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Possibility for exciton Bose-Einstein condensation in carbon nanotubes
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We demonstrate a possibility for exciton Bose-Einstein condensation in individual small-diameter (∼1–2 nm)
semiconducting carbon nanotubes. The effect occurs under the exciton-interband-plasmon coupling controlled
by an external electrostatic field applied perpendicular to the nanotube axis. It requires fields ∼1 V/nm and
temperatures below 100 K that are experimentally accessible. The effect offers a testing ground for fundamentals
of condensed matter physics in one dimension and opens up perspectives to develop tunable coherent polarized
light source with carbon nanotubes.
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I. INTRODUCTION

Carbon nanotubes (CNs), graphene sheets rolled-up into
cylinders of one to a few nanometers in diameter and up
to hundreds of microns in length, have been successfully
integrated into miniaturized electronic, electromechanical,
chemical devices, scanning probes, and into nanocomposite
materials [1,2]. Over the past few years, optical nanomate-
rials research has uncovered intriguing optical attributes of
their physical properties lending themselves to a variety of
optoelectronic device applications [3–14]. The great breadth
and depth of optical phenomena in CNs is exemplified by
experimental and theoretical reports on how their optical
properties are affected by defects [15–17], exciton-phonon
interactions [18–20], biexciton and trion formation [21–28],
exciton-plasmon coupling [29], and external magnetic [30]
and electric fields [29,31]. Recent studies have also looked
at thermal rectification [32], microwave-frequency signal
rectification [33], and nonlinear optical response of individual
CNs [34]. Several efforts reported on semiconducting CNs
used for the generation, detection, and harvesting of light
[6–13], and as single photon sources for quantum computing,
communication, or cryptography [35–37].

Undoped semiconducting single-wall CNs are direct band-
gap semiconductors and feature very large exciton binding
energies (hundreds of meV) [4,5]. Excitonic excitations in CNs
are very stable, with radiative decay lifetimes ranging from
∼10 ps to 10 ns [15,38]. Other typical exciton relaxation times
are ∼30–100 fs for the exciton-phonon scattering [31], and
∼50 ps for the exciton scattering by defects [15,16]. Excitonic
characteristics in CNs can be adjusted in controllable ways,
in order to modify their underlying optical properties. This
offers new functionality and creates a strong potential for
future tunable optoelectronic device applications with CNs.

Excitons in pristine CNs can be affected by either elec-
trostatic doping [9,39] or by the quantum confined Stark
effect (QCSE) [12,29] (an external electrostatic field applied
perpendicular to the CN axis; the effect is used recently to tune
the band gap of bilayer graphene [40]). In both cases, exciton
properties are mediated by collective plasmon excitations.
QCSE, in particular, allows one to control exciton-interband-
plasmon coupling in individual undoped CNs and their (linear
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[12,13,29] and nonlinear [23,41]) optical absorption [42].
Plasmons cannot be excited by light in optical absorption since
they are longitudinal excitations while photons are transverse
[43,44]. In small-diameter (∼1 nm) semiconducting CNs, light
polarized along the CN axis excites excitons [45], which can
then couple to the nearest (same-band) interband plasmons
[29]. Both of these collective excitations come from the same
electronic transitions and, therefore, occur at the same energies
∼1 eV, as opposed to bulk semiconductors where they are
separated by tens of eVs [43]. They do have different physical
nature. Their coexistence at the same energies in CNs is
a unique general feature of confined quasi-one-dimensional
(1D) systems where the transverse electronic motion is quan-
tized to form 1D bands and the longitudinal one is continuous.

The formation of coupled exciton-plasmon excitations
can be viewed as an additional nonradiative channel (in
addition to phonons [18,19] and defects [15,16]) for the
exciton relaxation in CNs, whereby optically excited excitons
decay into low-energy interband plasmons [12,13]. In so
doing, excitons generate the quanta of plasma oscillations
on the CN surface, on the one hand, and this shortens
their lifetime, on the other. Thus, by varying the exciton-
plasmon coupling strength with the QCSE one controls both
the radiative exciton emission and nonradiative exciton-to-
plasmon energy transfer. This latter phenomenon is similar
to the SPASER effect (surface plasmon amplification by
stimulated emission of radiation) reported earlier for hybrid
metal-semiconductor-dielectric nanostructures [46]. It takes
place in individual small-diameter CNs though, resulting
in new strongly coupled hybridized excitations—exciton-
plasmons—and associated high-intensity coherent oscillating
fields concentrated locally along the CN surface [12,13]. These
near fields can be used in a variety of new optoelectronic
applications, including near-field nonlinear-optical probing
and sensing, optical switching, enhanced electromagnetic
absorption, and materials nanoscale modification.

Apart from applications, carbon nanotubes offer an ideal
testing ground to study the fundamentals of condensed
matter physics in one dimension. Here, in particular, we
discuss a possibility for the 1D Bose-Einstein condensation
(BEC) phenomenon that originates from the strong coupling
of excitons and same-band interband plasmons enabled by
using the QCSE. Indeed, exciton-plasmons in an individual
nanotube are strongly correlated collective Bose excitations
and, therefore, could likely be condensed under appropriate
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external conditions—in spite of the well-known statements
of the BEC impossibility in ideal 1D/2D systems [47] and
experimental evidence for no exciton BEC effect in highly
excited semiconducting CNs [48]. Possibilities for achieving
BEC in 1D and 2D systems are theoretically demonstrated in
the presence of an extra confinement potential [49]. We show
that the strongly correlated exciton-plasmon system in a CN
in a perpendicular electrostatic field presents such a special
case. We find the critical BEC temperature, as well as the
condensate fraction and its exciton contribution as functions
of temperature and electrostatic field applied. We discuss how
the effect can be observed experimentally.

Section II briefly reviews the properties of exciton-
plasmons in individual small-diameter (∼1–2 nm) semicon-
ducting carbon nanotubes, presents their dispersion relation
as a function of the exciton longitudinal momentum and the
perpendicular electrostatic field applied, and gives a qualitative
reasoning of why the exciton-plasmon BEC effect is possible.
Section III develops the theory of the effect and discusses
our calculations for the critical BEC temperature, the exciton-
plasmon condensate fraction, and its exciton contribution.
Section IV summarizes our results and sets forth our vision
of how the effect can be investigated experimentally, as well
as prospective avenues it challenges for future experimental
nanoplasmonics and near-field optics research development,
currently focused mostly on metallic nanoparticles [50,51], to
include a new area of nanotube plasmonics. Technical details
of the theory and derivations are presented in Appendices A
and B in order not to interrupt the flow of arguments and results.

II. DISPERSION OF EXCITON-PLASMONS

In small-diameter semiconducting carbon nanotubes, be-
cause of their quasi-one-dimensionality, excitons are excited
by the external electromagnetic (EM) radiation polarized
along the CN axis [45]. [We use the cylindrical coordinate
system, Fig. 2(a), with the z axis being the CN symmetry
axis.] As a consequence, the exciton quasimomentum vector
and transition dipole moment operator are both directed
predominantly along the CN axis (the longitudinal exciton).
This prevents the exciton from the electric dipole coupling
to transversely polarized surface EM modes of the nanotube,
those originating from the EM vector potential due to the
relative motion of electrons and nuclei on the CN surface,
as they propagate predominantly along the CN axis with
their electric vectors orthogonal to the propagation direction.
Longitudinally polarized surface EM modes originate from
the EM scalar potential (see, e.g., Ref. [52]) due to the relative
motion of electrons and nuclei, and thus represent CN surface
plasmon excitations. These have their electric vectors directed
along the propagation direction, and therefore can couple to
longitudinal excitons on the CN surface [29]. Experimental
evidence for such plasmon modes in CNs was first reported
in Ref. [53]. They occur both at high energies (well-known
π plasmon at ∼6 eV) and at comparatively low energies of
∼0.5–2 eV. The latter ones are related to the circumferentially
quantized interband electronic transitions. These are low-
energy weakly dispersive plasmon modes [53,54] that are
similar to the intersubband plasmons in quantum wells [55].
They occur in the same energy range of ∼1 eV, where

the exciton excitation energies are located in small-diameter
(�1 nm) semiconducting CNs [38,56]. Such low-energy
longitudinally polarized surface EM modes can be viewed as
charged plasma oscillations created by standing charge density
waves due to the periodic opposite-phase displacements of the
electron shells with respect to the ion cores in the neighboring
elementary cells on the nanotube surface [12,13]. In what
follows we focus our consideration on the exciton interactions
with these particular surface plasmon modes.

The dispersion relation of the coupled exciton-plasmon
excitation of branch μ (=1,2) with energy �ωμ(k) and
quasimomentum k={kϕ,kz}, where kϕ is (circumferentially)
quantized and kz is continuous, can be obtained by means of the
diagonalization of the total Hamiltonian of interacting excitons
and plasmons. Details of the procedure can be found in
Ref. [29]. The procedure results in the following dimensionless
dispersion equation:

x2
μ − ε2

f − εf

2

π

∫ ∞

0
dx

x �̄
f

0 (x)ρ(x)

x2
μ − x2

= 0, (1)

where
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2γ0
, xμ = �ωμ(k)

2γ0
, εf = Ef (k)

2γ0
, (2)

with γ0 =2.7 eV being the carbon-carbon nearest neighbor
overlap integral. The exciton total energy in Eq. (2) is of the
form

Ef (k) = E(f )
exc (kϕ) + �

2k2
z

2Mex(kϕ)
. (3)

In this equation, the first term represents the excitation energy
E

(f )
exc (kϕ)=Eg(kϕ) + E

(f )
b (kϕ) of the f -internal-state exciton

with the (negative) binding energy E
(f )
b , which is excited on

the nanotube surface by the external EM radiation polarized
along the CN axis via the interband electric dipole transition
d

f
z =∑

n〈0|(d̂n)z|f 〉 (summation over lattice sites) with the
band gap Eg . The second term stands for the kinetic energy of
the translational longitudinal movement of the exciton with
the effective mass Mex = me + mh, where me and mh are
the (subband-dependent) electron and hole effective masses,
respectively. The function
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is the dimensionless spontaneous decay rate associated with
the exciton radiative recombination and

ρ(x) = 3S0

16παFSR
2
CN

Re
1

σ̄zz(x)
(5)

is the surface plasmon density of states (DOS) responsible for
the exciton decay rate variation due to its coupling to plasmons.
Here S0 = (3

√
3/4)b2 with b=1.42 Å being the carbon-carbon

interatomic distance, αFS =e2/�c is the fine-structure constant,
RCN stands for the CN radius, and σ̄zz =2π�σzz/e

2 represents
the dimensionless surface axial conductivity of the nanotube.

Only the axial conductivity σzz matters in our case here,
while the azimuthal one σϕϕ can be neglected being strongly
suppressed due to the CN quasi-one-dimensionality and
associated transverse depolarization effect [57–60], which is
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FIG. 1. (Color online) Calculated energy dependence of the di-
mensionless (normalized by e2/2π�) axial surface conductivity σzz

for the four zigzag nanotubes, (13,0), (16,0), (20,0) and (26,0),
of increasing diameters. Peaks of Re σzz represent excitons (E11,
E22); peaks of Re(1/σzz) represent interband plasmons (P11, P22).
Dimensionless energy is defined as [Energy]/2γ0, where γ0 = 2.7 eV
is the C-C overlap integral.

precisely why excitons in small-diameter CNs are excited by
light polarized along the CN axis [45,61]. The conductivity
factor in Eq. (5) equals

Re
1

σ̄zz(x)
= −4αFSc

RCN

(
�

2γ0x

)
Im

1

εzz(x) − 1

in view of Eq. (2) and the Drude relation for nanotubes
σzz =−iω(εzz−1)/4πSρT , where εzz is the longitudinal (along
the CN axis) dielectric function, and S and ρT are the
surface area of the tubule and the number of tubules per
unit volume, respectively [58,62–64]. This relates very closely
the surface plasmon DOS function (5) to the loss function
−Im(1/ε) measured in electron energy loss spectroscopy
(EELS) experiments to study the properties of collective
electronic excitations in solids [43,44,53].

Figure 1 shows our calculations of σ̄zz(x) for a set
of representative zigzag-type semiconducting CNs, (13,0),
(16,0), (20,0) and (26,0), of increasing diameters in the range
∼1–2 nm (RCN = 0.51, 0.63, 0.78, and 1.02 nm, respec-
tively). We used the (k · p) method of Ref. [45] with the
exciton relaxation time 100 fs for all four CNs (consistent
with previous estimates [20,31]). Many-particle Coulomb cor-
relations are included by solving the Bethe-Salpeter equation
in the momentum space within the screened Hartree-Fock
approximation as described in Ref. [45]. Real conductivities
consist of series of peaks (E11,E22, . . . ) representing the first,
second, etc. excitons. Imaginary conductivities are linked with
the real ones by the Kramers-Kronig relation, which is why
the functions Re(1/σ̄zz) = Re(σ̄zz)/{[Re(σ̄zz)]2 + [Im(σ̄zz)]2}
show the resonances P11,P22, . . . right next to E11,E22, . . . .
These are the interband plasmon resonances we discussed
above (first observed in Ref. [53]). They occur at those
(low) energies where the two conditions Im[σ̄zz(x)] = 0 and
Re[σ̄zz(x)]→0 are fulfilled simultaneously.

The formation of the strongly coupled hybridized exciton-
plasmon excitations is only possible if the exciton total energy

FIG. 2. (Color online) (a) The geometry of the problem.
(b) Exciton-plasmon dispersion as a function of the perpendicular
electrostatic field and longitudinal momentum for the lowest bright
exciton coupled to the nearest interband plasmon in the (20,0)
nanotube (E(20,0)

11 and P
(20,0)
11 in Fig. 1). See text for dimensionless

momentum.

is in resonance with the energy of the neighboring (same-band)
interband plasmon mode. This can be achieved by using
the QCSE with the external electrostatic field F applied
perpendicular to the CN axis [Fig. 2(a)]. This problem was
first analyzed in Ref. [29], and the effect is shown to be the
strongest for the first exciton and the first interband plasmon
(E11 and P11 in Fig. 1). We consider this particular case in
what follows.

Perpendicular electrostatic field mixes exciton and plas-
mon excitations, to result in two branches (μ=1,2) of
new hybridized quasiparticle states—exciton-plasmons, the
solutions to the dispersion equation (1)—with the energies
(see Ref. [29])

x1,2 =
√

ε2
f + x2

p

2
± 1

2

√(
ε2
f − x2

p

)2 + (2Xf )2εf xp, (6)

where εf [defined in Eq. (2)] and xp (=Ep/2γ0) are the
dimensionless energies of the f -internal-state exciton and
interband plasmon of the same band, respectively, Xf =
[2�xp�̄

f

0 (xp)ρ(xp)]1/2 is the exciton-plasmon Rabi splitting
taken at energy x = xp with �̄

f

0 (x) of Eq. (4), and ρ(x)≈
ρ(xp)�x2

p/[(x − xp)2 + �x2
p] is the Lorentzian approximated

(of half-width at half-maximum �xp proportional to the
inverse plasmon lifetime) plasmon DOS function of Eq. (5).

Figure 2(b) shows an example of the two exciton-plasmon
branches given by Eq. (6) as functions of the perpendicular
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electrostatic field F and longitudinal momentum for the lowest
bright ground-internal-state exciton (in which case we drop the
f subscript in what follows) coupled to the nearest interband
plasmon in the (20,0) nanotube [E(20,0)

11 and P
(20,0)
11 in Fig. 1].

The origin of the energy is taken to be x2(F,kz =0). In nonzero
field Fc ≈2 V/nm, where the strong exciton-plasmon coupling
occurs, the upper-branch x1 has the global minimum at zero
momentum, kc

z = kz(Fc) = 0, separated from the lower branch
by the Rabi-splitting X(Fc,0) = X(Fc). Hence, at equilibrium,
if the temperature T is such that kBT /2γ0 >X(Fc), strongly
coupled upper-branch exciton-plasmons will be distributed
around this minimum in the momentum space. Lowering T

to get kBT /2γ0 <X(Fc) will push them all down to occupy
the lowest possible energy state, the kz =0 state, which is
nothing but the exciton-plasmon BEC effect. This effect does
not depend on the density of particles though, as opposed to the
BEC of noninteracting massive bosons [47,65]. Rather, this is
the characteristic feature of the quasiparticle energy spectrum,
its dependence on the electrostatic field applied, to be exact, of
the coupled exciton-plasmon excitations. Therefore, this BEC
effect is hardly sensitive to the interaction, if any, between
exciton-plasmons in our system.

Note that the existence of the two equivalent energy
valleys in the first Brillouin zone, the K and K ′ valleys
with opposite electron helicities about the CN axis, results
in the dark and bright excitonic states in the lowest-energy
spin-singlet manifold [4,5,66]. However, since the electrostatic
field interaction does not involve spin variables, both K and K ′
valleys are affected equally by the perpendicular electrostatic
field, and so the detailed structure of the exciton multiplet
does not manifest itself in our case. This is opposite to the
magnetostatic field effect where the field affects the K and K ′
valleys differently either to brighten the dark excitonic states
[30], or to create Landau sublevels [45] for the longitudinal
and perpendicular orientations, respectively.

III. EXCITON BEC EFFECT

It is not difficult to derive the BEC fraction as a function
of T and F . At kz ∼kc

z = 0, wherein εf ∼xp, Eq. (6) ex-
pands into x1(F,s,t) ≈ Xf (F,s) + α(s) t2/2, with the energy
counted from x2(F,s,t =0), t =kz/k̃z being the dimensionless
longitudinal quasimomentum (|t |�1) and α = �

2k̃2
z /2Mex(s).

The first Brillouin zone of the CN of (m,n) type (n � m)
is taken to be consisting of m parallel lines, as per quan-
tized kϕ = kϕ(s) = s/RCN with s = 1,2, . . . ,m and RCN =
(
√

3 b/2π )
√

m2 + mn + n2, each of length 2k̃z = 2B/kϕ(m),
where 2B = 2(4π2/3

√
3 b2) is the rectangular area of the

reciprocal space covered by the lines, b (=1.42 Å) is the C-C
interatomic distance [12]. To obtain the upper-branch exciton-
plasmon mean BEC population fraction 〈n10〉, we use this x1

and employ the conventional technique (e.g., Refs. [47,65]) to
perform the summation over k in the first Brillouin zone. For
the ground-internal-state exciton, assuming Mex(s)≈Mex and
Xf (F,s)≈X(F ), this results in (see Appendix A for details)

〈n10〉(T �Tc,F ) ≈ 1 − T

Tc(F )
, (7)

FIG. 3. (Color online) Critical temperatures (a) as functions of
the perpendicular electrostatic field applied and longitudinal mo-
mentum, and mean upper-branch BEC population fractions (b) as
given by Eq. (7), for the four CNs under consideration. See text for
dimensionless momentum.

where Tc(F )=2γ0X(F )/kB is the critical temperature with
X(F )={2�xp�̄0[ε(F,t =0)]ρ[ε(F,t =0)]}1/2 standing for
the exciton-plasmon Rabi splitting at the (excitation) energy
of the zero-momentum ground-state exciton. This latter one
controls the convergence of the result.

Figure 3(a) shows calculated Tc as functions of F and t (to
better understand the general behavior), for the lowest bright
ground-internal-state excitons coupled to the nearest interband
plasmons in the four CNs under consideration. The functions
Tc(F,t) are resonance shaped of widths ∼2�xp, peaked at
ε(F,t)≈xp(F ). As F increases, the peak positions shift down
to t ∼0, yielding field dependent, resonance shaped Tc(F ),
same as X(F ), peaked at Fc ∼1–6 V/nm with maximum Tc ∼
150–500 K and greater Fc and Tc for smaller diameter CNs.
Figure 3(b) presents 〈n10〉 as given by Eq. (7) for the same case.
The quantities 〈n10〉 reflect the behavior of Tc(F ), showing
finite BEC fractions throughout the finite ranges of F centered
about Fc, expanding in F as T decreases.

Following the general theory of the exciton-plasmon
interactions in individual CNs [29], one can now calculate
the exciton participation rate in the exciton-plasmon BEC
population fraction (7). This is represented by the absolute
value squared of the ratio of the exciton mixing coefficient
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FIG. 4. (Color online) Function ln[1 + 〈n10〉E/P
(0,T ,F )] calcu-

lated using Eqs. (7) and (8) for the CNs under consideration.

to the plasmon mixing coefficient of the upper exciton-
plasmon branch. Using the mixing coefficients of Ref. [29]
yields thus defined exciton participation rate as a function of
dimensionless energy x, T , and F as follows (Appendix B):

〈n10〉E/P
(x,T ,F ) ≈ π�xp(x − x1)2(1 + x1/ε)2

X2(F )
〈n10〉, (8)

with energies to be counted from x2(F,t =0). Comparing
this with Fig. 2(b), we see that at x =0 corresponding to
the first ground-state-exciton excitation energy and F =Fc

[resonance condition yielding x1 =X(Fc) and ε=X(Fc)/2],
Eq. (8) becomes 9π�xp〈n10〉
1, meaning that the exciton-
plasmon BEC is dominated by plasmons. This is consistent
with the coherent plasmon generation effect by excitons
reported lately [12,13]. A slight detuning from Fc increases
x1 and dramatically decreases X(F ) [Fig. 3(a)], bringing
about bursts of 〈n10〉E/P

�1, making the exciton-plasmon BEC
dominated by excitons.

The exciton BEC effect is shown in Fig. 4 for the CNs
under consideration. It occurs at F �1 V/nm and T �100 K
that are experimentally accessible [40]. The effect is stronger
and covers broader range of F and T in smaller diameter
CNs. Off-resonance coupling to interband plasmons, which
are just standing charge density waves, slows excitons down
by pushing them into periodic effective potential “traps”,
thereby increasing zero-momentum exciton state population.
This is consistent with earlier studies where the 1D/2D BEC
phenomenon, otherwise prohibited [47,67,68], is shown to
occur in the presence of an extra confinement potential [49].

IV. CONCLUSIONS

The effect of the exciton BEC presented here will manifest
itself as highly coherent, longitudinally polarized, far-field
exciton emission appearing at temperatures below 100 K as one
smoothly increases the perpendicular field strength. Narrow
BEC emission peak will be blue shifted by the Rabi-splitting
energy from the first exciton excitation energy which the
CN should be pumped at by an external laser source. The
phenomenon can be investigated in experiments similar to
those used for exciton-polariton BEC studies in semiconductor
microcavities [69].

To summarize, we have demonstrated theoretically an
intriguing possibility for the exciton BEC effect observa-
tion in individual semiconducting carbon nanotubes. The
quantum system considered here is conceptually similar to
the microcavity exciton-polariton system, which started as
a theoretical concept in the 1990s and has been a driving
force for the experimental physics of low-dimensional semi-
conductors over the last two decades, exhibiting both new
fundamental quantum effects and attractive applications such
as polariton lasers, optical polarization switches, superfluid
spintronic devices, etc [70]. We, therefore, strongly believe
that the quasi-1D exciton BEC effect predicted here not only
offers an ideal testing ground for fundamentals of condensed
matter physics in one dimension, but also opens up new
horizons for a variety of CN based applications ranging
from controlled electromagnetic absorption and tunable highly
coherent polarized light emission, in particular, to the ex-
tension of nanoplasmonics and near-field optics research,
currently focused on metallic nanoparticles [50,51], to include
a new area of nanotube plasmonics. Further new avenues for
experimental nanotube plasmonics research could potentially
emerge from the measurements of the coherent BEC exciton
emission predicted here if experiments will show that the
origin of the emission spot can be translated at will by
applying, say, a temperature gradient along the nanotube.
Then, a new fundamental effect, the superfluidity of quasi-1D
exciton-plasmons in individual CNs, would become a hot
research topic for the future. We strongly believe this is only
the beginning of nanotube plasmonics as a new research field.
Physical understanding of 1D nanophotonics phenomena will
greatly benefit from studies of the model system considered
herein.
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APPENDIX A: DERIVATION OF EQ. (7)

We assume our system as being under constant illumination
by low-intensity external monochromatic radiation polarized
along the CN axis. This excites excitons and not plasmons
since plasmons are longitudinal excitations while photons are
transverse [43,44]. Under an applied perpendicular electro-
static field, excitons couple to the nearest (same-band) inter-
band plasmons to form new hybridized excitations—exciton-
plasmons [12,13,29], whose occupation numbers, by virtue of
the linear response theory in the exciton-radiation interaction
and the corresponding fluctuation dissipation theorem [65],
can be found as an equilibrium statistical average of the form

〈nμ(k)〉 = Tr

[
e−βĤ

Q
ξ̂ †
μ(k)ξ̂μ(k)

]
. (A1)

Here ξ̂ †
μ(k) and ξ̂μ(k) create and annihilate, respectively,

the exciton-plasmon excitation of branch μ (=1,2) with the
momentum k, Ĥ =∑

k,μ=1,2 �ωμ(k)ξ̂ †
μ(k)ξ̂μ(k) is the total

Hamiltonian diagonalized of the interacting excitons and
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plasmons, and �ωμ(k) is the exciton-plasmon energy given
in dimensionless variables xμ = �ωμ/2γ0 by Eq. (6), which
is the solution to the dispersion relation (1) resulted from
the diagonalization (see Ref. [29]). The partition function
Q=Tr(e−βĤ ), where β =1/kBT . The chemical potential of
the exciton-plasmons is zero as consistent with the fact of
no mass added to our system by either exciton or plasmon
excitation.

The partition function in Eq. (A1) can be easily evaluated
using the exciton-plasmon occupation number Hilbert space
vector set

∏2
μ=1

∏
k |nμ(k)〉, resulting in

Q =
2∏

μ=1

∏
k

1

1 − e−β�ωμ(k)
. (A2)

Equation (A1) can be evaluated in the same manner, using
this partition function, to bring us to the massless boson type
exciton-plasmon occupation number

〈nμ(k)〉 = 1

eβ�ωμ(k) − 1
= 1

eλxμ(k) − 1
, (A3)

with λ = 2γ0β.
To correctly evaluate the mean population fraction for zero-

momentum (kz =0) exciton-plasmons of the upper branch
(μ=1), we follow the conventional procedure of textbook
statistical physics (see, e.g., Refs. [47,65]). We begin with the
calculation of the upper-branch exciton-plasmon mean popu-
lation in the first Brillouin zone. The first Brillouin zone of the
carbon nanotube of (m,n) type (n�m) is taken to be consisting
of m parallel lines, as per quantized kϕ = kϕ(s) = s/RCN,
with s = 1,2, . . . ,m and RCN = (

√
3 b/2π )

√
m2 + mn + n2

(b = 1.42 Å being the C-C distance), each of length 2k̃z =
2B/kϕ(m), where 2B = 2(4π2/3

√
3 b2) = (2π )2/2S0 is the

rectangular area of the reciprocal space covered by the lines
and S0 is the equilateral triangle area selected around each C
atom in such a way as to cover the entire CN surface [12,29].
This yields k̃z = 2π/3b for the (m,0) type CNs (zigzag)
and k̃z = 2π/

√
3 b for the (m,m) type CNs (armchair), in

particular. Since the total number of states in the first Brillouin
zone is N/2 (two C atoms per elementary cell of a graphene
layer of N atoms to form a single wall CN of length L,
that is N =2πRCNL/S0), the mean population n1 for the
upper-branch exciton-plasmons is

n1 = 2

N

m∑
s=1

k̃z∑
kz=−k̃z

〈n1(s,kz)〉 = 2

N

m∑
s=1

L

π

∫ k̃z

0
dkz 〈n1(s,kz)〉,

where the fact that 〈n1(s, − kz)〉=〈n1(s,kz)〉 is taken into
account. This can now be rewritten in dimensionless variables
to take the form

n1 = 1

m

m∑
s=1

∫ 1

0

dt

eλx1(s,t) − 1
, (A4)

with t =kz/k̃z and x1(s,t), the upper-branch exciton-plasmon
energy, to be taken in the form of the expansion of Eq. (6) near
tc(F )=0 under the strong exciton-plasmon coupling condition
(controlled by the external perpendicular electrostatic field F

by means of the QCSE). Under this condition, εf ∼xp [avoided
crossing in Fig. 2(b)] and the coupling term (that ∼Xf ) is

dominant under the square root in Eq. (6), to result in the
expansion as follows:

x1(F,s,t) ≈ Xf (F,s) + α(s)

2
t2, (A5)

with α(s)=�
2k̃2

z /[2Mex(s)2γ0] and the energy counted from
x2(F,s,t =0).

The integral over t in Eq. (A4) can be done by the
(geometric) series expansion with subsequent term-by-term
integration. Under the assumption of Mex(s)≈Mex and
Xf (F,s)≈X(F ), where Mex and X(F ) are those for the first
bright exciton in its ground internal state, this results in

n1 =
√

π

2

+∞∑
n=0

e−(n+1)λX Erf [
√

(n + 1)λα/2 ]√
(n + 1)λα/2

. (A6)

Although this model assumption might seem to be question-
able from the theoretical viewpoint, the experiment can be set
up in such a way as to maintain the system to be continuously
illuminated at the first exciton excitation energy. That would
correspond to no summation over s and no 1/m statistical
factor present in the initial Eq. (A4), since only the first
exciton would be there contributing to the entire effect with
the statistical factor of one. This brings us back to Eq. (A6)
again.

The series in Eq. (A6) is seen to converge due to the
presence of the exponential factor decaying at a rate that
depends on F and T as the summation index n increases.
By d’Alembert ratio test the series is convergent absolutely
and uniformly when exp(−λX)<1. This is always the case
at finite T (=2γ0/kBλ) for nonzero X [=X(F )], and the
greater is X, the faster is the convergence. The less is X,
on the other hand, the slower is the convergence, yielding
eventually exp(−λX)∼1 at X∼0 corresponding to divergent
harmonic type series typical of 1D and 2D geometries where
no BEC phenomenon is known to occur in ideal boson gas
type systems [47,67,68]. The quantity exp(λX) represents the
radius of convergence (to be greater than one). This allows
us to single out a range of parameters F and T at which the
convergence occurs. Setting up Tc(F )=2γ0X(F )/kB yields
F such that exp(λX)=exp[Tc(F )/T ]>1 for all T �Tc(F ), so
that the series is manifestly convergent.

For T �Tc(F ) the sum in Eq. (A6) can be evaluated using
an approximate expression

∞∑
n=0

F (n + a) ≈
∫ ∞

0
dx F (x) − F (a)

(
a − 1

2

)

+ F ′(a)

2

(
a2− 1

6

)
(A7)

that comes from the Euler-Maclaurin summation formula (see
Ref. [65])

F (a)

2
+

∞∑
n=1

F (n + a) ≈
∫ ∞

a

dx F (x) − F ′(a)

12

after rearranging the first two terms of the series on the left,
writing

∫ ∞
a

=∫ ∞
0 −∫ a

0 on the right and then using a fully
legitimate approximation F (x)≈F (a) + F ′(a)(x − a) in the
second integral. With F (n + a)=F (n + 1), as per Eq. (A6),
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this brings us to the following result:

n1 ≈ arctan(
√

α/2X)

λ
√

αX/2
+ O(e−λX). (A8)

Estimating the argument of the arctangent here, we have√
α

2X
=

√
�2k̃2

z

4Mex2γ0X
= πw

3

√
�2

Mexb2

1√
2γ0X

� 4 (A9)

for all reasonable X� 0.1 eV/2γ0. We use k̃z =2πw/3b with
1�w�

√
3 to cover all possible CN chiralities, and Mex is

taken to be twice the free electron mass. Thus, Eq. (A8) can
be further approximated using the large argument expansion
for the arctangent (∼π/2), to result in n1 ≈π/(2λ

√
αX/2)

(exponential smallness neglected), yielding the maximum
mean population for the upper-branch exciton plasmons as
follows:

n1(Tc) ≈ 3

2w

√
Mexb2

�2

√
kBTc(F ). (A10)

Next, using Eq. (A3), we proceed to calculate the mean
population �n1 of the upper-branch exciton-plasmons with
kz �=0. We have

�n1 = 2

N

m∑
s=1

⎡
⎣−2π/L∑

kz=−k̃z

〈n1(s,kz)〉 +
k̃z∑

kz=2π/L

〈n1(s,kz)〉
⎤
⎦

= 2

N

m∑
s=1

L

π

∫ k̃z

2π/L

dkz 〈n1(s,kz)〉 = 1

m

m∑
s=1

∫ 1

t0

dt

eλx1(s,t) − 1
,

where t0 =2π/Lk̃z =4m/N . After using the (geometric) series
expansion followed by term-by-term integration, we arrive at

�n1 =
√

π

2

+∞∑
n=0

e−(n+1)λX

√
(n + 1)λα/2

×{Erf[
√

(n + 1)λα/2 ] − Erf[t0
√

(n + 1)λα/2]}.
(A11)

This, after using Eq. (A7) to sum up the series, results in

�n1 ≈ 1

λ
√

αX/2
[ arctan(

√
α/2X) − arctan(t0

√
α/2X)]

+O(e−λX). (A12)

Here the estimate for the first term argument is given by
Eq. (A9). The second term argument is then ∼ t0 ∼1/N ,
so that arctan(t0

√
α/2X)∼0 is negligible. Neglecting also

exponentially small terms, as we do in Eq. (A10), brings
Eq. (A12) to the following form:

�n1(T ,F ) ≈ 3

2w

√
Mexb2

�2

kBT√
kBTc(F )

. (A13)

Finally, using Eqs. (A10) and (A13), we obtain the (BEC)
fraction of zero-momentum exciton-plasmons at T �Tc(F ),
defined as

〈n10〉(T �Tc,F ) = n1(Tc) − �n1(T ,F )

n1(Tc)
,

in the form as given by Eq. (7).

APPENDIX B: DERIVATION OF EQ. (8)

General theory of the exciton-plasmon interactions in
individual CNs (see Ref. [29]) relates the operators ξ̂ †

μ(k)
and ξ̂μ(k) that create and annihilate, respectively, exciton-
plasmons of branch μ (=1,2) with the momentum k, to the
exciton creation-annihilation operators B

†
k,f , Bk,f [f -internal

state with the energy Ef (k) used in Eqs. (1) and (6)] and the
plasmon creation-annihilation operators f̂ †(k,ω), f̂ (k,ω) as
follows:

ξ̂ †
μ(k) =

∑
f

[
u

(ex)
μf B

†
k,f − v

∗ (ex)
μf B−k,f

]
(B1)

+
∫ ∞

0
dω

[
u∗ (p)

μ (ω)f̂ †(k,ω) − v(p)
μ (ω)f̂ (−k,ω)

]
,

ξ̂μ(k) = [ξ̂ †
μ(k)]†.

Here u
(ex)
μf , v

∗ (ex)
μf , u

∗ (p)
μ , and v

(p)
μ are the complex mixing

coefficients that define the (Bogoliubov) unitary canonical
transformation on the total Hamiltonian of the coupled exciton-
plasmon system to bring it to the diagonal form [used in
Eq. (A1)]. These mixing coefficients are given by the solutions
to the following set of simultaneous linear equations:

(�ωμ − Ef )u(ex)
μf = i

∫ ∞

0
dωDf (ω)

[
u∗ (p)

μ (ω) − v(p)
μ (ω)

]
,

(B2)

(�ωμ + Ef )v∗ (ex)
μf = −i

∫ ∞

0
dωDf (ω)

[
u∗ (p)

μ (ω) − v(p)
μ (ω)

]
,

(B3)

�(ωμ − ω)u∗ (p)
μ (ω) = −i

∑
f

Df (ω)
[
u

(ex)
μf + v

∗ (ex)
μf

]
, (B4)

�(ωμ + ω)v(p)
μ (ω) = −i

∑
f

Df (ω)
[
u

(ex)
μf + v

∗ (ex)
μf

]
, (B5)

where Df (ω) = �

√
�

f

0 (ω)ρ(ω)/2π is the exciton-plasmon
interaction matrix element with �

f

0 (ω) and ρ(ω) representing
the frequency dependencies of the exciton spontaneous decay
rate and that of the plasmon DOS function responsible for the
exciton decay rate variation due to its (nonradiative) coupling
to CN plasmon modes [given in dimensionless variables by
Eqs. (4) and (5), respectively].

Equations (B2)–(B5) define the mixing coefficients, as well
as they define the dispersion relation for the exciton-plasmon
energy �ωμ(k) that is used in Eqs. (A1)–(A3) and (in the
dimensionless form) in Eqs. (6) and (A5). The dispersion
relation is given by Eq. (1), and the details of its derivation can
be found in Ref. [29]. Here we solve the set of Eqs. (B2)–(B5)
for the mixing coefficients.

We are particularly interested in finding the coefficients u
(ex)
μf

and u
∗ (p)
μ (ω) since, as we can see from Eq. (B1), the absolute

value squared of their ratio shows the exciton participation
against the plasmon participation in an exciton-plasmon
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excitation created. Combining Eqs. (B2) and (B3) yields

v
∗ (ex)
μf = Ef − �ωμ

Ef + �ωμ

u
(ex)
μf , (B6)

while from Eqs. (B4) and (B5) we have

v(p)
μ (ω) = ωμ − ω

ωμ + ω
u∗ (p)

μ (ω). (B7)

Next, from Eq. (B4), using Eq. (B6) in its right-hand side, one
obtains

u∗ (p)
μ (ω) = i

∑
f

2Ef Df (ω)

�(ω − ωμ)(Ef + �ωμ)
u

(ex)
μf , (B8)

which being substituted into Eq. (B7) results in

v(p)
μ (ω) = −i

∑
f

2Ef Df (ω)

�(ω + ωμ)(Ef + �ωμ)
u

(ex)
μf . (B9)

Equations (B6), (B8), and (B9), with u
(ex)
μf determined by

the normalization condition, solve the equations set (B2)–(B5).
They can be written in the dimensionless variables (2) used
throughout this paper as follows:

v
∗ (ex)
μf = εf − xμ

εf + xμ

u
(ex)
μf , (B10)

ū∗ (p)
μ (x) = i

∑
f

2 εf

√
�̄

f

0 (x)ρ(x)/2π

(x − xμ)(εf + xμ)
u

(ex)
μf , (B11)

v̄(p)
μ (x) = −i

∑
f

2 εf

√
�̄

f

0 (x)ρ(x)/2π

(x + xμ)(εf + xμ)
u

(ex)
μf , (B12)

where ū
∗ (p)
μ =u

∗ (p)
μ

√
2γ0/� and v̄

(p)
μ =v

(p)
μ

√
2γ0/� are the di-

mensionless counterparts of the corresponding mixing coeffi-
cients. Assuming further that the ground internal state of the
exciton contributes the most to the summations over f in the
expressions above, we arrive at the ratio of interest in the form
(f subscript dropped)∣∣u(ex)

μ

∣∣2

∣∣ū∗ (p)
μ

∣∣2 ≈ π (x − xμ)2(1 + xμ/ε)2

2�̄0(x)ρ(x)
. (B13)

To obtain the exciton participation rate in the upper-
branch (μ=1) exciton-plasmon BEC population fraction, we

note that the denominator in Eq. (B13) is nothing but the
(dimensionless) exciton-plasmon interaction matrix element
squared. This is only nonzero when the exciton energy ε=
ε(F,t) and the plasmon resonance energy xp(F ) are close
in their values. As this takes place, the plasmon DOS ρ(x)
can be legitimately approximated by the Lorentzian of the
half-width at half-maximum �xp (representing the inverse
plasmon lifetime) of the form

ρ(x) ≈ ρ(xp)�x2
p

(x − xp)2 + �x2
p

,

in which the frequency x is equal to ε(F,t) and this latter one
is assumed to be of the order of xp(F ). With this in mind, we
write the denominator in Eq. (B13) as follows:

2�̄0(x)ρ(x) = 2�̄0[ε(F,t)]ρ[ε(F,t)] = X2(F,t)

�xp

.

Then, Eq. (B13) for the upper-branch exciton-plasmons takes
the form∣∣u(ex)

1

∣∣2∣∣ū∗ (p)
1

∣∣2 ≈ π�xp(x − x1)2[1 + x1/ε(F,t)]2

X2(F,t)
, (B14)

where the energies should be counted from x2(F,t =0) as per
our previous convention.

Figure 3(a) shows functions 2γ0X(F,t)/kB [=Tc(F,t)] we
calculated for the lowest bright ground-internal-state excitons
coupled to the nearest interband plasmons in the four CNs
of our choice here. Function X(F,t) is sharp resonance
shaped with the peak position determined by the condition
ε(F,t)=xp(F ) [cf. Fig. 2(b)]. As F increases, the peak shifts
down to t ∼0, yielding X(F )=X(F,t =0) sharply peaked
around F =Fc. This suggests that, when at resonance, the ratio
(B14) is generally much less than one, so that exciton-plasmon
excitations are dominated by plasmons. However, a slight
detuning from the resonance condition decreases X2(F,t)
dramatically, making the ratio (B14) dramatically increase and
excitons dominate an exciton-plasmon state.

Using Eq. (B14), the exciton participation rate in the
exciton-plasmon BEC population fraction can be found as
follows:

〈n10〉E/P
(x,T ,F ) =

∣∣u(ex)
1

∣∣2∣∣ū∗ (p)
1

∣∣2

∣∣∣∣∣
t=0

〈n10〉(T �Tc,F ),

which brings us to Eq. (8).
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