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Nonlocal spectroscopy of Andreev bound states
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We experimentally investigate Andreev bound states (ABSs) in a carbon nanotube quantum dot (QD) connected
to a superconducting Nb lead (S). A weakly coupled normal metal contact acts as a tunnel probe that measures
the energy dispersion of the ABSs. Moreover, we study the response of the ABS to nonlocal transport processes,
namely, Cooper pair splitting and elastic co-tunnelling, which are enabled by a second QD fabricated on the
same nanotube on the opposite side of S. We find an appreciable nonlocal conductance with a rich structure,
including a sign reversal at the ground-state transition from the ABS singlet to a degenerate magnetic doublet.
We describe our device by a simple rate equation model that captures the key features of our observations and
demonstrates that the sign of the nonlocal conductance is a measure for the charge distribution of the ABS, given
by the respective Bogoliubov-de Gennes amplitudes u and v.
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I. INTRODUCTION

In a Bardeen-Cooper-Schrieffer (BCS) superconductor, the
electrons gain a binding energy 2� by pairing up in spin
singlets known as Cooper pairs. This superconducting order
can leak into nonsuperconducting materials placed in electrical
contact with S. When this nonsuperconducting material is
a quantum dot (QD) with a discrete energy spectrum, the
proximity effect results in the formation of new subgap
eigenstates named Andreev bound states (ABSs). In a pictorial
way, one might think of the ABSs as emerging from the
superposition of virtual Andreev reflections at the interface
between the QD and a superconducting electrode (S). In
each such Andreev reflection, a Cooper pair (virtually) enters
or leaves the QD, thereby mixing the even charge states
of the QD. In the so-called superconducting atomic limit,
the ABS can be expressed as a BCS-like superposition of
an empty and a doubly occupied QD level, denoted as
|−〉 = u |0〉 − v∗ |↑↓〉 [1–3]. The |−〉 state is characterized
by its energy E− and by the Bogoliubov-de Gennes (BdG)
amplitudes u and v. The odd charge states are not affected
by the BCS condensate and remain eigenstates of the QD,
forming a spin-degenerate doublet {|↑〉 , |↓〉} [1–3].

A. Local spectroscopy of ABS

The low-energy excitation spectrum of a QD-S system
is shown schematically in Fig. 1(a), where we chose the
magnetic doublet to be the ground state (GS) and the ABS
to be the excited state (ES). A natural experiment to measure
the Andreev addition energy ζ = |E− − E↑,↓|, defined as the
energy difference between ABS and magnetic doublet, uses a
normal conducting tunnel probe (N) in a N-QD-S geometry. If
the tunnel coupling between N and the QD, �N, is sufficiently
weak, the influence of the tunnel probe on the QD-S excitation
spectrum is negligible and the differential conductance across
the device, G = ∂I/∂VSD, shows a peak for |eVSD| = ζ [4–9].

This peak in differential conductance represents the onset
of a current through the Andreev channel when the electro-
chemical potential of the tunnel probe μN exceeds the addition
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energy ζ as depicted in Fig. 1(b). This allows an electron to
tunnel across the barrier �N and excite the QD, even in the
presence of a large charging energy U � ζ . The electron does
not enter the |↑↓〉 state, but the |−〉 state, where the charge is
shared between QD and S. The probability of this transition,
|↑〉 +1e−−→ |−〉, scales with v2, the weight of the |↑↓〉 term in
the |−〉 state [10]. To relax back to the GS, the QD takes
up a second electron at negative energy −ζ from N, which
is equivalent to the emission of a hole with energy ζ into
N. The rate of this relaxation process is proportional to u2,
the probability to find the QD empty so that an electron can
be added to reach the |↑〉 state. A complete transport cycle,
GS→ES→GS, reflects an incoming electron as a hole and
transfers a Cooper pair to S with a probability proportional to
u2v2.

Since the |−〉 state is a superposition of an empty and
a doubly occupied QD level, the same ES can be reached
either by addition of an electron with positive energy ζ to
the GS, or by removal of an electron with negative energy
−ζ from the GS. Consequently, the Andreev resonances
are always observed symmetrically about Fermi level of
the superconductor, which we define as reference potential
μS = 0. In case of a negative bias, μN � −ζ , the QD is
excited by removing an electron with negative energy −ζ

from the QD and transferring it to N, as shown in Fig. 1(c).
The probability of this excitation, |↑〉 −1e−−→ |−〉, scales with u2.
Compared to the situation in Fig. 1(b) the rates for excitation
and relaxation are inverted and the direction of electron flow
is reversed, but the Andreev current is again proportional to
u2v2. Therefore local spectroscopy of ABS is not able to
investigate the excitation and relaxation process individually
in a controlled manner.

B. Nonlocal spectroscopy of ABS

When a current is passed through the Andreev channel
the QD fluctuates between {|↑〉 , |↓〉} and |−〉 . In each such
fluctuation the QD state changes between even and odd
occupation, which requires the addition or removal of a single
electron to the QD. If only local processes are considered the
S contact can not drive such transitions because the electrons
at energies below � are paired and form a so-called BCS
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FIG. 1. (Color online) (a) Example of the low-energy excitation
spectrum of a QD-S device, with the magnetic doublet as GS,
separated from the ABS by the Andreev addition energy ζ . (b) Energy
diagram of the local Andreev transport through a normal conducting
tunnel probe. The alternation of an excitation and a relaxation process
(labelled E and R) converts a normal current into a supercurrent.
(c) Transport process at negative bias.

condensate. However, if a second QD is added to the QD-S
system, higher-order processes involving electrons from the
second QD can deliver single electrons at subgap energies to
one side of the superconductor.

Figure 2(a) shows a sketch of the device geometry we
consider. Two QDs (QD1 and QD2) are connected to two
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FIG. 2. (Color online) (a) Device schematic: two QDs are cou-
pled to a common superconducting reservoir and two independent
normal leads. The tunnel couplings follow �N1 � �S1 and �S2 �
�N2. The subscript S/N labels the contact and the numbers refer to
the respective QD. When both QDs are resonant Cooper pairs can
split and leave S at different sites, thereby exiting the ABS on QD1.
(b) Colored SEM micrograph of the device and measurement setup.
(c) and (d) Differential conductances G2 and G1 as a function of the
common source drain voltage VSD and back gate voltage VBG.

normal conducting drains (N1 and N2) and one common
superconducting source. One possible process, in which the
S contact can excite QD1, is elastic co-tunnelling: an electron
at energy ζ tunnels from QD2 to QD1 via a virtual quasiparticle
state in S. Another mechanism is crossed Andreev reflection,
also known as Copper pair splitting (CPS): a Cooper pair is
coherently split into two electrons at opposite energies, here ζ

and −ζ , that leave S at different sites [11]. Recent experiments
with similar device geometries demonstrated that the splitting
of Cooper pairs can be controlled by tuning the levels of the
individual QDs with local gates [12–16]. Compared to these
experiments we explore a new coupling regime, summarized
in Fig. 2(a), which leads to the formation of ABSs on QD1.
We then employ the nonlocal transport mechanisms to excite
these ABS. Thus, in our device the Cooper pairs play a twofold
role. On the one hand, the Cooper pair condensate mixes the
even charge states of QD1 as a result of the proximity effect.
On the other hand, Cooper pairs can be split into individual
charges that drive QD1 from even to odd occupation (or vice
versa) with the assistance of QD2.

Since CPS and elastic co-tunnelling are coherent processes
with electrons from two spatially separated QDs, we refer
to them as nonlocal. In this paper, we use local tunneling
spectroscopy to identify ABSs and then investigate the
response of the ABS channel to nonlocal excitations. In Sec. II,
we describe how the double QD device is realized with a
carbon nanotube and present local and nonlocal transport
measurements. In Sec. III, we introduce a simple rate equation
model that explains our main experimental findings. We show
that the nonlocal current reflects the relative amplitudes of
the BdG amplitudes. In Sec. IV, we summarize the results
and conclude that nonlocal transport measurements provide a
novel spectroscopic tool to investigate the charge distribution
of the ABS—an information that complements the knowledge
of the Andreev addition energy ζ accessed by local tunneling
spectroscopy.

II. EXPERIMENT

A. Device and measurement setup

Figure 2(b) shows a colored scanning electron micrograph
of our device and schematically the measurement setup. Two
QDs are fabricated from a carbon nanotube (CNT) grown
by chemical vapor deposition on a highly doped Si substrate
capped with a 0.4-μm insulating layer of thermal oxide. A Nb
lead (50-nm thick, 170-nm wide), with a Ti contact layer (3-nm
thick) below, serves as superconducting reservoir. Together
with two Ti/Au contacts (5/50-nm thick), the S contact defines
two QDs. The QDs can be tuned by applying a voltage VBG

to the Si substrate, which serves as global back gate, or by
applying a voltage VSG2 to a local side gate in the vicinity
of QD2. A second side gate near QD1 was not connected.
We bias the device at S with VSD and use two independent
current voltage converters at N1 and N2 to obtain the currents
through QD1 and QD2. The differential conductances through
QD1, G1 = ∂I1/∂VSD, and through QD2, G2 = ∂I2/∂VSD,
are measured simultaneously by standard lock-in technique,
while varying the gate voltages and VSD. All measurements
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are carried out in a dilution refrigerator at a base temperature
T ≈ 25 mK.

B. Local transport measurements

The structure of the stability diagrams differs strongly for
QD1 and QD2. The stability diagram of QD2 [Fig. 2(c)] shows
the well-known pattern of Coulomb diamonds, disconnected
by an transport gap of 2�∗ induced by the superconductor,
from which we extract �∗ ≈ 0.5 meV. For voltages |eVSD| <

�∗, the conductance through QD2 is suppressed by a factor of
∼10.

The conductance map for QD1 is shown in Figs. 2(d)
and 3(c), which zooms into the gate range around a diamond
with odd occupation. Again the conductance is suppressed
for |VSD| < 0.5 mV, but inside the superconducting gap, we
observe two lines, positioned symmetrically about VSD = 0,
that cross each other near the diamonds edges. We interpret
these sub-gap features as Andreev resonances at ±ζ . The
crossing of two Andreev resonances at zero energy is asso-
ciated with a quantum phase transition in which the GS of the
QD changes from the |−〉 singlet to the magnetic doublet, or
vice versa [2,7,8]. For odd occupation numbers the Coulomb
repulsion, which favors the doublet GS, can prevail over the
superconducting pairing, which favours the ABS as GS. At the
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FIG. 3. (Color online) (a) and (b) Simultaneously recorded dif-
ferential conductances G1 and G2 as a function of δVSG2 = VSG2 −
V̂SG2 for increasing values of V *

BG = VBG + αV̂SG2. The source drain
voltage was kept fixed at VSD = 0.375 mV. The resonances in G2

are accompanied by a nonlocal conductance change �G1 in G1.
(c) Stability diagram G1(VSD,VBG) for QD1 measured at VSG2 = 0.
The black arrows indicate the direction along which the nonlocal
signal is probed in (a) and (b). The sign change of �G1 coincides
with the GS transitions of QD1.

phase boundary, the energy of the |−〉 state equals the energy
of the magnetic doublet and hence the Andreev resonances
cross, i.e., ±ζ = 0. For even occupation, where the QD is in
the |−〉 GS, we find that the Andreev addition energy is pinned
close to the gap edge, ζ ≈ �∗.

Both QDs have similar charging energies of ∼5 meV
and their stability diagrams exhibit a fourfold symmetry
that is characteristic for clean CNT devices [17]. However,
remaining disorder and spin-orbit interactions lift the fourfold
degeneracy, breaking up the CNT shells into two pairs of
Kramer doublets [18]. For QD1 we evaluate the separation
between both Kramer doublets to be δ = 1 ± 0.3 meV. Thus
we treat the ABS as emerging from twofold spin-degenerate
energy levels, neglecting the influence of the additional orbital
degree of freedom on the ABS spectrum.

C. Nonlocal conductance correlations

CPS and elastic co-tunnelling involve electron exchange
with both QDs and can therefore be identified by studying
correlations between the conductances G1 and G2. By tuning
QD2 from Coulomb blockade to resonance, or vice versa,
the nonlocal transport processes can be switched on and off,
provided |eVSD| � |ζ |. In Figs. 3(a) and 3(b), we plot G1 and
G2 as a function of the voltage applied to the local side gate
at QD2. When a resonance of QD2 enters the bias window,
which was set to VSD = 0.375 mV, a sudden increase in the
differential conductance G2 is observed. These peaks in G2 are
accompanied by a conductance change �G1 in G1. We ascribe
these correlations �G1(G2) to the nonlocal conductance
caused by CPS and elastic co-tunnelling. To substantiate this
interpretation we note that the conductance correlations tend to
zero when superconductivity is suppressed, either by raising
the temperature above 500 mK or by applying an external
magnetic field B‖ > 500 mT (see Appendix B).

By repeating these correlation measurements for many
consecutive values of VBG, we can map out how the nonlocal
signal depends on the energy level configuration of QD1.
To correct for the capacitive cross-talk from the side gate
to QD1 we introduce the new variable V *

BG = VBG + αV̂SG2.
Here, V̂SG2 is the side gate voltage for which the nonlocal
conductance takes its maximal value, �Gmax

1 , and α = 1.56 ×
10−2 is a geometry dependent factor that accounts for the
respective gate efficiency. The variable V *

BG allows to assign
a position in the stability diagrams of QD1, measured at
VSG2 = 0, to the nonlocal signals, measured at V̂SG2 �= 0. In
Fig. 3(c), we indicate the direction along which �Gmax

1 is
probed in Figs. 3(a) and 3(b) by black arrows. The conductance
correlations can be either positive or negative, i.e. G1 can show
a peak or a dip at the QD2 resonance, depending on V *

BG.
Strikingly, the turnover from a negative to a positive nonlocal
conductance coincides with the quantum phase transition in
which the GS changes from the ABS singlet to the magnetic
doublet.

In Fig. 4, we plot the evolution of �Gmax
1 over the complete

back gate range of a odd QD1 state for opposite bias voltages
VSD = ±0.375 mV. Starting from the left side of Fig. 4(a) a
negative nonlocal signal starts to build up when the Andreev
resonance enters the bias window, ζ < |e|VSD = 0.375 mV, at
V *

BG ≈ −2.37 V. The magnitude of �Gmax
1 increases towards
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FIG. 4. (Color online) Magnitude of the nonlocal differential
conductance, �Gmax

1 , as a function of V *
BG, the back gate voltage

corrected for the capacitive cross-talk from the side gate (see text). A
bias of VSD = 0.375 mV (a) and VSD = −0.375 mV (b) was applied
to the S contact.

the singlet-doublet phase boundary where it rapidly changes
sign. In the doublet GS region, the positive correlations
decay and become immeasurably small around the center
of the plot. As the right GS transition is approached the
nonlocal signal builds up again, but with a negative sign.
Around V *

BG ≈ −2.288 V, where we expect the |−〉 state to
become the GS, the sign of �Gmax

1 is again inverted. The
evolution of the nonlocal signal at a negative bias voltage
of VSD = −0.375 mV, shown in Fig. 4(b), exhibits a similar
behavior, except for a sign change that results from the reversal
of the bias voltage.

Comparing the left and the right side of Figs. 4(a) and
4(b) we notice a sharper reversal of �Gmax

1 at the right GS
transition. However, the slope of the dispersion ζ (VBG) in
Fig. 3(c) is also steeper at the right GS transition, implying
a more rapid crossover between different GSs than for the left
GS transition. We speculate that this asymmetry results from a
gate dependence of �S1, which decreases for increasing VBG.

The sign change of the nonlocal signal is reminiscent of
the 0–π transition in S-QD-S Josephson junctions. There, a
reversal of the supercurrent across the device is observed when
the GS of the QD changes from singlet to doublet [5,19–21].
However, the back gate evolution of �Gmax

1 demonstrates that
the sign of the nonlocal signal is not merely determined by
the GS of QD1, but also changes in the doublet GS region and
under reversal of bias voltage. Hence the sign of �G1 can not
be explained by analogy to the supercurrent reversal at the 0–π

transition.

III. MODEL

To understand the nature of the observed nonlocal signals,
we discuss the relevant transport processes and their impact on
the conductance G1. Assuming |e|VSD > ζ , the local Andreev
channel gives rise to a background current that flows from N1

Inverse CPS

Elastic co-tunnelling

Local transport(a) (b)
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FIG. 5. (Color online) (a)–(c) Energy diagrams of the local and
nonlocal transport processes considered in our model. (d) Two-level
rate equation model model for QD1. The nonlocal processes with rate
tn	 (red dashed arrow) only change the occupation probabilities but
do not contribute to the current through N1.

to S, as shown in Fig. 5(a), where te and tr denote the rate of the
local excitation and the local relaxation by electrons from N1.
If QD2 is tuned into resonance it can provide single electrons
with energy ζ . This configuration allows the nonlocal creation
of Cooper pairs in a process inverse to CPS: an electron from
QD2 with energy ζ and an electron from QD1 with energy
−ζ pair up and enter S in a distance on the order of the
superconducting coherence length [Fig. 5(b)]. We refer to the
rate of this process as tCPS. In addition, an electron from QD2
can also co-tunnel via a quasiparticle state in S and excite
QD1, as shown in Fig. 5(c), where we define the rate of elastic
co-tunnelling as tEC.

We note that nonlocal relaxation processes, which require
that QD2 absorbs electrons at energy ζ , are suppressed by
the coupling asymmetry of QD2: The condition �S2 � �N2

implies that QD2 is refilled much faster from N2 than from S.
Therefore the relaxation of QD1 is dominated by the same local
process, independent of the nature of the preceding excitation.

A. Rate equation

To model the conductance through QD1 we formulate a
two-level rate equation, graphically illustrated in Fig. 5(d). The
steady state occupation probabilities of GS and ES, denoted
PGS and PES = 1 − PGS, are given by

d

dt
PES = (te + tn	) PGS − trPES = 0, (1)

where tn	 = tCPS + tEC is the sum of both nonlocal excitation
rates.

From the occupation probabilities one can calculate the
current through the tunnel probe N1:

I1 = e

�
(tePGS + trPES) . (2)

The influence of tn	 on I1 is hidden in the occupation
probabilities PGS and PES, which are modified according to
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Eq. (1) when tn	 changes. The nonlocal excitations, depicted
by the dashed arrows in Figs. 5(b) and 5(c), do not exchange
electrons with N1. Hence the current through the barrier �N1

is only carried by local excitation and relaxation processes.
In the absence of nonlocal transport, Eq. (2) simplifies to
I1(tn	 = 0) = e

�

2te tr
te+tr

. To calculate the nonlocal current, we
subtract this local background from the total current, which
yields

�I1 = I1(tn	 �= 0) − I1(tn	 = 0)
(3)

= e

�
tn	PGS

tr − te

tr + te
.

As one may expect, the nonlocal current is proportional to
the excitation rate tn	 and the occupation probability of the
GS, PGS = tr/(te + tr + tn	). However, the sign of �I1 is
determined by tr − te, the relative strength of the local rates
te and tr . This can be understood by considering a very
asymmetric situation, tr � te, as assumed in Fig. 5. tr limits
the current and the QD is “stuck” in the ES most of the time.
The nonlocal processes increase this imbalance, but without
contributing to the current through N1. The QD gets even
more “stuck” in the ES and the current flow is hindered,
�I1 < 0. In the reversed situation, tr � te, the excitation rate
is the bottleneck. Here, the nonlocal excitations bypass this
bottleneck, leading to an increased current, �I1 > 0. When
the asymmetry between te and tr decreases the sign of �I1

remains the same, but the nonlocal current also decreases and
finally vanishes for te = tr .

The gate evolution of the rates te and tr is determined by
the physics of ABSs. We first discuss these rates in the limit
� → ∞, where analytic expressions for the eigenstates of the
QD-S system can be found. Later, we compare these results to
numerical calculations from the literature that consider a finite
gap and therefore represent a more realistic scenario.

Figure 6(a) shows the dispersion relation of the Andreev
resonance in the limit � → ∞ calculated with the analytic
expressions given in Ref. [1] for �S1 = 0.37 in dimensionless
energy units. The energy level of the QD, εd, is parametrized
by δ = εd + U/2. The local transport rates can be calculated
with Fermi’s golden rule [3,10], which yields

|σ 〉 +1e−−→ |−〉 : t+e = �N1 | 〈−|d†
σ̄ |σ 〉 |2︸ ︷︷ ︸
v2

f1(ζ ),

(4)
|−〉 +1e−−→ |σ 〉 : t+r = �N1 | 〈σ |d†

σ |−〉 |2
︸ ︷︷ ︸

u2

f1(−ζ ),

and

|σ 〉 −1e−−→ |−〉 : t−e = �N1 | 〈−|dσ |σ 〉 |2︸ ︷︷ ︸
u2

[1 − f1(ζ )],

(5)
|−〉 −1e−−→ |σ 〉 : t−r = �N1 | 〈σ |dσ̄ |−〉 |2︸ ︷︷ ︸

v2

[1 − f1(−ζ )].

Here, f1(E) is the Fermi function of the lead N1, d†
σ (dσ ) is

the creation (annihilation) operator of QD1 for an electron
with spin σ = ↑,↓ and σ̄ denotes the spin opposite to σ . For
a sufficiently positive bias |e|VSD > ζ , we can approximate
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FIG. 6. (Color online) Model for nonlocal signals calculated in
the limit � → ∞ for �S1 = 0.37 (left column) and based on
NRG results for the parameters U = 1, � = 0.01, and U/π�S = 5
extracted from reference [2] (right column). The QD energy is
parametrized by δ = εd + U/2. The grey shaded regions indicate
the |−〉 GS. (a) and (b) Dispersion of the Andreev resonances. The
plus and minus symbols denote the sign of the nonlocal current in the
respective region. (c) and (d) Local rates for |e|VSD � ζ . (e) and (f)
Nonlocal current �I1 for |e|VSD � ζ and (g) and (h) for |e|VSD � −ζ .

f1(±ζ ) ≈ 1, hence the rates t−e and t−r can be neglected. In
Fig. 6(c), we plot the rates t+e and t+r which reflect the evolution
of the BdG amplitudes v2 and u2 with the QD energy. When
the GS changes the initial and final states of the respective
matrix elements are interchanged and the rates t+e and t+r are
inverted.

The nonlocal excitation rate relevant for positive bias can
be written as

|σ 〉 → |−〉 : t+n	 = (kCPS| 〈−|dσ |σ 〉 |2 + kEC| 〈−|d†
σ̄ |σ 〉 |2)

×�S1�S2�QD2(ζ )f2(ζ ), (6)

where �QD2(E) is the spectral density of QD2 and f2(E) is the
Fermi function of the lead N2. The rate t−n	 can be obtained
by the following replacements: dσ ↔ d

†
σ̄ , ζ → −ζ and f2 →

1 − f2. The probabilities for CPS and elastic co-tunnelling
scale with a geometry depended pre-factor kCPS and kEC.

It is generally assumed that the nonlocal tunneling pro-
cesses originate from the wire segment below S, which is
turned superconducting by the proximity effect, and not from
the bulk S [12,22,23]. This is concluded from the fact that
nonlocal tunneling through the bulk of S is suppressed by factor
(kFδr)−2 [11,24], where kF ∼ Å−1 is the Fermi wavevector in
S and δr is the separation between the QDs. The nonlocal
transport rates reported in Refs. [12–16] are way larger than
compatible with the suppression term (kFδr)−2. This term
arises from a summation over different paths in S. It is therefore
not present in one-dimensional superconductors for which one
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expects probability amplitudes on the order of

kCPS ∼ kEC ∼ e−δr/πξ∗
(7)

in the ballistic limit [22,25]. ξ ∗ = �vF/π�∗ ≈ 340 nm is the
coherence length that corresponds to the induced gap �∗ in the
CNT, where the Fermi velocity is vF = 8.1 × 105 m/s [26].
The exponential function ensures that nonlocal tunneling
can only take place over distances on the order of the
superconducting coherence length. However, the estimated
coherence length ξ ∗ is larger than the dot separation. Thus we
expect that the nonlocal current is mostly limited by the rate of
the competing first-order process t+r and not by the geometry
of the device. We emphasize that for the devices investigated
in Refs. [11,12,16] elastic co-tunnelling could be neglected not
because the probability amplitude kEC was small, but because
of the vanishing occupation probability of the QDs (PQDi ≈ 0)
that is implied by the coupling asymmetry �Si � �Ni.

B. Model results and comparison with experiment

In Figs. 6(e) and 6(g), we plot the gate evolution of the
maximum nonlocal current for positive and negative bias,
calculated from Eq. (3) with the assumption kEC = kCPS.
Despite the oversimplification � → ∞ the model captures
the main features of our experimental findings. The sign of
the nonlocal current alternates in the same order as in the
experiment (see Fig. 4), going through two sharp transitions
and one smooth transition.

The sharp reversal of �I1 is the signature of the GS
transition, in which the rates te and tr are inverted. In the
experiment, this transition is smeared out by the broadening
of the Andreev resonance not considered in our model. In
the doublet GS, the nonlocal conductance changes gradually
from positive to negative values, owing to the gate evolution
of the BdG amplitudes. As the dot energy is increased, the
weight of the |−〉 state is shifted from the |0〉 term to the |↑↓〉
term, thereby gradually moving the average location of the two
electron charges confined in the ABS from the superconductor
to the QD. This continuous change of the BdG amplitudes leads
to a smooth reversal of the nonlocal current at the electron-hole
(e-h) symmetry point (δ = 0), where te = tr .

In case of a finite superconducting gap, exchange interac-
tions between the |σ 〉 state and quasiparticles can lead to a
spin screening of the |σ 〉 state. This Kondo effect complicates
the theoretical treatment of the problem. The wave function
of the doublet state acquires a singlet admixture and the
dispersion relation of the Andreev resonances, as well as the
transport rates become renormalised. An analytical solution of
the problem is not possible, but the numerical renormalization
group method (NRG) provides a reliable approach to calculate
the QD spectral densities [27].

In the right column of Fig. 6, we test our model with NRG
results calculated in reference [2] for the parameters U = 1,
� = 0.01 and U/π�S = 5. The dispersion of the Andreev
resonances for these parameters, shown in Fig. 6(b), resemble
our experiment. The local transport rates, plotted in Fig. 6(d),
are given by the spectral weight of the respective Andreev
resonance. To calculate the nonlocal current, we assume again
kCPS = kEC. Figures 6(f) and 6(h) show that the qualitative
behavior of the nonlocal signal is altered only marginally

when interactions with quasiparticles are considered. The main
effect of the finite gap on our model originates from a suppres-
sion of the local transport rates when the Andreev resonance
approaches the gap edge, i.e., te/r → 0 for ζ → �. This leads
to a cutoff of the nonlocal signal at the ends of the inspected
gate range (δ = ±0.5) and a more rapid decay towards the e-h
symmetry point compared to the � → ∞ case. Both of these
modifications in the line shape of the nonlocal signal improve
the agreement with our experimental findings in Fig. 4.

IV. DISCUSSION AND CONCLUSION

We experimentally investigated a CNT QD, strongly cou-
pled to a superconducting niobium lead. By local transport
spectroscopy through a normal conducting tunnel probe, we
could resolve individual ABSs in the excitation spectrum of
the QD-S system. A second QD, coupled parallel to the same
S contact, allowed to excite these ABSs also by nonlocal
processes, namely CPS and elastic co-tunnelling. We found
appreciable nonlocal correlations in the conductance through
both QDs. These nonlocal signals change sign with reversed
bias and exhibit a complex gate dependence with a sign change
at the GS transition and a sign change when the e-h symmetric
point is crossed. We qualitatively explain this rich behavior in
a simple rate equation model.

In our model, the sign of the nonlocal current is determined
by the asymmetry between the local excitation and relaxation
rates. In the limit � → ∞, this asymmetry is given by the
difference of the BdG amplitudes, γ (v2 − u2), where the pre-
factor γ = ±1 changes sign when the GS or the bias direction
changes. One can ascribe a physical meaning to this term by
rewriting it as 2v2 − 1, using the normalization condition u2 +
v2 = 1. Multiplying with the electron charge, this corresponds
to the charge difference between ES and GS,

�Q = QES − QGS, (8)

where the average on-site charge in the |−〉 state is given
by the expectation value of the number operator, Q− =
e 〈−| ∑σ d†

σ dσ |−〉 = 2e v2. The QD charge in the doublet state
is Qσ = 1e.

While local spectroscopy measures the energy difference
between the ES and the GS, ζ = EES − EGS, the nonlocal
signals provide a spectroscopic tool to investigate the charge
difference between both states. However, a quantitative deter-
mination of �Q is hindered by the lack of knowledge about
tn	. Still we are able to qualitatively follow the gate evolution
of �Q, which is a direct witness of the competition between
repulsive Coulomb interactions and the superconducting pair-
ing, associated with an attractive electron-electron interaction.

The |−〉 state, being subject to quantum fluctuations of the
charge, allows continuous changes of the mean QD charge.
We were able to indirectly observe this gradual charging of
the ABS by following the smooth crossover from a positive to
a negative nonlocal signal when the QD is in the doublet GS.
When �Q becomes negative, the QD holds more charge in the
GS than in the first ES—a situation that can only occur in the
presence of attractive interactions. At the GS transition, which
is identified by the continuous crossing of the two Andreev
resonances in local spectroscopy, the sign of �Q is inverted.
The resulting abrupt reversal of the nonlocal current constitutes
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a novel experimental probe of the discontinuity characteristic
for such quantum phase transitions.

In conclusion, we established a spectroscopy method to
study ABSs in QDs. Our method complements local tunneling
spectroscopy and provides access to the qualitative evolution
of the BdG amplitudes, yielding a different experimental view
on the superconducting proximity effect in QDs.
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APPENDIX A: BIAS DEPENDENCE

Figures 7(a) and 7(b) show the simultaneously recorded
differential conductances G1 and G2 as a function of VSG2

and VSD at VBG = −2.284 V. The lever arm of VSG2 to
QD1 is about 8 times weaker than to QD2. Therefore the
Andreev resonances in Fig. 7(a) appear very broad and
smeared out compared to the Coulomb diamonds in Fig. 7(b).
This separation of energy scales makes it easy to identify
conductance correlations �G1(G2), e.g., the ones indicated by
the black arrows in Fig. 7(a), where a shallow imprint of the
left diamond from Fig. 7(b) is observed. Figures 7(c) and 7(d)
show cross-sections at constant bias voltages that demonstrate
the sign reversal of �G1(G2) with opposite bias. We note that
otherwise the bias dependence of the nonlocal conductance is
surprisingly weak. The intensity of the nonlocal conductance
line is approximately constant between the Andreev resonance
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FIG. 7. (Color online) (a) and (b) Simultaneously recorded dif-
ferential conductances G1 and G2 as a function of side gate voltage,
VSG2, and source drain bias, VSD, at VBG = −2.284 V. The black
arrows in (a) guide the eye to conductance correlations �G1(G2). (c)
Cross sections of G1 and G2 for VSD = +0.3 mV. The large peak
in G2 correlates with a dip in G2, i.e., the nonlocal signal �G1(G2)
is negative. (d) Cross-section for VSD = −0.3 mV, yielding positive
conductance correlations.

and the gap edge. Another intriguing feature in Fig. 7 is
the slightly tilted vertical line, running exactly through the
crossing point of the Andreev resonances, ±ζ = 0. Such
lines, also visible in the data from reference [5], may be
explained as follows. In the region |ζ | � |eVSD| � |�|, the
Andreev resonance is the only conductance channel and the
local current through the device is constant. The two Andreev
resonances, ζ and −ζ , have different conductances. When the
two resonances cross, the current through the Andreev channel
changes as a step function, yielding a peak in differential
conductance. Thus this line can be interpreted as a finite
bias signature of the GS transition. Its slope is given by the
capacitive cross-talk from the source contact. However, the
reason for the conductance difference between ζ and −ζ ,
also observed in Refs. [4–8], remains unclear. One possible
explanation might be a soft superconducting gap for which
quasiparticle states at energies E < � are available [28]. This
scenario would also allow tunneling processes that break the
e-h symmetry of the local subgap transport, e.g., the tunneling
of an electron from N1 to QD1 to a quasiparticle state in S. In
this case, the complete transport cycle, GS→ES→GS, has a
probability proportional to either v4 or u4.

APPENDIX B: TEMPERATURE AND MAGNETIC FIELD
DEPENDENCE

Figures 8(a) and 8(c) show the temperature and
magnetic field dependence of the nonlocal conductance.
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FIG. 8. (Color online) (a) Simultaneously recorded G1 and G2

as a function of VSG2 at VBG = −1.958 V and VSD = −0.45 mV.
The nonlocal conductance variations �G1 tend to zero as the base
temperature is increased. (b) Visibility of the nonlocal signal �G1/G1

vs T obtained from the data shown in (a). (c) Simultaneously recorded
G1 and G2 as a function of VSG2 at VBG = 15.583 V and VSD =
0 mV. The nonlocal conductance variations �G1 tend to zero when
an external magnetic field is applied. The field direction is parallel
to the plane of the S contact. (d) Visibility of the nonlocal signal
�G1/G1 vs B|| obtained from the data shown in (c).
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Figures 8(b) and 8(d) plot the visibility of the nonlo-
cal signal, i.e., �Gmax

1 /G1, where G1 is the local back-
ground conductance [15]. The nonlocal conductance de-
creases when superconductivity is suppressed and van-

ishes around a temperature of ∼500 mK or an in plane
magnetic field of ∼500 mT. These measurements demon-
strate that the conductance correlations are mediated by
superconductivity.
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