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We discuss, by means of mode-matching analysis for the Dirac equation, how splittings of the Landau-level
(LL) degeneracies associated with spin, valley, and layer degrees of freedom affect the ballistic conductance of
graphene bilayer. The results show that for wide samples (W � L) the Landauer-Büttiker conductance reaches
the maximum G � se2/(πh) × W/L at the resonance via each LL, with the prefactor varying from s = 8 if all
three degeneracies are preserved, to s = 1 if all the degeneracies are split. In the absence of bias between the
layers, the degeneracies associated with spin and layer degrees of freedom may be split by manipulating the
doping and magnetic field; the conductance at the zeroth LL is twice as large, while the conductance at any
other LL equals to the corresponding conductance of graphene monolayer. The presence of bias potential allows
one also to split the valley degeneracy. Our results show that the charge transfer at each LL has pseudodiffusive
character, with the second and third cumulant quantified by F = 1/3 and R = 1/15 (respectively). In case the
electrochemical potential is allowed to slowly fluctuate in a finite vicinity of LL, the resulting charge-transfer
characteristics are still quantum limited, withF � 0.7 andR � 0.5 in the limit of large fluctuations. Analogously,
the above values of F and R are predicted to be approached in the limit of high source-drain voltage difference
applied. The possible effects of indirect interlayer hopping integrals are also briefly discussed.
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I. INTRODUCTION

Several unique physical phenomena were observed in
graphene or its derivatives at high magnetic fields [1–3].
These include Shubnikov-de-Haas oscillations indicating zero
quasiparticle rest mass [4], room-temperature quantum Hall
effect with a nonstandard (half-odd integer) sequence of
Landau levels [5], signatures of a fractal energy spectrum
known as Hofstadter’s butterfly [6], and many others. This
new subarea of condensed-matter physics emerges primarily
due to the nature of effective quasiparticles, which are chiral
Dirac fermions with zero (the case of graphene monolayer)
or small effective masses (meff = 0.033 me in the case of
graphene bilayer, with me the free electron mass) coupled
to the external electromagnetic field via additive terms in
low-energy Hamiltonians, which are linear in both scalar and
vector potentials [7]. A remarkable consequence of such a
coupling is the quantization of the visible light absorption [8].

Among numerous phenomena which were predicted theo-
retically but not yet fully confirmed experimentally, we focus
our attention on the so-called pseudodiffusive transport in bal-
listic graphene. For an undoped monolayer, elementary mode-
matching analysis for the Dirac equation [9,10] leads to the
Landauer-Büttiker conductance [11] of a rectangular sample
(with the width W and the length L) scaling as G = σ0 × W/L

for W � L, where σ0 = (4/π )e2/h is the universal quantum
value of the conductivity. Additionally, the Fano factor is
F = 1/3, and all the other charge-transfer characteristics are
indistinguishable from those of a classical diffusive conductor
[12,13]. In the pseudodiffusive regime, applied magnetic
field is predicted to affect neither the conductance [14,15]
nor other transport characteristics [16]. Existing experiments
[17–19] generally support these theoretical results, leaving
some ambiguity concerning the origin of the F value observed
[2,20]. For high dopings and magnetic fields, charge transport

through a monolayer was discussed in analytical terms for the
rectangular [16] and the disklike (Corbino geometry) samples
[21,22]. In both cases, pseudodiffusive behavior is expected
to be recovered at each resonance with the Landau level
(LL) in the absence of disorder. Remarkably, recent numerical
study of large disordered samples [23] reports the longitudinal
conductivity σxx � 1.4 e2/h (which is numerically close to
σ0) appearing at each LL for wide ranges of disorder and
magnetic fields. The nature of this coincidence, however,
remains unclear so far.

For a bilayer, a few theoretical studies [24–26] showed
that regardless massive Dirac fermions govern low-energy
properties of the system, the pseudodiffusive conductivity of
undoped ballistic samples is (8/π )e2/h = 2σ0 (twice as large
as in the case of a monolayer), and the Fano factor F = 1/3
again. Surprisingly, a role of the most desired property of
graphene bilayer, which is a tunability of the energy gap
related to the potential energy difference between the layers
V [27–30], has been only marginally discussed in the context
of pseudodiffusive transport [31]. We notice here, that for
a Hall-bar setup (for which W � L and the pseudodiffusive
limit is usually inaccessible) it was shown both numerically
and experimentally that the eightfold degeneracy of the lowest
LL can be lifted by manipulating the external electromagnetic
fields (see Fig. 1), and the effect was usually attributed to
electron-electron interactions [32–34].

Here, transport properties of graphene bilayer in the
presence of potential energy difference between the layers
and external magnetic fields are discussed in analytical terms.
Namely, we start from the four-band Dirac Hamiltonian [27]
taking into account the inter- and intralayer nearest neighbor
hopping parameters, and employ the Landauer-Büttiker for-
malism [11] to investigate the field-dependent conductance
and other transport characteristics of a ballistic sample. The
geometry considered (wide-and-short sample) is chosen in
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FIG. 1. (Color online) Schematics of system studied analytically
in the paper and energy band structure in the quantum Hall regime.
(a) A strip of graphene bilayer of width W attached to two electrodes
(shaded rectangles) at a distance L. A voltage source drives a current
through the sample area. Separate top and bottom gate electrodes
(not shown) allow one to tune the carrier concentration and the band
gap (related to the potential energy difference between the layers V ).
(b), (c) The formation of Landau levels in bilayer graphene with and
without a band gap. Landau levels are indexed with the orbital index n

and the valley pseudospin (K or K ′); the twofold spin degeneracy of
each level is assumed for clarity. In the absence of a band gap (V =
0) almost every Landau level shows the fourfold (spin and valley)
degeneracy, with the exception of eightfold degenerate zero-energy
level, for which the states arising from two layers (red and blue lines)
coexist. Both layer and valley degeneracies are split in the presence
of a band gap (V > 0).

such a way that the boundary conditions applied to the Dirac
equation do not affect the resulting physical quantities.

The remaining part of the paper is organized as follows.
In Sec. II we present the system details and find all linearly-
independent solutions of the corresponding Dirac equation at
finite dopings, biases, and magnetic fields. Then, in Sec. III
we discuss the field-dependent transport characteristics in
three different situations: at the Dirac point, in an unbiased
sample (V = 0), and in a sample with different potentials on
the layers (V �= 0). In Sec. IV we analyze the influence of a
finite voltage difference or doping fluctuations (in the vicinity
of pseudodiffusive regions), on the shot-noise power and on the
third charge-transfer cumulant. Also in Sec. IV we compare,
with a help of the so-called partial conductance, the statistical
distribution of transmission probabilities for graphene bilayer
in high magnetic fields with the corresponding distribution
for a generic diffusive system. In Sec. V we discuss, by
solving the appropriately modified Dirac equation numerically,
the possible role of indirect interlayer hopping integrals. The
conclusions are given in Sec. VI.

II. THE SETUP AND MODE-MATCHING
FOR THE DIRAC EQUATION

A. The effective Hamiltonian

Following Snyman and Beenakker [25], we consider a
rectangular, weakly doped bilayer sample attached to two
heavily-doped strips modeling contacts [see Fig. 1(a)]. It is
also assumed that the magnetic field (B �= 0) is present only

in the sample area. Our analysis starts from the four-band
Hamiltonian for the K valley [27]

H =

⎛
⎜⎜⎜⎝

U1(x) πx +iπy t⊥ 0

πx −iπy U1(x) 0 0

t⊥ 0 U2(x) πx −iπy

0 0 πx +iπy U2(x)

⎞
⎟⎟⎟⎠ , (1)

where t⊥ � 0.4 eV is the interlayer nearest-neighbor hopping
energy, πj/vF = (−i� ∂j + eAj ) is the gauge-invariant in-
plane momentum operator (j = 1,2), the electron charge is
−e, and vF � 106 m/s is the Fermi velocity in a single
layer. Ul(x) (with l = 1,2 the layer index) is the electrostatic
potential energy chosen as

Ul(x) =
{
U∞ if x < 0 or x > L,

λlV − gμBB ms if 0 < x < L,
(2)

where V is the difference between potentials on the layers,
λl = 1

2 (−1)l , and gμBBms is the Zeeman term (the z com-
ponent of spin ms = ± 1

2 ). The experimental values of the
Lande factor for graphene bilayer are g � 2 − 3 [35–37], thus
we set g = 2 for the numerical discussion. In order to obtain
the Hamiltonian for the other valley (K ′), it is sufficient to
substitute V → − V and πj → − πj in Eq. (1).

B. The sample area

We choose the Landau gauge A ≡ (Ax,Ay) = (0, − Bx),
with the uniform magnetic field B �= 0 for 0 < x < L (oth-
erwise, B = 0). The wave function is a four-component
spinor, which can be written as ψ = (φA1,iφB1 ,φB2 ,iφA2 )T .
The Hamiltonian (1) commutes with −i∂y , and thus ψ varies in
the y direction as a plane wave of a form ∝ exp(ikyy), with the
transverse wave number ky . The Dirac equation for a sample
area, after a substitution ξ = l−1

B x − kylB (with lB = √
�/|eB|

the magnetic length), can be written as

⎛
⎜⎜⎜⎝

−ε − δ ∂ξ + ξ t 0

∂ξ − ξ ε + δ 0 0

t 0 −ε + δ ∂ξ − ξ

0 0 ∂ξ + ξ ε − δ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

φA1

φB1

φB2

φA2

⎞
⎟⎟⎟⎠ = 0, (3)

where we have defined ε = (E − gμBBms)lB/(�vF ), δ =
−V lB/(2�vF ), and t = t⊥lB/(�vF ). The functions φα are
given explicitly in Appendix A. Here we only mention that
solutions at the Dirac point (ε = δ = 0) still have a peculiar
form of evanescent waves, leading to zero-field value of the
pseudodiffusive conductance [25] unaltered for arbitrarily high
magnetic fields. We address this issue in a detailed manner in
Sec. III.

C. Contact regions

For contact regions, one can neglect the bias potential (δ �
0) due to a high doping. The Dirac equation can thus be written

045421-2



PSEUDODIFFUSIVE CONDUCTANCE, QUANTUM-LIMITED . . . PHYSICAL REVIEW B 89, 045421 (2014)

as ⎛
⎜⎜⎜⎝

−ε̃ keiθk t̃ 0

ke−iθk −ε̃ 0 0

t̃ 0 −ε̃ ke−iθk

0 0 keiθk −ε̃

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

φA1

iφB1

φB2

iφA2

⎞
⎟⎟⎟⎠ = 0, (4)

with ε̃ = (E − U∞)/(� νF ), t̃ = t⊥/(� νF ), k =
√

k2
x + k2

y ,
and θk = arg(kx + i ky). After straightforward calculations,
one obtains the dispersion relation

ε̃(k)2 =
(

η

2
t̃ +

√
1

4
t̃2 + k2

)2

, (5)

with η = ±1 referring to the two subbands.
The eigenfunctions in contact regions take the form of plane

wave spinors, namely

ψ±
L (x) = C(ε̃,k±

x ) exp(−ixk±
x )

⎛
⎜⎜⎜⎝

∓ε̃

±(k±
x + i ky)

ε̃

−k±
x + i ky

⎞
⎟⎟⎟⎠ , (6)

ψ±
R (x) = C(ε̃,k±

x ) exp(ixk±
x )

⎛
⎜⎜⎜⎝

∓ε̃

∓(k±
x − i ky)

ε̃

k±
x + i ky

⎞
⎟⎟⎟⎠ . (7)

The symbols ψ±
R and ψ±

L denote the solutions moving
to the right and to the left (respectively), with the signs
± referring to the two subbands again. The normalization
factors C(ε̃,k±

x ) are chosen such that the total current I±
L(R) =

evF

∫ W

0 dy(ψ±
L(R))

†(σx 0
0 σx

)
ψ±

L(R) satisfies |I±
L(R)| = evF , imply-

ing C(ε̃,k±
x ) = 1/

√
4Wε̃k±

x .
For instance, we can model the heavily electron-doped

contacts by taking the limit U∞ → −∞, leading to k±
x =√

ε̃ (ε̃ ± t̃) − k2
y � |ε̃|. Also, in such a limit, the wave functions

ψ±
R (6) and ψ±

L (7) take asymptotic forms in which they depend
on ε̃ (and U∞) only via phase factors. In turn, the measurable
quantities become insensitive to the specific value of U∞.

III. TRANSPORT OF DIRAC FERMIONS

In this section we present our main results concerning
the conductance G, the Fano factor F , and the factor R
quantifying the third charge-transfer cumulant for ballistic
graphene bilayer. We employ the standard Landauer-Büttiker
formalism [11], namely

G = G0Tr T , (8)

F = Tr[T (1 − T )]

Tr T
, (9)

R = Tr[T (1 − T )(1 − 2T )]

Tr T
, (10)

where G0 = e2/h is the conductance quantum, T = t† t , and
t is a block-diagonal matrix with each block [of the form

given by Eq. (B3) in Appendix B] corresponding to a single
transmission channel, identified by the valley index (K or
K ′), the transverse momentum ky , and the z component of
spin ms . Details of the mode-matching analysis are given in
Appendix B.

A. Unbiased graphene bilayer

At zero doping and zero bias potential (ε = δ = 0) we
obtain the transmission probabilities

T ±
ky

(0) = cosh−2

[(
ky − 1

2
l−2
B L ± kc

)
L

]
, (11)

where kc = 1
L

ln
[

Lt⊥
2�vF

+
√

1 + ( Lt⊥
2�vF

)2
]

and the pairwise struc-
ture {T +

ky
,T −

ky
} for a given ky can be attributed to the presence of

two graphene layers. [Hereinafter, the limit of heavily-doped
contacts is imposed.] In comparison to the case of bilayer
graphene at the Dirac point at zero magnetic field studied in
Ref. [25], the wave vector is shifted by a factor −l−2

B L/2, which
is proportional to B. Provided the sample width is much larger
than the length (W � L) the boundary effects do not play
an important role and one can choose the periodic boundary
conditions; i.e., ky = 2πn/W with n = 0,±1,±2, . . . . In
such a limit, each of the sums over transverse momenta in
Eqs. (8–10) can be approximated by an integral according to∑

ky

�
W�L

W

∫ ∞

−∞

dky

2π
.

In case the Zeeman splitting can be neglected (g � 0) this leads
to the field-independent pseudodiffusive conductance twice as
large as in the case of a monolayer, i.e.,

G
(2)
diff = 2G

(1)
diff = G0

8

π

W

L
, (12)

where the upper index denotes the number of layers. Also, the
shot-noise power and the third charge-transfer cumulant are
field-independent and quantified by F � 1/3 and R � 1/15,
respectively.

At finite dopings and zero bias potential (ε �= 0, δ = 0),
one can identify three distinct transport regimes: the highly-
conducting (G � G

(2)
diff ), the field suppressed (G  G

(2)
diff ), and

the pseudodiffusive (G � G
(2)
diff ), as depicted in Fig. 2. The

highly-conducting regime shows up in relatively weak fields,
when the cyclotron radius rC = �k/|eB| � L/2. Using the
energy dispersion for the lower conductance (or the higher
valence) subband given by Eq. (5), one can rewrite this
condition as

|E| � 1

2

[√
t2
⊥ +

(
�vF L

l2
B

)2

− t⊥

]
. (13)

In stronger fields, the charge transport is suppressed and a
considerable conductance G � G0 emerges only in narrow
energy intervals near LLs, in analogy with corresponding
results for a monolayer reported in Refs. [16] and [22].
For any of these intervals, it is possible to increase B

keeping the doping such that ε2 ±
√

(εt)2 + 1 � 2n − 1 (with
n being the number of LL). Following such a procedure, we
have numerically reproduced the pseudodiffusive transport
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FIG. 2. (Color online) Transport regimes in unbiased graphene
bilayer (Zeeman splitting is not taken into account). Two solid
lines delimit the areas with G/G0 > 8 W/L (red) and G/G0 <

2.4 W/L (yellow), where we set W/L = 20 and L = 48 �vF /t⊥ �
77 nm. Dashed line marks a border of the highly-conducting regime
following from Eq. (13).

characteristics of a monolayer, i.e., G � G
(1)
diff , F � 1/3, and

R � 1/15, for any n ≥ 1. [Notice that we have set g = 0 for
clarity. When the Zeeman term is taken into account (g = 2),
the conductance approaches G

(1)
diff/2 = (2/π )G0W/L per each

direction of spin, whereas the values of F and R are not
altered.]

B. Graphene bilayer with nonzero bias

We focus now on the effects appearing in the presence
of a bias between the layers (δ �= 0). Analyzing normalization
conditions for the wave functions, one can obtain the following
equation for LL energies:

ε2 + δ2 ±
√

(1 − 2 δ ε)2 + t2 (ε2 − δ2) = 2 n − 1, (14)

with n = 0,1, . . . . This supplements the results reported in the
first paper of Ref. [30]. In a peculiar situation when ε = ±δ,
the differential equations untangle and two additional solutions
corresponding to LLs emerge, although it is not possible to
find them in a closed analytic form. Numerical values of LL
energies are presented in the physical units in Fig. 3.

As illustrated in Figs. 3 and 4, the bias field lifts the valley
degeneracy (see Fig. 3), and thus the conductance per spin at
any LL becomes two times smaller than for a monolayer, G �
G

(1)
diff/4 = (1/π )G0W/L (see Fig. 4). The second and third

charge-transfer cumulants are still quantified by F � 1/3 and
R � 1/15 (respectively), see Fig. 5. Also, the electron-hole
symmetry is broken and the two lowest LLs (n = 0,1) exist
for electrons (or holes) only in the K ′ (or K) valley, see Fig. 3.

It is worth stressing here that each LL in biased bi-
layer is associated with a bunch of transmission resonances
corresponding to different kys, similarly as in the simplest
case of unbiased system at the Dirac point described by
Eq. (11). Remarkably, for the energy close to any given LL,

K’K’

KK

0.02

0.0204

0.0208

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−0.02

−0.0204

−0.0208

B [T]

E
 [

t  
]

FIG. 3. (Color online) Magnetic field dependence of LL energies
in graphene bilayer with a potential bias V = 4 × 10−2t⊥ obtained
from Eq. (14). (The Zeeman splitting is not taken into account for
clarity.) Notice that the states corresponding to different valleys (K
or K ′) are exchanged between the conductance and the valence bands
(top and bottom panels).

the transmission resonances merge in the momentum space.
In fact, the wave number shift of −l−2

B L/2 appears to provide
a reasonable approximation of the typical resonance position,
regardless δ = 0 or δ �= 0. For these reasons, in the numerical
discussion presented in the remaining part of the paper,
we suppose the mean position of transmission resonances
associated with a single LL (up to an integer multiplicity of
2π/W ) is given by

kres = 2π

W
nint

(
WL

4πl2
B

)
, (15)

where nint (x) is the nearest integer to x.

IV. EFFECTS OF A FINITE VOLTAGE DIFFERENCE
OR DOPING FLUCTUATIONS

So far, we have discussed transport properties of graphene
bilayer in situations when the doping E is sharply defined
and the standard Landauer-Büttiker formulas for the linear-
response regime [see Eqs. (8)–(10)] can be applied. Such an
approach may not be fully justified at high fields, when the
nonzero transmission appears only at narrow doping intervals
centered around LLs. For instance, the experimental results
may deviate from our theoretical predictions even at zero
temperature due to a finite source-drain potential difference
Vsd , as we may have (at sufficiently high B) eVsd � W0,
with W0 being the typical transmission resonance width. We
also argue that similar effects originate from slow doping
fluctuations, which may occur in nanosystems when long-time
measurements of the higher charge-transfer cumulants are
performed.
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FIG. 4. (Color online) Hierarchy of Landau levels and pseudod-
iffusive conductance in biased graphene bilayer. (a), (b) Magnetocon-
ductance for the field-dependent doping obtained by solving Eq. (14)
for n = 2 and ms = − 1

2 . Two panels show the contributions from
the transmission channels corresponding to ms = − 1

2 and different
valleys [panel (a)] and the conductance summed over the valleys for
different directions of spin [panel (b)]. Notice the suppression of the
contribution from K valley and ms = + 1

2 . (c) Magnetoconductance
for the doping fixed at E = 0.2 t⊥. Inset shows the separation of
resonances corresponding to K ′ and K valleys for LL with n = 3 and
ms = − 1

2 . We took V = 2 × 10−4 t⊥ and g = 2. Remaining system
parameters are the same as in Fig. 2.

We now extend our analysis in order to describe the
above-mentioned effects of finite Vsd (or fluctuating dop-
ing) in a systematic manner. We start from presenting an
empirical model describing the dependence transmission
probabilities Tky

(E) on ky and E (see Sec. IV A). Next,
theoretical predictions for F and R as functions of Vsd ,
arising from our model, are confronted with the corresponding
results of computational experiments (see Sec. IV B). The
evolution of statistical distribution of transmission eigen-
values ρ(T ) with increasing Vsd is also briefly discussed
(in Sec. IV C).

1 31 3

1 151 15

6 8 10 12 14 16 18
0.0

0.2

0.4

0.6

0.8

1.0

B T

,

FIG. 5. (Color online) Shot-noise power and the third charge-
transfer cumulant, quantified by the Fano factor F (9) and the
R-factor (10), as functions of the magnetic field B. Physical
parameters are same as used in Fig. 4(c). Dashed horizontal lines
mark the pseudodiffusive values F = 1/3 and R = 1/15.

A. Charge-transfer cumulants at finite Vsd

In the so-called shot-noise limit eVsd � kBT , electric
charge Q passing a nanoscale graphene device during the
time �t is a random variable, a distribution of which can
be expressed via the characteristic function

�(χ ) = 〈exp(iχQ/e)〉 (16)

(with 〈X〉 denoting the expectation value of X), which is given
by the Levitov formula [11]

ln �(χ ) = (�t/h) ×
∫ E0+eVsd/2

E0−eVsd/2
dE′

× ln{det[I + (eiχ −1)T (E′)]}, (17)

where I is the identity matrix, E0 is mean doping in the sample
area, and we have assumed Vsd > 0 for simplicity. The average
charge 〈Q〉, as well as higher charge-transfer cumulants
〈〈Qm〉〉 ≡ 〈 (Q − 〈Q〉)m 〉 may be obtained by subsequent
differentiation of ln �(χ ) with respect to iχ at χ = 0. In
particular, the conductance

G(Vsd ) = 〈Q〉
Vsd�t

= e

Vsd�t

∂ ln �

∂(iχ )

∣∣∣∣
χ=0

= G0

eVsd

∫ E0+eVsd/2

E0−eVsd/2
dE′ Tr T (E′)

≡ G0〈Tr T 〉|E−E0|≤eVsd/2, (18)

where we have identified the value of Tr T (E) averaged over
the energy interval |E − E0| ≤ eVsd/2. Equation (8) gets
restored for Vsd → 0. Analogously,

F(Vsd ) = 〈〈Q2〉〉
〈〈Q2〉〉Poisson

≡ 〈Tr [T (I − T )]〉|E−E0|≤eVsd/2

〈Tr T 〉|E−E0|≤eVsd/2
(19)
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and

R(Vsd ) = 〈〈Q3〉〉
〈〈Q3〉〉Poisson

≡ 〈Tr [T (I − T )(I − 2T )]〉|E−E0|≤eVsd/2

〈Tr T 〉|E−E0|≤eVsd/2
, (20)

where 〈〈Qm〉〉Poisson ≡ em〈Q〉 denotes the value of 〈〈Qm〉〉 for
the Poissonian limit, at which all transmission probabilities
Tky

(E)  1. We notice that Eqs. (9) and (10) are restored for
Vsd → 0.

The structure of last expressions in Eqs. (18)–(20) allows
us to expect that the results presented in this section are also
relevant for a slightly different physical situation, namely,
when eVsd  W0, but the doping slowly fluctuates during
a measurement procedure, covering uniformly the energy
interval

|E − E0| ≤ W0�/2, (21)

with � being the dimensionless scaling factor. For the
sake of clarity, charge-transfer characteristics are hereinafter
discussed as functions of �, and the theoretical predictions
for the finite-voltage situation can be immediately obtained by
setting � ≡ eVsd/W0.

Our numerical results for Tky
(E) in case the doping E is

close to LL can be summarized as follows:
(i) The transmission probability depends on the wave vector

ky in a similar manner as for a system at zero magnetic
field, i.e., Tky

(E) ∝ cosh−2[A(ky − kres)L], where A is the
momentum-independent empirical parameter close to unity,
and kres is given by Eq. (15).

(ii) The dependence of Tky
(E) on the doping E can be ra-

tionalized with the Breit-Wigner distribution, characterized by
W(ky), the momentum-dependent full width at half maximum
(FWHM).

Subsequently,

Tky
(E) � cosh−2[A(ky − kres)L]

1 + [2(E − E0)/W(ky)]2
, (22)

where we have further assumed that the mean doping E0

corresponds to the transmission maximum. Substituting the
above to Eqs. [19 and 20] and taking W(ky) � W0 at the first
step, we obtain the approximating formulas for F and R in
the W � L limit

F(�) =2

3
− �

3(1+�2) arctan �
, (23)

R(�) = 2

5
− �

5(1+�2) arctan �

[
3 − 4

3(1 + �2)

]
. (24)

We observe that F(�) (23) reaches its minimum at � =
0, restoring the linear-response value F(0) = 1/3. To the
contrary, the minimum of R(�) corresponds to a nonzero
voltage difference (or the amplitude of doping fluctuations),
namely �min = 0.34 and R(�min) = 0.064, which is slightly
lower than the linear-response value R(0) = 1/15. A striking
consequence of Eqs. (23) and (24) is that the second and
third charge-transfer cumulants are expected to be quantum
limited also for � → ∞, withF andR approaching the values

close to F(∞) = 2/3 and R(∞) = 2/5, respectively, which
are still significantly smaller than for the Poissonian process
(FPoisson = RPoisson = 1).

B. Numerical results

Instead of employing the empirical expression for Tky
(E)

(22), one can calculate the averages in Eqs. (19) and (20)
numerically, for the ensemble of actual transmission matrices
T (E) obtained by repeating the mode matching (as presented
in Appendix B) for different values of E sampled over a desired
energy interval [38]. Such a computational experiment brought
us to the conclusion that F(�) (23) and R(�) (24) provide
reasonable approximations of the actual F and R values for
� � 2 only.

Nevertheless, we find both the approximations are substan-
tially improved when taking

W(ky) � W0 + α

[
W (ky − kres)

2π

]2

, (25)

with the additional empirical parameter α. A comparison
of W(ky) given by Eq. (25) with the values of FWHW
obtained numerically is presented in Fig. 6. Next, in Fig. 7,
we compare the values of F and R obtained by means of
the mode-matching analysis [solid lines], with these following
from the empirical model for Tky

(E) constituted by Eqs. (22)
and (25) [dashed lines]. F(�) (23) and R(�) (24) are also
shown in Fig. 7 [dotted lines]. Our results show that the model
for Tky

(E) as presented, generically reproduces the actual
values of F and R within 1% accuracy, provided � � 20 and
the position in the doping-field plane (E0,B) is chosen such
that W0 � 10−3 t⊥. Moreover, our prediction that the second
and third charge-transfer cumulant are quantum limited for
� → ∞ is now further supported, and the limiting values of
F and R can be approximated by

F∞ � 0.7 and R∞ � 0.5. (26)

C. Transmission statistics

For the sake of completeness, we discuss now the evolution
of statistical distribution of transmission eigenvalues ρ(T ) with
the increasing voltage difference (or the amplitude of doping
fluctuations), quantified by the factor � again [see Eq. (21)].
For the linear-response regime (� → 0) such a distribution
reads [12,13]

ρ
(1,2)
diff (T ) = 2G

(1,2)
diff

πσ0

1

T
√

1 − T
, (27)

where G
(1,2)
diff are given by Eq. (12) for graphene or its bilayer

in the pseudodiffusive limit W  L. We further notice that the
distribution ρ

(1,2)
diff (T ) (27) is normalized such that∫ 1

0
dT ρ

(1,2)
diff (T )T = G

(1,2)
diff . (28)

In our numerical discussion, the sample aspect ratio is
fixed at the large but finite value W/L = 20. (Such an
approach is partly motivated by the existing experimental
studies of pseudodiffusive graphene, see Refs. [17–19].) For
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FIG. 6. (Color online) Transmission resonances for the second
LL at B = 5 T with the remaining parameters the same as in Fig. 2.
(a) The resonance width W as a function of ky . Data points are
derived from the mode matching analysis; solid line depicts W(ky)
approximated by Eq. (25) with the best-fitted parameters α � 1.27 ×
10−5t⊥ and W0 � 4.2 × 10−4t⊥. [The inset shows the same data as a
function of (ky − kres)2.] (b) Transmission probabilities for different
ky and the doping fixed at E = E0 = 0.060 72 t⊥ � 0.024 eV. Solid
(or dashed) line corresponds to Eq. (22) with the best-fitted A � 0.80
(or the fixed A = 1). (c) Transmission probability as a function of the
doping for different ky : Solid, dashed, and dash-dotted line depict the
values obtained from Eq. (22) for ky −kres = 0, 4π/W , and −8π/W

(with A � 0.80 for all three cases).

this reason, the total number of distinct nonzero transmission
eigenvalues Tky

(E) in the energy interval (21) is relatively
small, particularly for � � 1. In effect, the corresponding
histograms depicting ρ(T ) are sensitive to the choice of a bin
size. To overcome this difficulty, we introduce the so-called
partial conductance

G̃(T )/G0 =
∫ T

0
dT ′ρ(T ′)T ′

≡
∫ T

0
dT ′〈Tr [T δξ→0(T − T ′ I)]〉|E−E0|≤W0�/2,

(29)

where δξ→0(M) is an analytic representation of the Dirac
delta function with a matrix argument M. [For instance, G̃(1)
reproduces the conductance as given by Eq. (18).] In the

0 2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Δ

,

FIG. 7. (Color online) F and R as functions of the voltage
difference (or the amplitude of doping fluctuations), quantified by
the scaling factor � defined via Eq. (21). The values of E0 and B

are the same as in Fig. 6(b), the remaining parameters are the same
as in Fig. 2. Solid lines depict the values obtained by calculating
the averages in Eqs. [(19) and (20)] numerically, for transmission
matrices derived via the mode matching, whereas dashed lines
correspond to the empirical model constituted by Eqs. (22) and (25)
with A = 0.80, W0 = 4.2 × 10−4 t⊥, and α = 1.27 × 10−5 t⊥. The
approximating values of F(�) (23) and R(�) (24) are also shown
(with dotted lines).

pseudodiffusive limit, we have

G̃
(1,2)
diff (T ) = G0

∫ T

0
dT ′ρ(1,2)

diff (T ′)T ′

= G
(1,2)
diff (1 − √

1 − T ). (30)

In Fig. 8, we compare G̃(T ) obtained from Eq. (29)
utilizing three different numerical approaches, in analogy
to the earlier presentation of Fig. 7. First, the average in
Eq. (29) is calculated for actual transmission matrices derived
via the mode matching [solid lines]. Next, the empirical
model constituted by Eqs. (22) and (25) [dotted lines] and its
simplified version obtained by setting W(ky) � W0 [dashed
lines] are employed. The values of G

(2)
diff (T ) [Eq. (30)] are

also shown in Fig. 8 [dot-dashed lines]. Our results show that
the actual distribution of transmission eigenvalues ρ(T ) may
follow the pseudodiffusive distribution ρ

(2)
diff (T ) (27) only if

the doping energy is adjusted rather closely to LL (� = 0.1).
When doping fluctuations get larger (� = 1), a significant
deviation of ρ(T ) from ρ

(2)
diff (T ) is observed, due to the

enhanced contribution of low transmission eigenvalues. In
both cases, the agreement with the empirical model presented
earlier [see Eqs. (22) and (25)] is excellent.

V. INFLUENCE OF INDIRECT INTERLAYER HOPPING
INTEGRALS

Theoretical calculations based on the Kubo formula [39]
show that the minimal conductivity of ballistic graphene
bilayer may be unstable with respect to indirect interlayer
hopping integrals [40], which are neglected in the Hamiltonian
(1). At zero field and zero bias situation (B = V = 0), the
minimal conductivity is predicted to be (24/π ) e2/h = 6σ0

(i.e, six times larger than the conductivity of a monolayer) for
arbitrarily small indirect interlayer hoppings. In the absence of
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FIG. 8. (Color online) Partial conductance G̃(T ) [Eq. (29)] for
the two values of � [Eq. (21)] [specified for each panel] and the
physical parameters same as in Fig. 7. Solid lines mark the values
obtained by calculating the average in Eq. (29) numerically for
transmission matrices derived via the mode matching. Dotted lines
correspond to the empirical model constituted by Eqs. (22) and
(25) with A = 0.80, W0 = 4.2 × 10−4 t⊥, and α = 1.27 × 10−5 t⊥,
whereas dashed lines present the values obtained by setting A = 1,
α = 0, and leaving W0 same as for dotted lines. The pseudodiffusive
values of G

(2)
diff (T ) [Eq. (30)] are also shown (with dot-dashed lines).

such hoppings, the Kubo conductivity drops back to 2σ0, what
is attributed to the disappearance of additional Fermi surface
pockets at low energies [41,42]. (We notice here, that the effect
has no high-frequency analog, which beautifully manifests
itself by direct scaling of visible light absorption with the
number of layers, see Ref. [8].) The experimental value of
σxx � 5σ0 [43] is close to the prediction of Ref. [39], with a
small deviation which may be related to several factors, such as
a finite system size, the presence of disorder, electron-phonon
coupling, or electron-electron interactions, not taken into
account by existing theory in a rigorous manner. Additionally,
the values following from the Kubo formula are known to be
sensitive to the order in which certain limits are taken [44].
For these reasons, an independent calculation employing the
Landauer-Büttiker formalism for a ballistic system of a given
length L and a width W , allowing one at least to identify the
possible effects of a finite system size, is desired.

The Hamiltonian for K valley [Eq. (1)] is now replaced by

H ′ =

⎛
⎜⎜⎜⎝

U1(x) πx +iπy t⊥ 0

πx −iπy U1(x) 0 π ′
x +iπ ′

y

t⊥ 0 U2(x) πx −iπy

0 π ′
x −iπ ′

y πx +iπy U2(x)

⎞
⎟⎟⎟⎠ ,

(31)

G=4G0 WL −1 −1G=4G0 WL −1π−1

t =0.32 eV

t =0.16 eV

t =0 eV
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FIG. 9. (Color online) Magnetoconductance of unbiased
graphene bilayer (per one direction of spin) for different values of
the next-nearest neighbor interlayer hopping t ′. The field-dependent
doping is adjusted to follow the transmission maxima for n = 0
(top panel) and n = 2 (bottom panel) Landau levels. The system
parameters are the same as used in Fig. 2.

where π ′
j = (t ′/t0) πj with j = 1,2, t0 = 2

3

√
3�vF /a is the

nearest neighbor hopping in a single layer defined via the Fermi
velocity and the lattice spacing a = 0.246 nm, t ′ is the next-
nearest-neighbor interlayer hopping [45], and the remaining
symbols are the same as in Eq. (1). Next, the Dirac equation
H ′ψ = Eψ is solved numerically for the sample area 0 < x <

L, separately for each value of the transverse wave number
ky = 2πn/W (with n = 0,±1,±2, . . . ) following from the
periodic boundary conditions. The mode matching analysis
is then carried out as reported in Appendix B. Although the
wave functions for t ′ �= 0 can still be obtained analytically
in some particular situations (and will be given elsewhere),
the compact-form expressions for transmission eigenvalues
Tky

(E), such as given by Eq. (11), are now unavailable even
for the simplest E = 0 and B = 0 case. The numerical results
are presented in Figs. 9 and 10, where we have further limited
our discussion to the case of a zero bias between the layers
(V = 0) and to the limit of wide samples (W � L).

In Fig. 9, we demonstrate (as a proof of principle) that
indirect interlayer hoppings play no role at high magnetic
fields, for which lB  L, and the transmission resonances
via individual LLs are well defined. In such a limit, the
conductance per one direction of spin approaches the value
of G

(1)
diff = (4/π ) G0W/L for the Dirac point (see top panel)

or G
(1)
diff/2 for higher LLs (see bottom panel for n = 2 case)

consistent with the results reported in Sec. III A for the
t ′ = 0 case. In the opposite limit of B → 0, the zero-energy
conductance is enhanced by a factor of 1.6 for t ′ = 0.32 eV
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FIG. 10. (Color online) Minimal conductivity of unbiased bi-
layer as a function of the sample length L for W/L = 20 (open
symbols) and W/L = 50 (solid symbols). The value of t ′ is specified
for each data set. Lines show the best fitted power-law relations (32)
with parameters given by Eq. (33) [solid lines] and Eq. (34) [dashed
lines]. Top panel shows the raw data. In the bottom panel the data
sets are shifted horizontally to demonstrate the universal behavior for
L/l� � 1.

[or 1.3 for t ′ = 0.16 eV] above the pseudodiffusive value,
which is significantly smaller than a t ′-independent factor 3
predicted by Ref. [39]. The pseudodiffusive values of F and
R are unaffected by t ′. (We further notice that the numerical
results presented in Fig. 9 correspond to W/L = 20 and
L = 48 �vF /t⊥ � 77 nm.)

To further understand the nature of this clear discrepancy
between the results obtained employing the Kubo formula and
the Landauer-Büttiker formalism, we analyze numerically the
ballistic conductivity at E = B = 0 as a function of L (see
Fig. 10). We find that the conductivity is no longer universal
for t ′ > 0, but slowly grows with L, and can be approximated
(for large L) within a power law relation

σ (L) = σ∞

[
1 −

(
l�

L

)γ ]
. (32)

Least-square fitted parameters in Eq. (32) are

σ∞ = 6.05σ0, l� = 2.5 nm, γ = 0.23 for t ′ = 0.32 eV,

(33)

and

σ∞ = 6.0 σ0, l� = 6.7 nm, γ = 0.23 for t ′ =0.16 eV,

(34)

with the standard deviations not exceeding 1% in all cases. We
observe that only the parameter l� significantly varies with t ′.
Replotting the conductivity as a function of the dimensionless
variable L/l� (see bottom panel in Fig. 10) shows the universal
nature of the length dependence of the conductivity.

Although the Landauer-Büttiker conductivity approaches
the value of σ∞ � 6σ0 for L → ∞, restoring the results of
Ref. [39], the values of σ (L) following from Eq. (32) for
typical lengths of ballistic samples used in the experiments
are still significantly smaller that 6σ0. In particular, using the
parameters given by Eqs. [(33) and (34)] for an extrapolation,
one gets σ (L = 1 μm) = 4.1 − 4.6 σ0 and σ (L = 10 μm) =
4.9 − 5.2 σ0, where the upper (lower) limit corresponds to t ′ =
0.32 eV (t ′ = 0.16 eV). Therefore, the fact that experimental
values of the minimal conductivity [43] are noticeably smaller
than the prediction of Ref. [39] may be predominantly caused
by finite system sizes, with only a secondary role played by
the disorder or many-body effects.

VI. CONCLUSIONS

We have calculated the conductance G, the Fano factor
F , and the factor R quantifying the third charge-transfer
cumulant, for a ballistic strip in graphene bilayer, in the
presence of bias between the layers and strong magnetic
fields. Our results show that the so-called pseudodiffusive
charge-transport regime appears generically for a sample with
large aspect ratio (W � L) not only at the Dirac point (DP),
but also in the vicinity of any Landau level (LL). However,
the conductivity σ = GL/W in the pseudodiffusive regime
is not always equal to 2σ0 [with σ0 = (4/π ) e2/h being the
conductivity of a monolayer] as predicted for a zero-field and
zero-bias situation by Snyman and Beenakker [25], but takes
quantized values of sσ0/2, with the prefactor s = 1, 2, 4, or 8,
depending whether each of spin, valley, and layer degeneracies
is present or absent (see Table I).

Other charge-transfer characteristics studied are insensitive
to the splittings of degeneracies, leading to F � 1/3 and R �
1/15 in any case the pseudodiffusive regime is approached.
This observation is further supported with statistical analysis
of the distribution of transmission eigenvalues, which follows
the corresponding distribution for a diffusive wire, provided
the sample doping is kept in a vicinity of DP or LL.

TABLE I. The degeneracy prefactors occurring in the expression
for pseudodiffusive conductance G = se2/(πh) × W/L for graphene
or its bilayer in different physical situations. Indexes σ , v, and l marks
the degeneracies associated with spin, valley, and layer degrees of
freedom (respectively).

Degeneracy, B �= 0

s B = 0 0th LL Other LLs

Monolayer 4(σ,v) 2(v) 2(v)

Bilayer, V = 0 8(σ,v,l)
a 4(v,l) 2(v)

Bilayer, V �= 0 4(σ,v) 1 1

aThis particular value applies in the absence of indirect interlayer
hopping (t ′ = 0) only.
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Additionally, the analysis is extended beyond the stan-
dard linear-response regime, i.e., we considered the effects
of a finite voltage difference or slow doping fluctuations.
Numerical analysis of transmission matrices obtained via the
mode matching for the Dirac equation at different dopings
allows us to propose an empirical model for transmission
probabilities, which is then used to rationalize the dependence
of charge-transfer characteristics on the voltage difference
(or the amplitude of doping fluctuations). Probably, the most
remarkable feature of these results is that both the shot-noise
power and the third charge-transfer cumulant are predicted to
be quantum limited also for large doping fluctuations, leading
to F and R approaching the limiting values of F∞ � 0.5 and
R∞ � 0.7.

Finally, we have discussed the influence of indirect in-
terlayer hoppings (quantified by t ′) on the conductance and
other charge-transfer characteristics. The results show that
such hoppings may only affect the conductance at zero or weak
magnetic fields. At stronger fields, when LLs are formed, the
behavior earlier identified for t ′ = 0 is restored. Surprisingly,
for t ′ �= 0 the zero-field zero-bias conductivity at the Dirac
point is neither equal to 2σ0 [25] nor 6σ0 [39], but grows
monotonically with the system length, taking the values from
an interval 2σ0 < σ (L) < 6σ0. A very slow convergence to
the upper conductivity limit is observed for large L and
can be rationalized as σ (L) � 6σ0[1 − (l�/L)−γ ], with a t ′-
independent exponent γ � 0.23. The characteristic length l� is
of the order of nanometers and strongly depends on t ′, offering
a possibility to determine the effective value of t ′ solely by the
minimal conductivity measurement at fixed L  W .
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APPENDIX A: WAVE FUNCTIONS

In this Appendix we present the wave functions of a charge
carrier in a carbon bilayer at the Dirac point as well as at finite
dopings, in the presence of a uniform magnetic field.

1. The Dirac point (ε = δ = 0)

A general solution of Eq. (3) for ε = δ = 0 has the form of a
linear combination of four independent spinors with arbitrary
coefficients C1, . . . ,C4, namely⎛

⎜⎜⎜⎝
φA1 (x)

φB1 (x)

φB2 (x)

φA2 (x)

⎞
⎟⎟⎟⎠ = C1

⎛
⎜⎜⎜⎝

fB,ky
(x)

0

0

−t⊥xfB,ky
(x)

⎞
⎟⎟⎟⎠ + C2

⎛
⎜⎜⎜⎝

0

f̄B,ky
(x)

0

0

⎞
⎟⎟⎟⎠

+C3

⎛
⎜⎜⎜⎝

0

−t⊥xf̄B,ky
(x)

f̄B,ky
(x)

0

⎞
⎟⎟⎟⎠ + C4

⎛
⎜⎜⎜⎝

0

0

0

fB,ky
(x)

⎞
⎟⎟⎟⎠ ,

(A1)

where fB,ky
(x) = exp(l−2

B x2/2 − x ky) and f̄B,ky
(x) =

1/fB,ky
(x).

2. Finite dopings (ε �= 0 or δ �= 0)

In the case of finite dopings (ε �= 0 or δ �= 0) we have two
pairs of solutions, hereinafter labeled as φ±

1,α and φ±
2,α (with

the signs ± related to the two subbands), which are given by

φ±
1,A1

(ε,δ; ξ ) = e−ξ 2/4
1F1

(
1 − 2ζ±

4
;

1

2
;

ξ 2

2

)

φ±
2,A1

(ε,δ; ξ ) = ξ e−ξ 2/4
1F1

(
3 − 2ζ±

4
;

3

2
;

ξ 2

2

)
,

φ±
1,B1

(ε,δ; ξ ) = (1 + 2 ζ±)[(δ + ε)
√

2]−1 ξ e−ξ 2/4
1F1

(
1 − 2ζ±

4
;

3

2
;

ξ 2

2

)
,

φ±
2,B1

(ε,δ; ξ ) = [(δ + ε) 3
√

2]−1 e−ξ 2/4

{
(3 + 2 ζ±) ξ 2

1F1

(
3 − 2ζ±

4
;

5

2
;

ξ 2

2

)
− 6 1F1

(
3 − 2ζ±

4
;

3

2
;

ξ 2

2

)}
,

φ±
1,B2

(ε,δ; ξ ) = (δ + ε)−1 α± e−ξ 2/4
1F1

(
1 − 2ζ±

4
;

1

2
;

ξ 2

2

)
,

φ±
2,B2

(ε,δ; ξ ) = (δ + ε)−1 α± ξ e−ξ 2/4
1F1

(
3 − 2ζ±

4
;

3

2
;

ξ 2

2

)
,

φ±
1,A2

(ε,δ; ξ ) = [(1 − 2 ζ±) α±/
√

2] ξ e−ξ 2/4
1F1

(
5 − 2ζ±

4
;

3

2
;

ξ 2

2

)
,

φ±
2,A2

(ε,δ; ξ ) = α±[(δ2 − ε2)3
√

2]−1 e−ξ 2/4

{
6 (1 + ξ 2) 1F1

(
3 − 2ζ±

4
;

3

2
;

ξ 2

2

)
− ξ 2 (3 + 2 ζ±) 1F1

(
3 − 2ζ±

4
;

5

2
;

ξ 2

2

)}
,

(A2)
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where ξ = √
2(l−1

B x + lB ky), α± = [(δ + ε)2 − 1 − 2 ζ±]/t , ζ± = 1
2 [ε2 + δ2 ±

√
(1 − 2δε)2 + t2(ε2 − δ2)],

pFq(a1, . . . ,ap; b1, . . . ,bq ; z) denotes the generalized hypergeometric function [46], and the remaining symbols are the
same as in Eq. (3) in the main text.

APPENDIX B: TRANSMISSION EIGENVALUES

Using wave functions of the form ψ = (φA1,iφB1 ,φB2 ,iφA2 )T , one can write the charge-conservation conditions for a strip of
width W and length L (see Fig. 1) in graphene bilayer as follows

ψ±
R,I(x0) + r±

p ψ+
L,I(x0) + r±

n ψ−
L,I(x0) = ψII(x0), t±p ψ+

R,III(x1) + t±n ψ−
R,III(x1) = ψII(x1), (B1)

where we set x0 = 0, x1 = L. The lower indexes R and L refer to the solutions moving to the right or left (respectively), whereas
the indexes I, II, and III refer to left contact, sample, and right contact. The upper indexes ± refer to the two subbands, and r±

p , r±
l

(t±p , t±l ) denote the corresponding reflection (transmission) amplitudes. We further suppose that the functions ψ±
R , ψ±

L in regions
I and III are normalized to carry a unit current.

Taking the limit of |U∞| → ∞ [i.e., choosing the functions ψ±
R , ψ±

L for regions I and III as given by Eqs. (6) and (7) in the
main text] we obtain the following system of linear equations⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 φ+
1,A1

(ε,δ; ξ0) φ−
1,A1

(ε,δ; ξ0) φ+
2,A1

(ε,δ; ξ0) φ−
2,A1

(ε,δ; ξ0) 0 0

−1 1 iφ+
1,B1

(ε,δ; ξ0) iφ−
1,B1

(ε,δ; ξ0) iφ+
2,B1

(ε,δ; ξ0) iφ−
2,B1

(ε,δ; ξ0) 0 0

−1 −1 φ+
1,B2

(ε,δ; ξ0) φ−
1,B2

(ε,δ; ξ0) φ+
2,B2

(ε,δ; ξ0) φ−
2,B2

(ε,δ; ξ0) 0 0

1 1 iφ+
1,A2

(ε,δ; ξ0) iφ−
1,A2

(ε,δ; ξ0) iφ+
2,A2

(ε,δ; ξ0) iφ−
2,A2

(ε,δ; ξ0) 0 0

0 0 φ+
1,A1

(ε,δ; ξ1) φ−
1,A1

(ε,δ; ξ1) φ+
2,A1

(ε,δ; ξ1) φ−
2,A1

(ε,δ; ξ1) 1 −1

0 0 iφ+
1,B1

(ε,δ; ξ1) iφ−
1,B1

(ε,δ; ξ1) iφ+
2,B1

(ε,δ; ξ1) iφ−
2,B1

(ε,δ; ξ1) 1 −1

0 0 φ+
1,B2

(ε,δ; ξ1) φ−
1,B2

(ε,δ; ξ1) φ+
2,B2

(ε,δ; ξ1) φ−
2,B2

(ε,δ; ξ1) −1 −1

0 0 iφ+
1,A2

(ε,δ; ξ1) iφ−
1,A2

(ε,δ; ξ1) iφ+
2,A2

(ε,δ; ξ1) iφ−
2,A2

(ε,δ; ξ1) −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r±
p

r±
n

C±
1

C±
2

C±
3

C±
4

t±p
t±n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∓1

∓1

1

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

where ξ0 = √
2 lB ky , ξ1 = √

2(l−1
B L + lB ky), and the remaining symbols are the same as used in Appendix A. In turn, the

transmission matrix for the K valley and the transverse momentum fixed at ky is of the form:

tK,ky
(ε,δ) =

(
t+p t+n
t−p t−n

)
. (B3)

[Notice that the dependence on the z component of spin ms is incorporated in ε, see Eq. (3) in the main text.] The
transmission matrix for the K ′ valley can be obtained from an analogous procedure, starting from the wave function
ψ ′ = (φA1 , − iφB1 ,φB2 ,−iφA2 )T , with the components given by Eq. (A2) after the substitution δ → − δ.
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