
activation conductivity, LVRH (cross filled region) and NLVRH
(unfilled region) stand for linear and nonlinear electron cotunneling,
respectively. MC (colored region) stands for metallic conductivity.
The blue line T<

A describes the transition to activation transport; the
brown lines TM describe the transition from activation to metallic
regimes, these lines have a physical meaning outside the metallic
regime only (colored region is MC). The electric field ED describes
the transition to the metallic regime. The field E∗ shows the boundary
between the linear and nonlinear hopping regimes. This field has
physical meaning outside the metallic regimes only, since inside the
metallic region the VRH contribution to the conductivity is negligible.

1-nm distance between the grains, and Ei = 7 × 108 V/m.
Below we discuss three transport regimes in more details.

A. Electron cotunneling

At low external electric fields and weak coupling between
the grains, the electron transport is due to the cotunneling
mechanism. The most important parameters are the average
tunnel conductance gt (P ) and the electron localization length
ξ [2]. The former is given by

gt (P ) = g0
t (1 + Ceff) with (4)

Ceff ≡ 〈 �E · �Peff〉 (5)

being the correlation function of the effective polarization with
�Peff = ζ �P + μ�r12( �P · �r12) and the electric field �E = �Ei + �Ee;

vector �r12 connects two grains; g0
t is the tunneling conductance

in the paraelectric phase. The inelastic localization length ξ is
given by the expression [2]

ξ = a/ ln
(
E2

c /T 2g0
t

)
. (6)
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The conductivity in this regime is

σL = g0
t (1 + Ceff) exp

( −
√

TP
0 /T

)
, (7)

where TP
0 is the characteristic temperature scale

TP
0 = T0

[
1 − ξ

2a
ln (1 + Ceff)

]
, (8)

with T0 = e2/(εξ ) [34]. To calculate Ceff one has to evaluate
first the average 〈( �E · �r12)(�r12 · �P )〉. Using Wick’s theorem,
one can show that Ceff = ζ̃C, where ζ̃ = ζ + μ〈�r2

12〉.
In the nonlinear (field driven) cotunneling regime with

external electric fields Ee > E∗, the conductivity has the
following form:

σNL = g0
t (1 + Ceff) exp

[−(
EW

0 /Ee

)1/2]
. (9)

Here, EW
0 = TP

0 /eξ is the characteristic electric field with
temperature TP

0 [35].

B. Metallic transport

For strong external electric field, Ee > ED, the Coulomb
blockade is suppressed leading to metallic transport. The main
contribution to conductivity in this regime is given by the
expression [2]

σD = 2e2gt/a = 2e2g0
t (1 + Ceff)/a. (10)

C. Activation transport

Another regime which is shown in Fig. 3 is the region
with activation transport where the main contribution to the
conductivity is due to electron driven by the temperature to the
conduction band, above the Mott gap

σA ∼ exp[−(EC /T )]. (11)

IV. DISCUSSION

A. Metal-insulator transition

In this section, we discuss two transport phenomena specific
to granular ferroelectrics starting our discussions with the
metal-insulator transition. The transport phase diagram in
Fig. 3 shows two transitions for temperatures close to the
critical temperature TC and weak applied electric fields:
(i) from VRH to activation transport and (ii) from activation
to a metallic transport. These transitions are possible due to a
strong dependence of the Coulomb gap on temperature.

The dependence of the dielectric permittivity and the
Coulomb gap on temperature is shown in Fig. 4. The curves are
plotted for the same set of parameters as used in the previous
section for the calculation of the transport phase diagram and
for external electric field we use Ee = 6 × 106 V/m. The
dielectric permittivity of ferroelectric materials diverges close
to the transition temperature on both sides of the transition as
ε ∼ 1/|(T − TC)|. However, due to the granular morphology
and the internal electric field the permittivity peak is smeared.

The transition from VRH to activation conductivity can be
understood as follows. Away from the transition temperature
TC, the dielectric permittivity ε of the FE matrix is small
and the Coulomb gap is large. Therefore there are no

FIG. 4. (Color online) Dielectric permittivity ε (solid line),
Eq. (3), and Coulomb gap EC (dash line) of granular ferroelectrics,
Eq. (2), vs temperature at fixed external electric field, Ee = 6 ×
106 V/m. TC is the Curie temperature.

electrons in the conduction band at zero temperature, thus
the GFE is an insulator. The only transport mechanism here
is VRH. The increase of temperature leads to the reduction
of the Coulomb gap and to the increase of the number of
electrons in the conduction band (above the Mott gap). The
activation conductivity becomes more important than VRH at
temperatures T � TM.

The transition from activation to the metallic regime can
occur in two ways (see Fig. 3): (i) the temperature driven, for
external fields less than Ee < 5 × 106V/m. In this case, the
Mott gap disappears for temperatures approaching the Curie
point leading the GFE to the metallic state. This transition
occurs at temperatures T = TM. The second is (ii) the field
driven, for external fields larger than Ee > 5 × 106V/m. In
this case, the voltage between the nearest-neighbor grains
becomes comparable with the Mott gap pushing electrons to
the conduction band. This transition occurs at external electric
field Ee = ED.

Figure 5 shows the metal-insulator transition corresponding
to the temperature dependence of the Coulomb gap presented
in Fig. 4. Figure 5 is plotted for small susceptibility χ , where

FIG. 5. (Color online) Conductivity σ of GFE, with σ0 =
2e2g0

t /a being the metallic conductivity in the paraelectric phase,
vs temperature at fixed external electric field Ee = 6 × 106 V/m.
Variable range hopping and electron cotunneling, Eq. (7), is the main
transport mechanism for temperatures T < T<

A . Close to the transition
temperature TC = 400 K the transport is metallic, Eq. (10). Between
these two regions the conductivity has activation behavior, Eq. (11).
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FIG. 6. (Color online) Conductivity σ , with σ0 = 2e2g0
t /a being

the metallic conductivity in the paraelectric phase, vs external electric
field Ee at fixed temperature T = 350 K (ED ≈ 1.5 × 107 V/m). The
solid and dotted lines correspond to the two hysteresis branches. The
arrows show the direction, the hysteresis loop is followed. There
are two different situations: (a) the average internal field Ei = 5.7 ×
107 V/m is less than the FE switching field Es = 6.3 × 107 V/m
and (b) the average internal field Ei = 5.7 × 107 V/m is larger than
the switching field Es = 3.9 × 107 V/m. For internal fields Ei > Es ,
there is no difference between fields E<

D and E>

D .

hysteresis effects can be neglected. For these parameters, there
are two clear transitions: (i) from VRH to activation transport
at temperatures T = T<

A and (ii) from activation to metallic
transport at external electric field Ee = ED. The field driven
transition occurs when the horizontal line in the transport phase
diagram in Fig. 3 corresponding to the external field Ee =
6 × 106 V/m crosses the ED curve.

It follows from Fig. 5 that the conductivity of GFE increases
three orders of magnitude in a rather narrow temperature range.
This is an unexpected result because usually conductivity
decreases in the vicinity of a phase transition due to scattering
of electrons on fluctuations of the order parameter. Here, we
have the opposite situation with decreasing resistivity. This
behavior can be utilized to built a GFE thermometer for precise
temperature measurements using an appropriate gauge. It is
worth to mention that this nontrivial behavior is a peculiarity
of granular ferroelectrics and cannot be observed in the tunnel
junctions with ferroelectric barrier.

B. Memory effects

In the previous section, we discussed the influence of
the FE matrix on the Coulomb gap of the GFE system.

Here, on the other hand, we study explicitly the influence
of the hysteretic behavior on the electron transport in GFEs.
Due to the hysteresis in a ferroelectric matrix, the resistivity
of GFEs has two states depending on the history for any
external electric field. Figure 6 shows the behavior of the
GFE conductivity on the external electric field with two
distinctive features. (i) The first feature is the metal-insulator
transition appearing for increasing electric field. For weak
external field the GFE is an insulator since all electronic states
are localized due to Coulomb blockade. At strong external
electric field, electrons can overcome the Coulomb gap moving
the GFE into a metallic state. The transition between these
two states occurs for the electric field E = ED. Figure 6
shows the transition between activation and metallic regimes
for temperature T = 350 K. (ii) The second feature is the
hysteresis behavior. The most striking manifestation of the
hysteresis is the strong dependence of the transition field ED

on the state of a ferroelectric matrix.
We introduce the fields corresponding to different

hysteresis branches as E<,>

D . The difference between these
fields is controlled by the internal parameters of the system.
One can distinguish two different situations. The curves
shown in Fig. 6(a) correspond to the situation when the
average internal field Ei = 5.7 × 107 V/m is smaller than
the FE switching field Es = 6.3 × 107 V/m. In this limit, the
effect is pronounced. In the opposite limit, Ei > Es , there is
no difference between E<

D and E>

D , see Fig. 6(b). Figures 6(a)
and 6(b) are plotted for the following set of parameters: the
tunneling conductance gt

0 = 0.2, the grain size a = 5 nm,
�/�fe = 1.5, parameters α and β are chosen to get the above
mentioned switching fields, and ζ = 10−7.

The transition field ED = e2/(a2ε) is determined by the
average dielectric permittivity, ε. Thus to understand the two
limits mentioned above one has to study the dependence of the
GFE dielectric permittivity ε on the external electric field, Ee.
Figure 7 shows the dependence of the local FE permittivity ε

on the local electric field consisting of internal field �Ei and ex-
ternal field �Ee. The two curves correspond to the two hysteresis
branches. The permittivity of the whole GFE can be found by
averaging over all orientations of the internal field, see Sec. II.
The local susceptibility should be averaged over the field
interval [Ee − Ei,Ee + Ei]. If the internal field Ei � Es , see
Fig. 7(a), then the averaging produces the same result for both
branches and one gets the same dielectric permittivity unless
the external electric field is less than Ei − Es . Therefore if the
transition field ED < Ei − Es , there is no difference between
E<

D and E>

D , see Fig. 6(b). If Ei < Es , see Fig. 7(b), then the av-
eraged dielectric permittivity is different for the two branches
at any finite external field. Therefore in this case, E<

D = E>

D .

C. Comparison with experiment

Here, we compare our results with available experimental
data on electron transport in composite ferroelectrics [12].
Experimentally, the current voltage characteristics has two
peculiarities {see Fig. 3(a) of Ref. [12]}: (i) switching of
the resistivity at a certain voltage and (ii) a current voltage
hysteresis effect. As can be seen in Fig. 6, the same features
are present in our model: (i) the current jump appears due
to a transition from the insulating phase with cotunneling
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FIG. 7. (Color online) The local permittivity ε of the FE matrix
vs local electric field, E = Ee + Ei , with Ee and Ei being the
external and internal electric fields, respectively. Solid and dash lines
correspond to two hysteresis branches. According to the procedure
described in the Sec. II the dielectric permittivity of the whole GFE
is the average of the local permittivity over different internal field
orientations. The filled area shows the region of averaging. There
are two different situations: (a) the internal field Ei is larger than
the switching field Es and (b) the internal field Ei is less than the
switching field Es .

transport mechanism to a metallic phase with suppressed
Coulomb blockade. (ii) The memory effect appears due to
a ferroelectric matrix hysteresis. Thus the data of Ref. [12] can
be qualitatively described by our theory.

We note that our Fig. 6 shows bipolar switching behavior
in contrast to the unipolar switching mechanism reported in
Ref. [12]. This difference is related to the fact that we assume
an infinite relaxation time of the polarization of the FE matrix
here. However, if the relaxation time is comparable to the time
the loop is traversed, unipolar switching is possible as well.

We note, that the variation of the switching voltage for
different hysteresis loops observed in Ref. [12] is an effect,
which cannot be described by the framework presented here.
The switching of the resistance appears when the Coulomb
blockade is suppressed by an external field along a single
conductive chain. The first conductive chain is determined by
the current distribution of the electrons in the metal particles
and impurities. Therefore it can be different for different
sweeping loops and so does the switching voltage. In our
consideration, we average the current over a large system size

smearing out the charge distribution fluctuations. Therefore
the switching voltage is time independent. This is not the case
in Ref. [12], since the thickness of the GFE in their experiment
is rather small.

We also mention that current-voltage hysteresis loops were
observed in granular metals, [36] i.e., in systems consisting
of metallic grains embedded into a simple insulator. In this
case, memory effects can be understood using the Simmons-
Verderber model [37] where electrons are trapped by defects
inside the insulator (the metal particles in the case of granular
metals) and stored in these defects for long times. This modifies
the potential profile for electrons moving through the system
and changes the resistance. This model can be also used for a
description of current voltage hysteresis in GFEs. In order
to discriminate between these two effect on can heat the
system above the ferroelectic Curie temperature, such that
the contribution of the hysteresis due to the FE matrix can be
neglected.

D. Influence of the FE matrix on the electron transport in the
metallic regime

In the metallic regime, the dielectric permittivity of the FE
matrix does not play an important role on the electron transport
of GFEs. However, it influences the tunneling conductance
between grains. In this region, the correlation function C of
local electric polarization and the local electric field becomes
important. Figure 8 shows the behavior of the conductivity in
the metallic region (external field Ee = 3 × 107 V/m) versus
temperature. The parameters of the GFE are chosen to be the
same as for the transport phase diagram except for parameter ζ ,
which is now larger 10−7. The presence of the FE matrix leads
to the occurrence of two resistive states. The upper branch
corresponds to the case of local polarization P of FE matrix
co-directed with the external electric field Ee. In this case,
the correlation function is positive, C > 0 and the intergrain
tunneling conductance and thus the conductivity increase. The
lower branch corresponds to the case of local polarization
P counter-directed to the external field (due to the hysteresis

FIG. 8. (Color online) Conductivity of a GFE vs temperature in
the metallic regime, Eq. (10), at fixed external electric field Ee =
3 × 107 V/m. Solid and dash lines correspond to the two hysteresis
branches. The inset shows the behavior of the correlation function
C(T ) on temperature, Eq. (B6). The conductivity in the metallic
regime is controlled by the correlation function.
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phenomenon) leading to the negative correlation function C <

0. In this case, the intergrain tunneling conductance decreases
resulting in the decrease of conductivity σD. For temperatures
T > TC = 400 K, the memory effects are absent leading to a
single resistive state.

V. CONCLUSION

We investigated the electron transport in composite ferro-
electrics consisting of metallic grains embedded in a ferroelec-
tric matrix and show that depending on the external electric
field and temperature three transport regimes are possible:
(1) multiple electron cotunneling, (2) sequential tunneling,
and (3) metallic transport. We showed that the crossover
between different regimes can be studied by changing the
temperature or the external electric field leading to a strongly
nonlinear conductivity behavior and large conductivity jumps.
The microscopic reason for the crossover between different
regimes is the changing of the Coulomb gap due to the variation
of dielectric permittivity of the ferroelectric matrix under the
influence of temperature or electric field. This interesting effect
arises due to the interference of granular morphology and
ferroelectric matrix.

Another peculiarity of electron transport in composite
ferroelectrics occurs due to the hysteretic behavior of the
ferroelectric matrix. It leads to the existence of two different
intermediate states with different average electrical polariza-
tion and correlation function of microscopic electric field
and microscopic polarization. These two states have different
conductivity.

We showed that our theory is in qualitative agreement
with recent experiments on transport properties of granular
ferroelectrics. In addition, we show that the main parameters
determining the transport in composite ferroelectrics are
(1) the correlation function of intrinsic microscopic field and
the local electric polarization and (2) the dielectric permittivity
of the ferroelectric matrix.
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APPENDIX A: APPLICABILITY OF THE MODEL

In this appendix, we consider the applicability of our
method. It is based on a mean-field approach, meaning that
fluctuations around the order parameter are small and therefore
cannot suppress the order parameter.

First, we estimate the correlation length of electrical
order parameter, rc, which is given by the expression, rc =√

g/(α(T − TC)), with α and g being the constants in the
expression of the free energy density of the ferroelectric,
F = F0 + α(T − TC)P 2 + βP 4 + g(δ�rP )2. The parameters g

and α can be estimated as α = 0.01 K−1, g ≈ 3 × 10−22 cm2

[38]. In our consideration, the direction of the polarization P

is determined by the local anisotropy field appearing due to
grain boundaries. This assumption is valid if the ferroelectric
domain wall thickness (or correlation length) is less than
the characteristic length scale of the spatial variations of the
anisotropy field. The latter is of the order of the grain size
(∼5 nm). Therefore for correlation length rc < 5 nm our
consideration is justified. With the parameters provided above
this inequality holds for temperatures |T − TC| > 12K .

Second, the mean-field theory for 3d samples is valid for
temperatures [39]

kB TC χ

r3
c

� α(T − TC)

β
= 2P 2

0 , (A1)

where kB is the Boltzman constant, χ is the macroscopic
susceptibility, β is the constant in the expression for the
free energy density of the ferroelectric material. To estimate
the left-hand side of Eq. (A1), we use the following set of
parameters [38]: α(T − TC) ≈ 1 (TC = 400, T = 300, α =
0.01 K−1), g ≈ 3 × 10−22 cm2. For the correlation length, we
find rc ≈ 1.5 nm. For these parameters, Eq. (A1) is satisfied.

The electrical polarization for thin (∼5 nm) films of BaTiO3

is about 0.4 C/m2 (1.2×105 statC/cm2 in cgs) [40]. The
critical thickness for this material is of order of 1 nm. For
the polarization P0 ≈ 3 × 105 statC/cm2 and susceptibility
χ ∼ 1/α(T − TC) ≈ 1, we find

kB TCχ

r3
c

≈ 107 statC2/cm4 (A2)

and

P 2
0 ≈ 1011 statC2/cm4. (A3)

Therefore inequality (A1) is well satisfied at room temperature.
Decreasing the temperature, one can effectively reduce

the dimensionality of the sample. For the correlation length
larger than the ferroelectric thickness, the three-dimensional
condition, Eq. (A1), needs to be replaced by the following
condition for the applicability of the mean-field theory:

kB TCχ

r2
c L

� α(T − TC)

β
= 2P 2

0 , (A4)

where L is the ferroelectric thickness. As one can see Eq. (A4)
is also satisfied for our set of parameters. Thus the requirement
of a small correlation length in comparison with the grain
sizes is the strongest restriction determining the validity of our
considerations.

APPENDIX B: AVERAGE CHARACTERISTICS OF GFE

Here, we discuss the average thermodynamic characteris-
tics of GFE. The mutual orientation of local normal �n, internal
�Ei , and external �Ee electric fields is random. We introduce
angles (θe, φe) and (θi , φi) describing the orientation of fields
�Ee and �Ei with respect to the local normal, �n. For uniform
distribution of angles (θi , φi), the distribution function is
ωi(θi,φi) = 1/(4π ). The distribution function of the angles
(θe, φe) is described by the following expression:

ωe(θe,φe) = 1

4π

{
1 + sign(Ee),0 < θe � π/2,

1 − sign(Ee),π/2 < θe � π.
(B1)
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In general, the distributions can be anisotropic for grains
forming a regular array. However, here, we concentrate on
the isotropic case.

We now calculate the average polarization �P for finite
external electric field �Ee. For the isotropic model, the average

polarization is parallel to the external field �P = P �x0. The local
polarization is directed along the local normal and its projec-
tion on the positive direction is ( �P · �x0) = P (E�n)| cos(θe)|.
Also we assume that the magnitude of the internal field | �Ei | is
spatially homogeneous. The generalization for an inhomoge-
neous distribution of internal fields is straightforward. For the
average polarization, we obtain

P =
∫∫ 2π

0
dφidφe

∫∫ π

0
sin(θi)dθi sin(θe)dθe

×P (E�n)| cos(θe)|ωe(θe,φe)ωi , (B2)

where ωe(θe,φe) is the distribution function defined by
Eq. (B1). Note that the average polarization does not enter
directly into the expressions for the electron transport.

Besides the average polarization, an important character-
istic is the average dielectric susceptibility χ . The composite
material is isotropic in the paraelectric phase for zero external
field an hence, the dielectric susceptibility χ is also isotropic.
However, for finite electric field, it is necessary to distinguish
the longitudinal and transverse dielectric permittivities. The
anisotropy of χ becomes important for an external field of
the order of the internal field. For these fields, the transport is
metallic meaning that the Mott gap is vanishingly small. Thus
the susceptibility is not important for strong fields. Below,
we consider the limit of strong internal fields, Ee � Ei , and
introduce the coordinate system related to the field �x0. The
direction along vector �x0 is denoted by the subscript ‖ and
the direction perpendicular to �x0 is denoted by subscript ⊥.
The average longitudinal susceptibility χ‖ = ∂P ‖/∂Ee‖ can

be calculated as follows:

χ‖ =
∫∫ ˜2π

0
dφidφe

∫∫ π

0
sin(θi)dθi sin(θe)dθe

×χ�n(E‖)| cos3(θe)|ωe(θe,φe)ωi. (B3)

The average transverse susceptibility χ⊥ = ∂P ⊥/∂Ee⊥ is
determined by the expression

χ⊥ =
∫∫ ˜2π

0
dφidφe

∫∫ ˜π

0
sin(θi)dθi sin(θe)dθe

×χ�n(E‖)| cos(θe)| sin2(θe) sin2(φe)ωeωi. (B4)

For small external fields, Eqs. (B3) and (B4) for the suscepti-
bility can be simplified to

χ‖ = 1

12Ei

∫ Ei

−Ei

χ�n(ε)dε + Ee

16Ei

[χ�n(Ei) − χ�n(−Ei)],

(B5)

χ⊥ = 1

12Ei

∫ Ei

−Ei

χ�n(ε)dε + Ee

32Ei

[χ�n(Ei) − χ�n(−Ei)].

Above the Curie temperature, T > TC the second terms of both
equations are zero and therefore the susceptibility is isotropic.
It is isotropic for zero external field Ee. The lowest order
expansion of χ in external field Ee, given in Eq. (B5), has
a finite linear contribution (second terms). This indicates a
finite remanent electric polarization at zero external field and
therefore is a signature of the hysteretic behavior.

One more important characteristic quantity of composite
ferroelectrics is the correlation function of electric fields and
polarization C = 〈( �Ei + �Ee) · �P 〉. It describes corrections to
the tunneling conductance in polarization �P and determines
the transport properties of a sample. In contrast to the dielectric
susceptibility, this correlation function is important in the
whole range of external electric fields. The correlation function
C is given by the following expression:

C =
∫∫ ˜2π

0
dφidφe

∫∫ ˜π

0
sin(θi)dθi sin(θe)dθeP (E�n)E�n| cos(θe)|ωe(θe,φe)ωi. (B6)

Simplifying Eq. (B6), we obtain

C = 1

4EiEe

[∫ Ei

−Ei

P (ε)(ε + Ei)εdε + 2Ei

∫ Ee−Ei

Ei

P (ε)εdε +
∫ Ee−Ei

Ee+Ei

P (ε)(Ei − ε + Ee)εdε

]
, if Ee > 2Ei and Ee > 0,

(B7)

C = 1

4EiEe

[∫ Ee−Ei

−Ei

P (ε)(ε + Ei)εdε + Ee

∫ Ei

Ee−Ei

P (ε)εdε +
∫ Ee+Ei

Ei

P (ε)(Ei − ε + Ee)εdε

]
, if Ee � 2Ei and Ee > 0,

(B8)

C = −1

4EiEe

[∫ Ei

−Ei

P (ε)(ε + Ei − Ee)εdε +
∫ −Ei

Ei+Ee

2P (ε)εEidε +
∫ Ei+Ee

Ee−Ei

P (ε)(Ei − ε)εdε

]
, if |Ee|> 2Ei and Ee � 0,

(B9)
and

C = −1

4EiEe

[∫ Ei

Ei+Ee

P (ε)(ε + Ei − Ee)eεdε −
∫ Ei+Ee

−Ei

P (ε)εEedε +
∫ −Ei

Ee−Ei

P (ε)(Ei − ε)εdε

]
, if |Ee|� 2Ei and Ee � 0.

(B10)
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