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Formation mechanism of bound states in graphene point contacts
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Electronic localization in narrow graphene constrictions is theoretically studied, and it is found that long-lived
(∼1 ns) quasibound states (QBSs) can exist in a class of ultrashort graphene quantum point contacts (QPCs).
These QBSs are shown to originate from the dispersionless edge states that are characteristic of the electronic
structure of generically terminated graphene, in which pseudo-time-reversal symmetry is broken. The QBSs can
be regarded as interface states confined between two graphene samples, and their properties can be modified by
changing the sizes of the QPC and the interface geometry. In the presence of bearded sites, these QBSs can be
converted into bound states. Experimental consequences and potential applications are discussed.
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I. INTRODUCTION

Quantum point contacts (QPCs), which are narrow constric-
tions connecting two wider samples, constitute fundamental
building blocks of miniaturized devices such as quantum
dots and qubits [1,2]. Being open systems, QPCs are usually
incapable of supporting atomistically small quasibound states
(QBSs) [3,4]. However, if they exist, QBSs can radically
affect the properties of a system. For example, they might
trap electrons and produce local magnetic moments [5–12],
which can cause spin-dependent transport through a QPC.

Graphene, which is a one-atom-thick carbon sheet, has
attracted tremendous attention in the past decade owing
to its novel physical properties and potential applications
for future electronic devices [13,14]. Nanostructures made
of graphene can be patterned using the lithography tech-
nique [15]. Graphene QPCs have been fabricated and ex-
tensively studied [16–23]. A shortest-possible QPC, which
is made of a single hexagon and makes an aperture for
electrons, has been theoretically examined [22], and typical
wave diffraction patterns were predicted. To date, all graphene
QPCs investigated have been designed to connect the middle of
samples, as sketched in Fig. 1(a), and no signatures of electron
localization were found in the ballistic limit.

In this paper, we systematically study a different type of
graphene QPC, where two graphene samples are connected
near the edges as shown in Fig. 1(b). In these QPCs, the edge
states, which appear on zigzag-shaped graphene edges at zero
energy [24–26], are shown to dominate the electronic transport
properties. For a half-graphene plane with a perfect zigzag
edge, the edge states are nonbonding and are located on only
one of the two sublattices. It has been shown that the edge
states are crucial in determining the magnetic and transport
properties of nanostructured graphene systems [25,27–36].

In conventional graphene QPCs, the edge states have
negligible effects because they are far from the QPC.
However, we show that electrons can be localized in QPCs
as depicted in Fig. 1(b), i.e., where edge states located on
different sublattices are coupled, resulting in the formation of
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QBSs. These QBSs can live up to τQBS ∼ 1 ns for sufficiently
large samples, and their wave functions can spread over
only a few lattice constants. Their lifetimes can be tuned by
changing the geometry of the QPC and the size of the sample,
whereas their energies εQBS are found to be insensitive to
sample dimensions. These QBS may be used as few-level
quantum dots and artificial atoms.

We organize the paper as follows. In Sec. II, we classify
the edge-connected graphene QPCs into three classes and give
a brief overview of the results. In Sec. III, we describe the
formation mechanism of QBSs using the Green’s-function
approach. In Sec. IV, we apply the theory to an example
QPC, where analytical results are obtained and compared to
numerical calculations. Finally, in Sec. V, we discuss some
experimental signatures and potential applications.

II. OVERVIEW

Figure 1(c) schematically shows the QPC that connects
two graphene samples of the same width W near their edges.
This QPC can be taken as an aperture for electron waves. The
length and width of the QPC are L and Wc, respectively. Each
graphene sample is geometrically confined by three edges,
which are denoted by e1, e2, and ē2 (e′

1, e′
2, and ē′

2) for the
left-hand (right-hand) sample. We have assumed that e2 (e′

2)
is parallel with ē2 (ē′

2). This condition is not necessary but
facilitates the analysis. The interface edges (i.e., e1 and e′

1)
are assumed to be parallel for a smooth joint. Furthermore,
we presume each edge to be either a perfect armchair (AC)
or zigzag (ZZ) (i.e., the angles θ and θ ′ are integers of π

6 ).
According to the edge structure, we can classify the QPCs into
three classes of configurations as shown in Fig. 2. The details
of each class are described below.

For class I, all edges in a QPC are AC, as shown in
Fig. 2(a). Because there are no edge states in this class, the
resulting QPCs resemble conventional QPCs and are therefore
not further addressed in this paper.

For class II, the edges e1 and e′
1 are ZZ, whereas the edges

e2 and e′
2 are AC. An example is given in Fig. 2(b). In this class,

edge states appear on e1 and e′
1. However, these edge states

are no more than surface states, whose wave functions are
bound to e1 (e′

1); i.e., the wave function exponentially decays
away from the QPC as schematically shown in Fig. 2(b).
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FIG. 1. (a) Schematic of the QPC connecting samples near the
middle. (b) Schematic of the QPC connecting samples near the edge,
where edge states can play an important role in electron transmission.
(c) Schematic of the generic graphene QPCs connecting samples near
the edge. Both samples infinitely extend along the edges e2 and e′

2.
The angles θ and θ ′ can be taken to be the same without loss of
generality.

Because the edge states do not extend along e2 (e′
2), they do

not directly participate in electronic transport. Therefore, this
class of QPCs simply admixes the surface states bound on e1

with those on e′
1, yielding (quasi-) bound states.

For class III, our main interest lies in this third class. The
interface edges e1 and e′

1 can be either AC or ZZ, while the

edges e2 and e′
2 (and hence ē2 and ē′

2) are ZZ. There are two
bunches of edge states located on different sublattices; these
edge states extend along e2 (e′

2) and ē2 (ē′
2). In Fig. 2(c), we

show an example of all ZZ edges. A different geometry is
shown in Fig. 3, where the interface edges are AC.

The QBSs are formed because of the nonbonding nature of
the edge states of the left and right samples (i.e., edges e2 and
e′

2). The QBS energy ±εQBS and lifetime τQBS are sensitive to
the ratio Wc/W . QBSs have a long lifetime only for Wc � W

2 .
The quantity τQBS rapidly increases with W according to a
power law; τQBS ∼ ( W

W0
)3ps, whereas εQBS is insensitive to W .

Here W0 is a length scale, which is around 86a ≈ 21 nm for
θ = θ ′ = π

2 . In general, QBS causes resonant scattering which
leads to a resonance peak in the conductance g of the QPC.
For large W , g takes on a symmetric Breit-Wigner form:

g ≈ gm

�2
QBS

(εF − εQBS)2 + �2
QBS

, (1)

where gm ∼ 1 in units of g0 = 2e2

h
, εF is the Fermi level, and

�QBS = �

τQBS
denotes the level-broadening parameter. For finite

W , the background contribution leads to an asymmetric line
shape for g, i.e., Fano resonances [37].

III. THEORY: T -MATRIX FORMALISM

A. Model

In this section, we analyze the electronic properties of
graphene QPCs using transition-matrix (T -matrix) formalism
based on the nearest-neighbor tight-binding model [38]. We
refer to the geometry shown in Fig. 2(c) for clarity. The
enlarged view of the QPC is displayed in Fig. 2(d), where
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FIG. 2. (Color online) Classification of QPCs connecting samples near the edges. (a) Example of class I, which has all AC edges and no
edge state. QPCs in this class are similar to QPCs connecting near the middle of samples. (b) Example of class II, for which the interface edges
are ZZ but the extending edges are AC. In this class the edge states exponentially decay from the interface and are localized near the interfaces,
i.e., bound states. Here the white (black) circles indicate the charge density of edge states on the A (B) sublattice sites. The schematic charge
densities of the edge state are for isolated samples [41]. (c) Example of class III, for which the extending edges are ZZ, whereas the interfacing
edges can be either ZZ (as in the example shown here) or AC (as in the example shown in Fig. 3). In this class, edge states also exist. However,
they are not bound states as indicated by the schematic wave functions of semi-infinite isolated samples (bottom panel). Nevertheless, bound
states emerge when QPCs are present. (d) Enlarged view of QPC [indicated by the dashed rectangle in panel (c)]. The QPC contains Nc

connecting bonds.

045423-2



FORMATION MECHANISM OF BOUND STATES IN . . . PHYSICAL REVIEW B 89, 045423 (2014)

Nz

xR

Nz

xL x

Nc

2

i
i

1

L

R

2

1

2

1

3

SCB
WCB

-1
 0

 1

 2

E/γ

 0

 π/a
k

-kc

Δ0

)b()a( (c)

FIG. 3. (Color online) (a) Class-III QPC with rectangular corners with Nc = 5 connecting bonds. In this QPC, the edge states have amplitude
on sublattice A (indicated by the white circle) for the left-hand graphene sample, whereas they have amplitude on sublattice B (indicated by
the black circle) for the right-hand graphene sample. The SCBs and WCBs alternate with each other. (b) Energy spectrum for a semi-infinite
ribbon consisting of Nz = 6 zigzag chains. Shaded areas indicate the spectrum of bulk graphene. Edge states appear in kc < k � π/a (red
segments). The black lines indicate the extended states. (c) Magnitude of the QBS wave function 〈j |QBS〉 in the vicinity of a SCB assuming a
symmetric boundary condition, which can be observed in STM. The calculation was done for Nz = 50 and εQBS ≈ 0.04.

the two graphene samples are connected via Nc connecting
bonds. Each bond has a left- and right-hand end lying on
x = xL and xR , respectively. The end sites on x = xL (xR) are
labeled iL (iR), where the index iL (iR) runs over 1,2, . . . ,Nc.
The graphene edge along x = xL (xR) corresponds to edge e1

(e′
1) in Fig. 1(c).
The total Hamiltonian of the system can be written as

H = HL + HR + V , where HL (HR) describes the left (right)
isolated graphene sample while V stands for the QPC.
Explicitly, we have

V =
Nc∑

iL=1

Nc∑
iR=1

γiL,iR (|iL〉〈iR| + H.c.), (2)

where γiL,iR = −γ0δiL,iR with γ0 ≈ 2.7 eV and δi,j is Kro-
necker’s function. We introduce the bare Green’s function,
G0(ε) = (ε + i0+ − H0)−1, with H0 = HL + HR . For later
use, we resolve the diagonal elements of G0 as follows:

G
i,i
0 (ε) =

∑
μ

|ψi;μ|2(ε + i0+ − εμ)−1, ψi;μ = 〈i|μ〉, (3)

where |μ〉 are the eigenstates of H0, i.e., H0|μ〉 = εμ|μ〉. Now
the T matrix can be defined as

T (ε) = (1 − V G0)−1V = V + V G0V + (V G0)2V + . . . ,

(4)
where 0+ denotes an infinitesimal positive number. In prin-
ciple, this matrix captures all physical effects arising from
scattering at the QPC. The QBS can be found by searching for
the poles of T (ε).

For further analysis, let us closely inspect the bonding
character at the interface. We note that the Nc connecting bonds
fall into two categories: strongly connecting bonds (SCBs)
and weakly connecting bonds (WCBs). Introducing the bare
local density of states (LDOS) on atomic site i at energy ε

as ρ0(ε,i) = − 1
π
Im[Gi,i

0 (ε)], a SCB is then defined to have

nonvanishing ρ0(0,i) on both i = iL and i = iR , where iL and
iR = iL denote the sites belonging to this bond. Similarly,
a WCB is defined to lack this property. In the QPC shown in
Fig. 2(c), all connecting bonds are SCBs. However, in the QPC
shown in Fig. 3, which also belongs to class III, the SCBs and
WCBs alternate with each other.

B. Energy and lifetime of QBS

In general, it is a formidable task to evaluate T exactly. Here
we use two approximations. First, we neglect all interbond
transitions (i.e., TiR,iL ∝ δiR,iL ). This is reasonable, because
these transitions are higher-order processes in G0 compared
with intrabond transitions. Second, we assume G

i,i
0 ≈ 0 at low

energies if i belongs to a WCB, which can be justified in the
limit W

2 	 Wc. Then, we can easily derive that TiR,iL (ε) ≈
−γ0δiR,iL for WCBs and that

TiR,iL (ε) ≈ −γ0δiR,iL

1 − γ 2
0 G

iL,iL
0 (ε)GiR,iR

0 (ε)
, (5)

for SCBs [39]. Basically, this expression describes the physical
processes in which an electron travels back and forth between
the sites iL and iR , in analogy with back-and-forth bounces
experienced by an electron sandwiched between two potential
barriers [4]. Note that such processes increase returning
probability and are responsible for the formation of QBSs.

The energy and broadening of QBS can be determined by
seeking the poles of Eq. (5). Rewriting γ 2

0 G
iL,iL
0 (ε)GiR,iR

0 (ε) =
RiL,iR (ε) + iI iL,iR (ε), the poles zQBS = εQBS + i�QBS can be
obtained via

1 − RiL,iR (zQBS) − iI iL,iR (zQBS) ≈ 0. (6)

As will be shown later, in the large W limit, we have

G
iτ ,iτ
0 ≈ 1

ε
Bτ − i

γ0
Cτ , (7)
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where τ = L or R. Bτ and Cτ are real values, which vary from
bond to bond. Later, we will see that Cτ decreases to zero with
increasing W following a power law whereas Bτ approaches
a constant Bτ,∞. Upon substitution, we immediately find(

εQBS

�QBS

)
≈ −γ0

2(1 + CLCR)

×
(

±
√

4BLBR − (BLCR − BRCL)2

BLCR + CLBR

)
. (8)

From this it follows that (1) there is a pair of QBSs with
each SCB, whose energies are symmetric about zero; (2) the
energy of the QBS is not sensitive to the sample width, i.e.,
εQBS ≈ ±γ0

√
BLBR ≈ ±ε∞ = ±γ0

√
BL,∞BR,∞; and (3) the

QBS has a broadening, �QBS, which shrinks rapidly with W ,
as explained below.

It proves useful to rewrite Eq. (5) as

TiL=l,iR=l(ε) = − γ0ε
2

(ε − zQBS,l)(ε + z∗
QBS,l)

, (9)

where we have used Eq. (7) and l indicates the lth SCB. The
maximum of |TiL=l,iR=l(ε)| occurs when ε = εQBS,l , for which
we have

TiL=l,iR=l(εQBS,l) = −iγ0
εQBS,l

2�QBS,l

	 TiL =l,iR =l(εQBS,l). (10)

Evidently, the lth SCB predominates for ε ∼ εQBS,l .
Now we establish Eq. (7). For this purpose, we decompose

Eq. (3) into its real and imaginary parts:

G
iτ ,iτ
0 (ε) =

′∑
μ

∣∣ψiτ ;μ

∣∣2
(ε − εμ)−1 − iπρ0(ε,iτ ), (11)

where iτ belongs to a SCB, ρ0(ε,iτ ) = ∑
μ |ψiτ ;μ|2δ(ε − εμ)

is the aforementioned LDOS on site iτ , δ denotes the Dirac δ

function, and the prime indicates the principal value of the sum
(which can be turned into an integral). The μ denotes either an
extended state or an edge state. In the sum, the contributions
from the extended states are of the order W−3 [40] and can
then be neglected for large W , whereas the contributions from
the edge states are roughly independent of W . Therefore,
considering that edge states have zero energies at large W ,
we arrive at the G

i,i
0 as given in Eq. (7), with the coefficients

given by

Bτ =
∑

μ=edge states

∣∣ψiτ ;μ

∣∣2
, Cτ = −πγ0ρ0(εQBS,iτ ).

(12)

From Bτ one determines εQBS. The quantity Cτ is found by
comparing Eqs. (7) and (11). Equations (5), (7), and (12)
constitute the foundation of the present theory. They are
applicable to all QPC configurations exemplified in Fig. 2 in
the limit W

2 	 Wc. In the next section, we discuss prototypical
examples.

In the limit W → ∞, the edge states approach those of
two isolated half-infinite graphene planes. Accordingly, the
quantity Bτ tends to a constant Bτ,∞ given by Eq. (12) with
the edge states of two half planes. Simultaneously, Cτ tends

to zero, since ρ0(εQBS,iτ ) comes from only extended states
whose wave functions vanish on iτ as W/Wc → ∞.

C. Wave functions of QBS

To derive the QBS wave function, we shall consider the
QBS associated with the lth SCB, for which iL = iR = l. In
the conventional scattering theory [38], the state vector is given
by |QBS,l〉 = |ψ0〉 + G0T |ψ0〉, where H0|ψ0〉 = εQBS,l|ψ0〉.
We have explicitly included the index l to indicate the QBS
in question. To specify the QBS wave function, �l(j ) ≡
〈j |QBS,l〉, where j denotes an arbitrary site in the entire
system, we have to impose boundary conditions on 〈j |ψ0〉.
Two types of boundary conditions are considered here.

Type I assumes an open system and is appropriate for
studying transport properties. The �l(j ) is supposed to
describe an electron wave incident from the left-hand sample,
tunneling through the QPC and partially transmitted to the
right-hand sample. The 〈j |ψ0〉 describes the superposition of
the incident wave and the totally reflected wave. We then find

�l(j ) ≈ 〈j |ψ0〉
+ TiL,iL (εQBS,l)G

j,iL
0 (εQBS,l)〈iL|ψ0〉

+ TiR,iL (εQBS,l)G
j,iR
0 (εQBS,l)〈iL|ψ0〉, (13)

where iL = iR = l. The third term describes the transmitted
wave. Note that we have kept only the lth bond, which is
reasonable according to Eq. (10).

Type II assumes a closed system, in which no current
flows from left to right. It is suitable for describing scanning
tunneling microscopy (STM). We then find

�l(j ) ≈ 〈j |ψ0〉 + TiL,iR (εQBS,l)

×[
G

j,iL
0 (εQBS,l)〈iR|ψ0〉

+G
j,iR
0 (εQBS,l)〈iL|ψ0〉

]
, (14)

where iL = iR = l. We have neglected the terms headed by
TiL,iL and TiR,iR , which are smaller than the retained terms [39].
An example of �l(j ) is mapped in Fig. 3(c), where we see that
�l(j ) extends over only a few lattice constants in space.

IV. EXAMPLE: θ = θ ′ = π
2

Let us illustrate the above theory for the rectangular-corner
configuration shown in Fig. 3. In this case, isolated graphene
samples are semi-infinite ribbons. Their wave functions can be
obtained from those for infinite ribbons, for which analytical
solutions have been established [27]. Thus, the coefficients
Bτ and Cτ can be analytically obtained. For convenience, we
express the width W in terms of the number of total zigzag
chains Nz as W = a

2
√

3
(3Nz − 2).

A. Calculation of εQBS and �QBS

The goal is to find the coefficients Bτ and Cτ . For
this purpose, we need ψi;μ, the wave function of mode
|μ〉, which can be represented as a superposition of two
counterpropagating waves related by time-reversal symmetry
appropriate to an ideal zigzag graphene ribbon. They can be
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easily constructed, so we simply quote the results here:(
ψiL;μ

ψiR ;μ

)
=

√
2a

L
eika sin

(
ka

2

) (−�μ(iL)

�μ(iR)

)
. (15)

In Eq. (15), k ∈ [0,π/a] and L denotes the circumference of
a virtual zigzag graphene tube used to discretize the values of
k. � is the transverse component of the wave function. Note
that μ is shorthand for a composite index, (k,u,s), where u =
1, . . . ,Nz counts the sub-bands and s = ± is the particle-hole
label, as sketched in Fig. 3(b).

Specific to each sub-band, there is a quantum number pu,
which is real at any k for u < Nz [27]. However, for u = Nz,
p is real only if k ∈ [0,kc] and it can be written as p = π + iη

if k ∈ (kc,
π
a

]. For this particular sub-band, in the large Nz

limit, whereby kc = 2π
3a

, it holds as a good approximation that
εs(k) ≈ 0 and [42]

(
�k,s(iL)

�k,s(iR)

)
≈

√
1 − g2

k

2

(
g

iL−1
k

g
Nc−iR
k

)
(16)

for k > 2π
3a

. Here gk = 2 cos(ka/2). For k < 2π
3a

, in the same
limit, we instead have εs(k) ≈ s(gk − 1) and

(
�k,s(iL)

�k,s(iR)

)
≈

√
1

Nz

(
sin(piL)

sin[p(Nc + 1 − iR)

)
, (17)

where p ≈ (1 − 1
Nz

)π and we have dropped the subscript u for
this sub-band. Note that, as shown in Fig. 3(b), this sub-band
is the only one available within the energy window [−�,�],
where � ≈ 4γ0 cos( Nz−1

2Nz−1π ).
To evaluate Cτ , we may presume that the QBS lies inside the

single-channel energy window (i.e., εQBS ∈ [−�,�]). Then,
the only contribution to ρ0, i.e., Cτ , comes from the u = Nz

sub-band with k ∈ [0, 2π
3a

], because these are the only states
available in that energy window. This assumption, whose
validity can be examined by consistency check, implies that
the QBS lifetime is essentially set by the dispersing segment
of the lowest sub-band. By using Eqs. (15) and (17), we obtain(

CL

CR

)
≈ A

π2

N3
z

(
i2
L

(Nc + 1 − iR)2

)
, (18)

with A = − 2a
L

π
∑

0�k< 2π
3a

sin2( ka
2 )δ[ε2

QBS − (gk − 1)2].

Transforming it into an integral, we find A = − sin(x0)
2|εQBS| , with

x0 ∈ (0, π
3 ) given by |εQBS| = 2 cos(xR) − 1. The quadratic

dependences on iL and Nc are notable in Eq. (18), which
explains why long-lived QBSs only form when Nc is small.

We proceed to estimate Bτ . At energies near zero the
primary contributions stem from the edge states. Actually,
since pu ≈ u−1

Nz
π for any extended state [Fig. 3(b)] of any

sub-band in the large Nz limit, the total contributions from the
low-energy sector, i.e., including those with u ∼ Nz, are of the
order ∼N−1

z

∑
u∼Nz

| sin( u−1
Nz

π )|2 ≈ N−3
z [40]. Nonetheless,

the contribution from the edge states is of order unity, as
indicated in Eq. (16). Thus, when Nz is large, the edge states
dominate. If we neglect the dispersion of these states, which
is reasonable for large Nz, we immediately confirm Eq. (12).

TABLE I. Theoretically evaluated parameters for certain SCBs
(Nc,iL) (obviously iR = iL for a given bond) in the configuration
shown in Fig. 3. From Eqs. (8) and (19), we see that �QBSN

3
z (given

in the last column) is independent of Nz. All energies are in units
of γ0.

(Nc,iL) BL,∞ BR,∞ ε∞ |A| CLN 3
z CRN 3

z �QBSN
3
z

(2,2) 0.04 0.21 0.09 9.7 386.7 96.7 42.5
(3,2) 0.04 0.04 0.04 21.8 870 870 34.8
(4,2) 0.04 0.017 0.026 33.5 1338 3011 71.5
(4,4) 0.009 0.21 0.044 19.7 3149 196.8 331.6

Using Eqs. (15) and (16), we find

lim
Nz→∞

(
BL

BR

)
=

(
BL,∞
BR,∞

)

= 2a

L

∑
2π
3a

<k< π
a

sin2(ka/2)
(
1 − g2

k

)( g
2(iL−1)
k

g
2(Nc−iR)
k

)
,

(19)

which quickly diminish as Nc or iL increases.
Note that the maximum values of BL,∞ and BR,∞ occur at

(Nc = 2,iL = iR = 2), in which case one finds BL,∞ ≈ 0.04
and BR,∞ ≈ 0.21, leading to ε∞ ≈ 0.09γ0. Therefore, for most
ribbons of interest, we indeed have ε∞ ∈ [−�,�], which is
consistent with our initial assumption [43]. Another case of
special interest is Nc = 3, for which we find BL,∞ = BR,∞ ≈
0.04, yielding ε∞ ≈ 0.04γ0. We then see that the ε∞ depends
strongly on Nc. The parameters for other interesting cases have
also been calculated and are tabulated in Table I.

B. Spatial profile of QBS

To visualize the QBS in real space, we calculated the wave
function of the QBS according to Eq. (14) for the symmetric
boundary condition. We neglected the first term in these
equations, so the spatial profile of the QBS is completely de-
termined by G

j,iL
0 and G

j,iR
0 , which can be easily evaluated nu-

merically using the resolution of Eq. (3). In Fig. 3(c), we show
the results for the symmetric configuration (Nc = 3,iL = 2).
As expected, the amplitudes are concentrated about the SCB,
spreading over a few lattice constants. This distribution can be
observed in STM (see Sec. V). It is worth noting that the SCB
resembles a molecular junction between the graphene samples.

C. Conductance

Ultranarrow QPCs usually strongly reflect incident electron
waves, as would be anticipated from diffraction theory in the
subwavelength regime [44]. However, such reflections can be
suppressed due to resonant tunneling from QBSs. In what
follows, we calculate the conductance g of the QPC shown in
Fig. 3(a) and derive Eq. (1).

We focus on the single-channel regime, i.e., ε ∈ (0,�),
where the modes can each be labeled by just a wave number.
We use k and q to denote the wave numbers for the left-
and right-hand samples, respectively. Following standard
tunneling theory [45], we obtain the conductance at zero
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temperature as

g = L2v−2
F |〈q = kF |T |k = kF 〉|2, (20)

where vF = ( dεk

dk
)k=kF

≈ −aγ0 sin(kF a/2) and kF ∈ (0, 2π
3a

)
denote the Fermi velocity (in units of � = 1) and Fermi wave

number, respectively. By using Eq. (5), we find

〈q|T |k〉 ≈ −γ0

∑
WCB

ψ∗
iR,qψiL,k +

∑
SCB

ψ∗
iR,qψiL,kTiR,iL .

Substituting this in Eq.(20), we find g = gw + gs + gws , where
gw (gs) involves only WCBs (SCBs) whereas gws involves both
SCBs and WCBs. Explicitly, we have

⎛
⎜⎝

gw

gws

gs

⎞
⎟⎠ = L2v−2

F

⎛
⎜⎜⎝

γ 2
0

∣∣∑
l=WCB ψ∗

iR=l;kF
ψiL=l;kF

∣∣2

−γ0
∑

l=SCB

∑
l′=WCB ψ∗

iR=l′,kF
ψiL=l′,kF

ψ∗
iR=l,kF

ψiL=l,kF
TiR=l,iL=l(εF )∣∣∑

l=SCB ψ∗
iR=l;kF

ψiL=l;kF
TiR=l,iL=l(εF )

∣∣2

⎞
⎟⎟⎠. (21)

For εF near the energy of a QBS, these terms scale with Nz as
follows:

gw ∼ N−6
z , gws ∼ N−3

z , gs ∼ N0
z , (22)

which can be shown on the basis of two observations. First,
from Eqs. (15) and (17) it follows that ψiτ ;k ∼ N

−3/2
z in the

limit Nc � Nz

2 . Second, from Eqs. (9) and (10) it follows
that TiR=l,iL=l ∼ −γ0N

3
z if εl,QBS ∼ εF or TiR=l,iL=l ≈ −γ0

otherwise. From this, we see that in the large-Nz limit the
dominant contribution to gws and gs stems from the SCB whose
energy is the closest to εF . Now the scaling becomes clear: in
gw, the wave functions contribute the N−6

z factor; in gws , this
factor is raised by N3

z due to the T -matrix element, which
contributes a N3

z factor; in gs , two T -matrix elements appear
and contribute N6

z , which exactly cancels the N−6
z from the

wave functions.
The above analysis shows that, for εF close to the energy

of a QBS, the gw and gws can be neglected for large Nz. Thus,
we find

g ≈ gs = L2v−2
F

∣∣ψ∗
iR=l;kF

ψiL=l;kF
TiR=l,iL=l(εF )

∣∣2
, (23)

where εF is near εQBS,l . By Eqs. (9) and (17), this expression
can be reduced to Eq. (1), with

gm = 4 sin2(kla/2)
∣∣�∗

kF
(iR = l)�kF

(iL = l)
∣∣2

(
εQBS,l

�QBS,l

)2

∼ N0
z , (24)

where kl ≈ 2π
3a

is given by εkl
= εQBS,l ∼ 0. With the pa-

rameters given in Table I, it is easy to see that gm ≈ 1. We
emphasize that Eq. (1) gives a good description only when
Nc � Nz

2 . Otherwise, additional contributions from WCBs and
overlaps between adjacent QBS make the g asymmetric and
more similar to a Fano resonance.

D. Numerical calculations

To verify the above results, we have performed numerical
calculations based on the Landauer formalism and mode-
matching method. Details of the scheme will be presented
elsewhere.

The calculated conductances for wide ribbons with Nc =
2,3,4 are presented as circles in Fig. 4. For Nc = 2,3,
one resonance peak is observed in the entire single-channel

regime, as shown in Fig. 4(a). Such peaks are interpreted
as consequences of QBS, whose energy and lifetime set the
position and half width of the peaks. As seen in Fig. 4(a),
the line shape of each peak can be well captured by Eq. (1),
which is a Lorentzian (solid curves). For Nc = 4, as shown in
Fig. 4(b), two peaks are observed. The lower-energy peak is
very sharp, whereas the higher-energy peak is much broader.
These peaks are identified with QBSs belonging to the two
SCBs, (Nc = 4,iL = 2) and (Nc = 4,iL = 4). The line shape
can be described by a superposition of two Lorentzians, as
noted in Fig. 4(b).

In Fig. 5 we examine the Nz dependences of three
quantities: gm, εQBS, and �QBS in Figs. 5(a)–5(c), respec-

0
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0.6

0.8

1

ε
F/Δ

g

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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1

g

(4,2) (4,4) N
z
=15

N
z
=20(3,2)

(2,2)

(a)

(b)

FIG. 4. Theory vs numerical calculations: energy dependence
of conductance g for the QPC shown in Fig. 3. Circles represent
numerical calculations while solid lines indicate fitting according to
Eq. (1). The resonances are labeled (Nc,iL), in the same manner as in
Table I. In panel (a), only one SCB exists, whereas in panel (c) two
SCBs exist. Each SCB leads to a peak in g.
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FIG. 5. Theory vs numerical calculations: Nz dependences of
(a) peak conductance, (b) QBS energy, and (c) QBS broadening
parameter (both in units of γ0). The numerical calculations were
done for the resonance (3,2) seen in Fig. 4(a). Our theory predicts
roughly constant gm, convergence of εQBS to ε∞, and �QBS ∼ N−3

z ,
all of which are consistent with numerical calculations. In panel (c),
the solid curve has a slope of ∼0.3 while the dashed curve has a slope
of ∼0.2. The dashed line is to guide the eye. The solid line shows
results of theory, and circles show results of numerical calculations.

tively. According to the theory, we expect (1) the gm to
be roughly independent of Nz, (2) the εQBS to converge
to ε∞, and (3) the �QBS to decrease as N−3

z . All these
features are borne out in numerical calculations, as evident
in Figs. 5(a)–5(c). We notice a weak dependence of gm and
εQBS on the parity of Nz. This odd-even effect gradually
disappears when Nz increases beyond ∼250, which may
be understood by observing that the edge state dispersion
can be written as εs(k) ≈ 2s(−1)Nz+1[1 + 2 cos(ka)]gNz

k in
the large-Nz limit. The factor (−1)Nz+1 may be the ori-
gin of such effects. For sufficiently large Nz (Nz >∼250),
we have εs(k) < ε∞ for all k ∈ ( 2π

3a
, π

a
]. Equation (7) still

holds, and we have [BL,BR] ≈ 2a
L

∑
k,s sin2( ka

2 )(1 − g2
k )(1 −

εs(k)/ε∞)−1[g2(iL−1)
k ,g

2(Nc−iR)
k ], which does not display any

parity effect. However, for Nz not that large (Nz <∼250), then
ε∞ will cut εs(k) and parity effects can appear. Nonetheless,
this case is not amenable to analytical expressions and will not
be further discussed.

E. Role of bearded sites

Here we discuss the effect of bearded sites and show that
they could lead to genuine bound states (i.e., vanishing �QBS).
For simplicity, we consider the rectangular-corner QPC with
Nc = 1 (Fig. 6). In the absence of bearded sites, the connecting
bond would be a WCB. However, bearded sites transform an
edge state initially located on the A- (B-) sublattice to an edge
state located on the B- (A-) sublattice [46], and they thus turn

1
1’

FIG. 6. (Color online) Bearded sites, represented by the circles
attached to the dashed bonds, which turn a WCB into a SCB. A pair
of real bound states form on the bond (see text). Geometrically, the
SCB (blue bond) shown here is similar to the SCB (Nc = 3,m = 2)
without bearded sites.

a WCB into a SCB. Then, one can show that Cτ = 0 and
then the level broadening vanishes, implying a pair of genuine
bound states on this bond. Actually, bearded graphene is an
insulator [46] with a real band gap separating the edge states
from the extended states. Thus, the ρ0 vanishes at the QBS
energy, which is consistent with vanishing Cτ . The values of
Bτ in the limit Nz → ∞ are expected to be similar to those of
the SCB (Nc = 3,iL = 2) in the same limit without bearded
sites, because the wave functions in both cases are the same
[Eq. (17)].

V. DISCUSSIONS

An essential element in the QBS theory presented above
relates to the existence of nonbonding edge states at zero
energy. Generically, such states are originated from the
breaking of pseudo-time-reversal symmetry, which is unique
to the graphene lattice. Note that a perfect zigzag edge is not
necessary for them to appear. Indeed, they could show up in
graphene edges of almost any shape except for the perfect
armchair one (in which case the symmetry is respected), even
in the presence of a moderate external magnetic field [47]. The
observation makes our theory more widely applicable.

Because the QBS extends over only a few lattice constants,
the Coulomb repulsion might be relatively strong. Assuming
an on-site repulsion of 10 eV [48], the repulsion between two
electrons in QBS can be as large as 0.1 eV, much bigger than
that in conventional semiconductor quantum dots (∼meV).
These interactions serve to manipulate spins for possible
applications in spintronics and qubits. For sufficiently wide
samples, the QBS lifetime can be very long. As a result, charges
may accumulate in the QPC and may give rise to dynamical
Coulomb blockade effects [49].

The QBS may be visualized using STM, which probes
the dressed local density of states (LDOS) directly [50].
One can show that in comparison with the bare LDOS
the dressed LDOS is enhanced by an amount δρ(εF ,�r) ∼

�QBS

(ε−εQBS)2+�2
QBS

f (�r), where f (�r) is a function that decays as

the STM tip moves away from a SCB by |�r|, as indicated
in Fig. 3(c). The properties of the QBS can thus be directly
determined.

The QBS can also have optical signatures. Specifically, we
predict the optical absorption to be enhanced at the frequency
ν ≈ 2ε∞

h
, which corresponds to the energy required to excite an

electron from the lower QBS at −ε∞ to the upper one at ε∞. For
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(Nc = 3,m = 2), this gives ν ≈ 48 THz in the infrared regime.
Note that the QBS lifetime in this case is τQBS ≈ 7( Nz

100 )3ps,
which can be much longer than the optical oscillation period
ν−1. Thus, the system may be treated as an artificial two-level
atom when dealing with its interaction with light at frequencies
near or above ν.

In addition, the QPCs can serve as the channel for a textbook
single-level (and single-electron in the presence of Coulomb
interactions) resonant tunneling transistor. Due to small level
broadening, sharp turn-on can be expected at low temperatures.

VI. CONCLUSION

In conclusion, we elucidated a mechanism for the formation
of atomic bound states in a type of graphene QPCs. These states
arise because of the zero-energy edge states that are associated

with the breaking of pseudo-time-reversal symmetry. Their
energies have been shown to be roughly independent of the
sample dimensions. Finite level broadening exists, which
shrinks to zero following a power law as the sample width
increases. Because of the broadening, the states show up as
Breit-Wigner resonances in the conductance of the QPCs. Such
resonances dominate the electronic transport properties in the
low-energy regime.
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Dröscher, T. Ihn, and K. Ensslin, Rep. Prog. Phys. 75, 126502
(2012).
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