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We derive a general expression for the electron nonequilibrium (NE) distribution function in the context of
steady state quantum transport through a two-terminal nanodevice with interactions. The central idea for the use of
NE distributions for open quantum systems is that both the NE and many-body (MB) effects are taken into account
in the statistics of the finite size system connected to reservoirs. We develop an alternative scheme to calculate the
NE steady state properties of such systems. The method, using NE distribution and spectral functions, presents
several advantages, and is equivalent to conventional steady state NE Green’s function (NEGF) calculations
when the same level of approximation for the MB interaction is used. The advantages of our method resides in
the fact that the NE distribution and spectral functions have better analytic behavior for numerical calculations.
Furthermore, our approach offers the possibility of introducing further approximations, not only at the level of
the MB interaction as in NEGF, but also at the level of the functional form used for the NE distributions. For
the single-level model with electron-phonon coupling we have considered, such approximations provide a good
representation of the exact results, for either the NE distributions themselves or the transport properties. We
also derive the formal extensions of our method for systems consisting of several electronic levels and several
vibration modes.
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I. INTRODUCTION

The understanding of irreversible phenomena including the
nonequilibrium (NE) steady state is a long-standing problem
of quantum statistical mechanics. With recent experimental
developments, it is now possible to measure the transport
properties through nanoscale systems. These can be either the
electronic charge transport or heat transport. Both properties,
i.e., thermoelectric transport, have recently been measured
simultaneously [1]. Such properties exhibit many important
new features in comparison with conduction through macro-
scopic systems. In particular, the interactions, such as the
Coulomb interaction between electrons and scattering from
atomic vibrations, become critically important in nanoscale
objects, especially in single organic molecules [2,3].

Modeling such transport properties is still a challenge since
one needs to be able to describe the system at the atomic level
in a realistic manner, and one needs to use a formalism for the
quantum transport that takes full account of the NE conditions
(full nonlinear response) and the many-body (MB) interaction.

The nonequilibrium Green’s function (NEGF) seems to
be, at the present moment, the best way to tackle the
problem. However, NEGF calculations for realistic systems
are difficult to achieve, beyond mean-field-like approximations
or quasiequilibrium regimes, since the calculations of the
MB effects for a large number of electronic (and vibronic)
degrees of freedom are extremely demanding. Alternatively,
the density-functional (DF)-based theories can handle large
systems, but unfortunately treat the interaction (between
electrons, for example) on a mean-field-like basis and the
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corresponding functionals are not necessarily optimized, or
even valid, for the NE conditions.

In this paper, we present an alternative approach based on
the use of NE distribution and spectral functions. On the one
hand, such an approach is, in principle, strictly equivalent to
the steady state NEGF technique, since there is a one-to-one
equivalence between the Green’s functions (GFs) and the
NE distribution and spectral functions. One the other hand,
approximations for the MB effects (in the presence of NE
conditions) seem to be more easily introduced in the NE
distribution, while keeping a clear physical interpretation.
Furthermore, the use of approximated NE distributions may
offer an alternative approach for future implementations in
DF-based calculations for large systems.

In earlier studies, we have already started developing and
using the concept of NE distribution functions. This was done
in a critical analysis of the applicability of the Landauer
formalism for NE current in the presence of interactions [4],
and in the study of the NE charge susceptibility and its relation
with the nonlinear dynamical conductance [5].

In this paper, we develop in detail our approach using
NE distribution and spectral functions, and provide numerical
applications. The paper is organized as follows. In Sec. II,
we define the general steady state transport setup. We start
by considering a model system in Sec. III and provide all
the analytical results for the NE distributions. Section III A
concerns the general properties of the NE distributions. In
Sec. III B, we develop an algorithm for performing NE
calculations. Numerical applications are provided in Sec. III C,
where we show examples of the NE distributions for a model
of an electron-phonon interacting system. The performances
of the exact and approximated NE distributions are studied
in this section. The generalization of our approach to more
realistic systems is provided in Sec. IV. Finally, we comment
on our results and conclude our study in Sec. V.

1098-0121/2014/89(4)/045409(12) 045409-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.045409


H. NESS PHYSICAL REVIEW B 89, 045409 (2014)

II. STEADY STATE QUANTUM TRANSPORT

We consider a system consisting of a central region C

connected to two noninteracting Fermi seas. The left (L)
and right (R) electrodes are at their own equilibrium, with a
Fermi distribution fα(ω) defined by their respective chemical
potentials μα and temperatures Tα (α = L,R). The central
region C connected to the leads contains an interaction
characterized by a self-energy �int(ω) in the NEGF formalism.
Furthermore, the specific model used for the leads does not
need to be specified at the moment, as long as the leads can
also be described by an embedding self-energy �α(ω) in the
electron GF of the central region.

The possibility of reaching a steady state regime in such
a two-terminal device has been explored by many authors.
The full time-dependent NEGF formalism and the influence
of bound states in the central region have been studied in
Refs. [6–10]. Rigorous mathematical methods based on the
C∗ algebra have been used to study the existence and stability
of such a NE steady state, i.e., its independence of the way
the division into subsystems and reservoirs is performed and
its stability against local perturbations, in the absence [11–14]
and in the presence of an interaction [15,16].

For an established steady state regime, it is expected that
some formal advantages may be given by an approach to NE
processes in which the Gibbs-like ensembles play a prominent
role. The construction of such Gibbs-like ensembles for the NE
steady state can be obtained either by using the McLennan-
Zubarev approaches [12,17–23] or the NE density matrix
approach developed by Hershfield in Ref. [24]. The latter
has been extensively used for calculating quantum electron
transport properties, with or without an interaction [25–33].

In the following, we show that the NE statistics of the
open quantum system, i.e., the central region C, contains
information not only about the NE conditions but also about
the MB interaction.

III. THE SINGLE-IMPURITY MODEL

We now consider a model for the central region made of
a single electron level in the presence of an interaction. In
this section all quantities are either real or complex number
functions of a single energy argument.

A. The NE distribution f NE

In a recent paper [34], we have shown, using McLennan-
Zubarev and Hershfield approaches, that the steady state
can be interpreted as an effective equilibrium state with a
corresponding NE density matrix, or equivalently, with a
corresponding NE statistics.

Such a NE statistic can be defined by a NE distribution
function f NE(ω). It enters the relation between the different
GFs defined in the central region C as follows:

G
≶
C (ω) = −f NE,≶(ω)

(
Gr

C(ω) − Ga
C(ω)

)
, (1)

with f NE,<(ω) = f NE and with f NE,>(ω) = f NE − 1. We
recall that the spectral function AC(ω) of the central region is
obtained from AC(ω) = (Ga

C − Gr
C)/i2π . Equation (1) bears

resemblance to the so-called Kadanoff-Baym ansatz [35,36],

but as we have shown in Ref. [34], it is a strictly exact result
for the steady state regime.

At equilibrium, f NE is simply the Fermi distribution f eq.
Out of equilibrium, the distribution function will depend on
the setup, i.e., on the forces driving the system (gradient of
chemical potential and/or temperature between the leads), and
on the interaction present in the region C.

In the absence of an interaction, the NE distribution function
for the electron is simply given by [26,37]

f NE
0 (ω) = �L(ω)fL(ω) + �R(ω)fR(ω)

�L(ω) + �R(ω)
, (2)

where �α(ω) = i(�>
α − �<

α )(ω) is the spectral function of the
embedding (lead α) self-energy. It is simply a double-step
function, with more or less steep steps (depending on the
temperature TL and TR) located around ω = μL and ω = μR ,
and separated by μL − μR = eV (V is the applied bias).

In the presence of an interaction in the central region C, the
NE distribution is given by [34]

f NE(ω) = G<
C

Ga
C − Gr

C

= Gr
C�<Ga

C

Gr
C

((
Gr

C

)−1 − (
Ga

C

)−1)
Ga

C

= �<
L + �<

R + �<
int

�a − �r
. (3)

Using the definitions �<
L + �<

R = i�L+Rf NE
0 and

�a − �r = −(�> − �<) = i�L+R − (�>
int − �<

int), with
�L+R(ω) = �L(ω) + �R(ω), we obtain

f NE(ω) = f NE
0 (ω) − i�<

int(ω)/�L+R(ω)

1 + i(�>
int − �<

int)/�L+R

. (4)

Equation (4) is the “universal” expression of the electron
NE distribution function. It is universal with respect to
the interaction, in the same sense that the GFs have a
universal expression via the use of the interaction self-energies.
However, as expected for NE conditions, the NE distribution
function is not as universal as its equilibrium counterpart, since
it depends on both the setup that drives the system out of
equilibrium (via f NE

0 ) and on the MB interaction �
≶
int (which

are themselves dependent on the NE conditions). We comment
more on these properties in Appendix A.

From Eq. (4), we can see that the NE distribution f NE arises
from two terms,

f NE(ω) = f̃ NE
0 (ω) + δf NE(ω), (5)

a dynamically renormalized distribution f̃ NE
0 =

f NE
0 (ω)/N (ω), with the renormalization N (ω) given

by the sum of the spectral functions of the leads
�L+R = ∑

α=L,R i(�>
α − �<

α ) and of the interaction
�int = i(�>

int − �<
int), and an extra term δf NE corresponding

to the inelastic processes given by �<
int, and renormalized by

the same factor N (ω).
The noninteracting distribution f NE

0 is formed by two
Fermi-Dirac distributions shifted by the bias V . However,
the full NE distribution presents richer feature (peaks and
dips) characteristics of the electron population redistribution
arising from both the NE and interaction effects. One can
obtain both accumulation or depletion (i.e., population in-
version) in some energy windows, and such features in the
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NE distribution provide information about the efficiency of
relaxation/equilibration processes in the system.

Furthermore, another important property of the NE dis-
tribution f NE is related to its functional form. Indeed, any
Feynmann diagrams for the interaction self-energy �int (taken
at any order and for electron-electron e-e or electron-phonon
e-ph interactions) is expressed in terms of the different electron
GFs and phonon GFs. The renormalization of the phonon GFs,
if present, is also obtained from another set of diagrams using
the electron GFs (in the case of e-ph interactions).

Since all GFs [either the retarded, the advanced, or the
lesser, the greater, or the (anti)time order] can be expressed
in terms of spectral function AC alone or in terms of both the
spectral function and the NE distribution [see Eq. (1)], any
self-energy is a functional of the spectral functions and of the
NE distribution function. In Appendix C, we show explicitly
how such a functional dependence is obtained by considering
different lowest-order diagrams for the self-energies in case of
both e-e and e-ph interactions.

Therefore, from the general expression Eq. (4) defining
f NE, we can conclude that f NE = f NE[f NE(ω),AC(ω)]. The
fact that f NE is a functional of itself and of the spectral function
permits us to devise an approach to solve self-consistently
the problem by using an iterative scheme. Such a scheme
is developed in the next section and bears resemblance to
conventional self-consistent NEGF calculations.

B. Algorithm for NE calculations

The method we present in this section has, however, some
advantages compared to conventional NEGF calculations.
First of all, we are now dealing with two real functions
f NE(ω) and AC(ω) instead of complex number functions
for the GFs. More importantly, these two functions have
well behaved (for numerical purposes) asymptotic limits:
The spectral function AC(ω) has a finite energy support,
i.e., AC(ω) �= 0 for ω ∈ [ωmin,ωmax] otherwise A(ω) = 0, and
f NE(ω) = 1 for ω < DNE

ω and f NE(ω) = 0 for ω > DNE
ω

where the energy domain DNE
ω is roughly the bias window

DNE
ω = [min(μL,μR),max(μL,μR)] ± several kT .
Hence by using only f NE(ω) and AC(ω), we avoid having

to deal with the slow decaying behavior in 1/ω of the real part
of the advanced and retarded GFs and self-energies. Such a
slow decay in 1/ω comes from the Fourier transform of the
Heaviside function defining the causality in the retarded (the
anticausality in the advanced) quantities. We are not obliged to
work with large (i.e., long-ranged) energy grids. In principle,
one should work with a grid larger than DNE

ω in order to include
the possible effects of “hot electrons” excited well above the
bias window due to the interaction. In practice, we have found
that the energy grid could be only the support of the spectral
function [ωmin,ωmax].

1. The algorithm

The algorithm to perform NE steady state calculations is as
follows:

(1) Start with an initial (n = 0) spectral function A(n)(ω) and
NE distribution f NE(n)(ω), for example, those corresponding
to the noninteracting case: A(0)(ω) = −Im mGr

0(ω)/π and
f NE(0)(ω) = f NE

0 (ω).

(2) Calculate the corresponding initial self-energies �
≶(n)
int

for the chosen model of MB interactions.
(3) Calculate the next iteration NE distribution f NE(n+1)(ω)

from Eq. (4) as follows:

f NE(n+1) = f NE
0 �L+R − i�

<(n)
int

�L+R + i
(
�

>(n)
int − �

<(n)
int

) , (6)

with �
≶(n)
int = �

≶
int[f

NE(n),A
(n)
C ]. Note that the quantities i�

≶(n)
int

are also real functions.
(4) Calculate the next iteration spectral function from either

method (a), by using the following expression,

A
(n+1)
C (ω) = f NE(n)(ω)

f NE(n+1)(ω)
A

(n)
C (ω) (7)

or method (b), by using the definition of the spec-
tral functions i2πAC(ω) = Ga

C(ω) − Gr
C(ω) = G<

C − G>
C =

Gr
C(�< − �>)Ga

C , by which we define

2πA
(n+1)
C (ω) = Gr(n)(�L+R + i

(
�̂

>(n)
int − �̂

<(n)
int

))
Ga(n), (8)

where Gr/a(n) should be considered as intermediate (dummy)
functions defined from the nth iteration spectral function
A

(n)
C (ω) as

Gr/a(n)(ω) = H
[
πA

(n)
C (ω)

] ∓ iπA
(n)
C (ω), (9)

where H[f (x)] is the Hilbert transform of function f (x),
i.e., H[f (x)] = 1/π P

∫
dy f (y)/(x − y) and �̂

≶(n)
int is an

intermediate updated version of the self-energy obtained from
�̂

≶(n)
int = �

≶
int[f

NE(n+1),A
(n)
C ].

(5) Ensure normalization of A
(n+1)
C when using approxi-

mated functionals for the NE distribution such as f NE
LOE or f NE

(1)
(see below).

(6) Repeat the iteration process, from step (3), until the
desired convergence is achieved [either for the NE distribution
f NE(n+1) or for the spectral function A(n+1)(ω) or for both].

It should be noted that, similarly to the spectral functions,
the spectral “densities” of the self-energy of the leads �L+R(ω),
and of the interaction self-energy i(�>

int − �<
int) are bounded,

i.e., they have zero values outside an energy interval which
is roughly the same as [ωmin,ωmax]. Hence we do not have to
worry about the long-ranged dependence in 1/ω of the real
part of Gr/a(n), and we recover spectral functions A(n+1)(ω)
which exist only on a finite energy support.

Furthermore, method (a) for the calculation of the spectral
function presents the great advantage of being extremely
simple, in comparison to method (b) [38]. However, we have
noticed that, in some cases when the initial spectral function
of the iterative loop is too different from the expected result,
the convergence process might be slower (if not possible at all)
for method (a) than for method (b). Hence method (b) appears
to be more robust upon the choice of the initial conditions.
It is entirely possible to combine both schemes in the same
algorithm, starting first with method (b), and when some
degree of convergence is reached, switching to method (a)
to obtain a more accurate level of convergence.
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2. Approximated NE distributions

The method devised in the previous section can appear
at first glance as just another reformulation of conventional
NEGF calculations. One performs calculations with another
set of two independent (but interrelated) functions: the NE
distribution f NE and the spectral function AC . In the con-
ventional NEGF technique, one deals instead with the two
independent GFs, G>

C and G<
C . As mentioned above, there is

indeed a one-to-one correspondence between these two sets of
functions.

However, our method offers many advantages and not
only on the numerical point of view, as explained previously.
Indeed, as the NE distribution is a functional of itself and of
the spectral function, it offers a more direct and natural way of
performing approximated calculations, by considering some
specific subsets of inelastic processes. Such approximations
are advantageous to minimize the computational cost of
the calculations, which is an important point for future
applications to large and more realistic systems.

Ultimately f NE, given by Eq. (4), can be expressed as an
infinite series expansion in terms of the noninteracting NE
distribution f NE

0 , the spectral function AC , and the interaction
parameters (γ0 or vq). Therefore, instead of performing the
calculations with the exact expression Eq. (4), we can always
truncate the series expansion to a desired level of accuracy (i.e.,
selecting a specific subset of inelastic processes), suitable for
the system and the properties under study.

We provide, in the next section, some examples of approxi-
mated NE distributions and compare their performance against
exact calculations using the full f NE distribution. We recall that
the latter are strictly equivalent to NEGF calculations (with the
same model of self-energies).

C. Numerical application

We now consider numerical applications for a model
of an e-ph interacting system, and we test the different
approximations available for the functional forms of the NE
distribution.

1. Model of electron-phonon interacting system

The Hamiltonian for the region C is

HC = ε0d
†d + �ω0a

†a + γ0(a† + a)d†d, (10)

where d† (d) is the creation (annihilation) operator of an
electron in the molecular level ε0. The electron is coupled,
via its charge density d†d, to the vibration mode (phonon) of
energy ω0 and the strength of the coupling is given by the
constant γ0, and a† (a) creates (annihilates) a quantum in the
vibron mode ω0.

For the transport setup, the central region C is connected
to two (L and R) one-dimensional semi-infinite tight-binding
chains via the hopping integrals t0L and t0R . The corresponding
α = L,R self-energy is obtained from the GF at the end of
the semi-infinite tight-binding chain and is given by �r

α(ω) =
t2
0αeikα (ω)/βα . A dispersion relation links the energy ω with

the momentum kα of an electron in the lead α: ω = εα +
2βα cos kα(ω). The parameters εα and βα are the on-site and
off-diagonal elements of the tight-binding chains. With such a

choice of lead self-energy, we go beyond the wideband limit
(unless βα is much larger than any other parameters).

The self-energies �int for the interaction between the
electron and the vibration mode are calculated using the
Born approximation [39,40]. Their expressions are given in
Appendix B.

Finally, in the most general cases, the left and right contacts
are different (�L �= �R) and there are asymmetric potential
drops, i.e., μα = μeq + ηαV , with the condition �μ = μL −
μR = V (i.e., ηL − ηR = 1).

2. Examples of NE distributions

We provide typical examples of the charge redistribution
in the central region induced by both the NE effects and the
interaction. For a given model of interaction self-energies,
the full self-consistent calculations provided by the algorithm
in Sec. III B 1 are strictly equivalent to conventional NEGF
calculations. Hence the results obtained for f NE with our
method (and full self-consistency) are equal to those obtained
from NEGF–self-consistent Born approximation (SCBA) cal-
culations [39,40].

Figure 1 shows how the NE distribution evolves upon
increasing the NE conditions, i.e., the applied bias, for
a typical set of parameters characterizing the off-resonant
transport regime. One can clearly observe the difference
between the noninteracting NE distribution f NE

0 and the full
distribution f NE. The latter presents features (peaks and
dips) which correspond to the accumulation or depletion
of the electron population induced by inelastic scattering
effects. Such features are directly related to the peaks in the
spectral function. This single example confirms explicitly that,
generally, f NE �= f NE

0 , as shown analytically in Appendix A.
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(a)
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FIG. 1. (Color online) NE distribution functions for the off-
resonant regime (ε0 = 0.50) and for different biases V . (a) V = 0.2 <

ω0, (b) V = 0.4 ∼ ω0, (c) V = 0.75 > ω0, (d) V = 1.0 � ω0. The
NE distribution f NE is completely different from the noninteraction
NE distribution f NE

0 when V � ω0; in this case inelastic processes
occur and induce a redistribution of the electron population in the
region C. The other parameters are γ0 = 0.09, ω0 = 0.3, t0α = 0.15,
Tα = 0.017, ηL = 1, εα = 0, βα = 2.
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3. Approximated NE distributions

As mentioned in Sec. III B 2, for a given choice of
interaction self-energies, our approach is fully equivalent to
NEGF calculations. Both methods corresponds to a partial
resummation of a family of diagrams associated with the in-
teraction self-energy. However, we can further approximate the
expression of the NE distribution Eq. (4). This corresponds to
another way of partially resuming the diagrams corresponding
to �int.

A lowest-order expansion (LOE), in terms of the char-
acteristic interaction parameter, gives an approximated NE
distribution in the following form:

f NE(ω) ∼
(

f NE
0 (ω) − i�<

int

�L+R

)(
1 − i(�>

int − �<
int)

�L+R

)

∼ f NE
0

(
1 − i

�>
int − �<

int

�L+R

)
− i�<

int

�L+R

+ O
(
γ

n�4
0

)
.

(11)

Using the expressions for the self-energies �
≷
int given in

Appendix B for the limit Nph = 0, we find that

f NE
LOE(ω) = f NE

0 (ω) + 2πγ 2
0

�L+R

{
AC(ω + ω0)f NE

0 (ω + ω0)

× [
1 − f NE

0 (ω)
] − AC(ω − ω0)

× [
1 − f NE

0 (ω − ω0)
]
f NE

0 (ω)
}
, (12)

where the terms in γ 2
0 represent NE inelastic correction terms

(to the noninteracting distribution f NE
0 ) arising from phonon

emission by the electron and hole. Such correction terms are
proportional to the ratio γ 2

0 /�L+R , where �L+R represents the
total escape (injection) rate of the electron or hole from (into)
the central region C. The order of the interaction parameter is
γ 2

0 as in lowest-order perturbation theory.
Equation (12) represents the simplest functional form of

the NE distribution f NE(ω) = f NE[f NE
0 ,AC](ω). However, it

is a lowest-order series expansion in terms of the parameter γ0

and is only valid for weak coupling, as we will show below. It
should be noted that the inelastic processes can only occur
when the bias V is larger than or equal to the excitation
energy, V � ω0, otherwise the factors associated with phonon
emission by the electron [f NE

0 (ω + ω0)(1 − f NE
0 (ω))] or by

the hole [f NE
0 (ω)(1 − f NE

0 (ω − ω0))] are zero over the whole
energy range [41].

Another possible approximation is to consider Eq. (4) using
only the noninteracting distribution f NE

0 in the evaluation of

the self-energies �
≶
int. One then gets

f NE
(1) (ω) = [

f NE
0 (ω)�L+R(ω) + 2πγ 2

0 AC(ω + ω0)

× f NE
0 (ω + ω0)

]/
N (ω), (13)

with N (ω) = �L+R(ω) + �int(ω) and

�int(ω) = 2πγ 2
0

{
AC(ω − ω0)

[
1 − f NE

0 (ω − ω0)
]

+AC(ω + ω0)f NE
0 (ω + ω0)

}
. (14)

In Fig. 2, we show different NE distributions calculated with
different approximations: the noninteraction distribution f NE

0 ,
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FIG. 2. (Color online) NE distribution functions for the off-
resonant regime (ε0 = 0.70) for different approximations and for
different coupling strengths γ0. (a) γ0 = 0.03 (γ0/ω0 = 0.15),
(b) γ0 = 0.06 (γ0/ω0 = 0.3), (c) γ0 = 0.08 (γ0/ω0 = 0.4). Only
for weak coupling, all approximated NE distributions provide a
good representation of the exact distribution f NE. We recall that
for fully self-consistent calculations, the results obtained for f NE

with our method are strictly equivalent to those obtained from
NEGF calculations. See text for more detailed comments. The other
parameters are V = 1.0, ω0 = 0.2, t0α = 0.22, Tα = 0.017, ηL = 1,
εα = 0, βα = 2.
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the full self-consistent distribution f NE, and different approx-
imations for the LOE distribution f NE

LOE and f NE
(1) . f NE

LOE[ASC
C ] is

calculated from Eq. (12) using the full self-consistent spectral
function ASC

C (ω), and f NE
LOE[A0

C] is calculated from Eq. (12)
using the noninteracting spectral function A0

C(ω). Finally,
f NE,SC

x is obtained from a self-consistent calculation for the
spectral function (see Sec. III B 1) using the functional form
Eq. (12) for x = LOE, or Eq. (13) for x = (1).

One can see in Fig. 2(a) that, for weak e-ph coupling, any
approximations for f NE

LOE give the same results, and provide a
good representation of the exact f NE. The distribution f

NE,SC
(1)

provides a better representation for f NE. The amplitude of
f NE

LOE is slightly different from f NE, because it is obtained
from a series expansion and is not fully renormalized by the
factor N (ω) Such a renormalization is, however, included in
f

NE,SC
(1) .

For larger e-ph coupling, the difference between f NE
LOE

and f NE increases, as can be expected from any per-
turbation series expansion. The LOE gives physical re-
sults only when the electron-phonon coupling is such as
2πγ 2

0 /�L+R max[AC(ω)] < 0.5. Otherwise one gets non-
physical results for the NE distribution, i.e., f NE

LOE > 1 or
f NE

LOE < 0, as shown in Fig. 2(c). Such a behavior never
occurs for the distribution f

NE,SC
(1) since it contains the proper

renormalization. Therefore, in general, it is better to use an
approximated distribution such as f NE

(1) than the LOE.
Another important point to mention is shown in Figs. 2(b)

and 2(c): The inelastic processes (see the sideband peak located
around ω ∼ 0.3) are only reproduced in the LOE when some
form of self-consistency has been used, i.e., either in the
form of f NE

LOE[ASC
C ] or f

NE,SC
LOE . The LOE distribution calculated

with the noninteracting spectral function A0
C(ω) is not able to

reproduce such effects.
Finally, it should also be noted that all the self-consistent

calculations including approximated distributions, such as
f NE

LOE or f NE
(1) , converge much more quickly than the full

calculation for f NE (see Ref. [42] for more details). Such a
numerical improvement is important for the calculations of
more realistic and larger systems.

4. Current and IETS signal

Figure 3 shows a typical result for the dynamical conduc-
tance G(V ) = dI/dV obtained in the off-resonance transport
regime. The current is calculated as in Ref. [4] using different
approximations for the NE distribution function.

The conductance G(V ) calculated with the approximated
distribution f NE

(1) provides a good representation of the con-
ductance calculated with the exact distribution f NE. The
peak positions are well reproduced, but the amplitude of the
conductance peaks is slightly larger with f NE

(1) . This is due to
the lack of full renormalization of f NE

(1) in comparison to f NE.
The approximated distribution f NE

(1) always gives a slightly
larger electron population as shown in Fig. 2. We do not show
the results obtained with f NE

LOE since for coupling strengths
γ0/ω0 > 0.3, f NE

LOE gives nonphysical results as shown in
Fig. 2(c).

The inelastic effects are best represented by the inelastic
electron tunneling spectra (IETS) provided from the second

0 0.2 0.4 0.6 0.8 1 1.2 1.4
V

0

0.2

0.4

0.6

0.8

G
(V

)

fNE  / NEGF
fNE,SC

(1)

FIG. 3. (Color online) Dynamical conductance G(V ) = dI/dV

(in units of quantum of conductance G0) for the off-resonant regime
(ε0 = 0.70). G(V ) calculated with the approximated distribution f NE

(1)

(solid line) gives a good representation of the conductance calculated
with the exact distribution f NE (dashed line). The latter is strictly
equivalent to NEGF calculations. The other parameters are ω0 = 0.3,
γ0 = 0.10, t0α = 0.19, Tα = 0.017, ηL = 1, εα = 0, βα = 2.

derivative of the current versus the applied bias. Figure 4 shows
such a signal normalized by the conductance. As expected for
the off-resonance regime [40,43–45], we obtain a peak in the
IETS for the voltage threshold V ∼ ω0. The exact IETS signal
calculated with the distribution f NE is well presented by the
IETS calculated with the approximated distribution f NE

(1) .
More interestingly, the results obtained with the LOE

approximated distribution f NE
LOE also give a good representation

of the IETS signal, even for a coupling strength γ0/ω0 = 0.4.
We interpret such a behavior in the following manner: For

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
V

0.525

0.53

0.535

0.54

0.545

d2 I/d
V

2   /
 G

(V
)

fNE / NEGF
fNE,SC

(1)

fNE,SC
LOE

FIG. 4. (Color online) IETS signal d2I/dV 2, normalized by the
conductance G(V ), for the far-off-resonant regime (ε0 = 3.70). The
IETS calculated with the approximated distributions f NE

(1) (solid line)
or even f NE

LOE (squares) gives a good representation of the IETS
calculated with the exact distribution f NE (dashed line). The results
obtained with f NE are strictly equivalent to NEGF calculations. The
other parameters are ω0 = 0.3, γ0 = 0.12, t0L = 0.45, t0R = 0.10,
Tα = 0.017, ηL = 1, εα = 0, βα = 2.
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small applied bias, where the transport is mostly tunneling
and away from any resonant transport mechanisms, the LOE
distribution f NE

LOE is still realistic (i.e., 0 < f NE
LOE < 1) and quite

close to the distribution f NE
(1) . Hence both distributions provide

similar results for the IETS signal. However, whenever the bias
is large enough to include any resonances (main resonance or
any phonon-sideband peak), the LOE distribution will provide
a nonphysical behavior as shown in Fig. 2(c).

IV. TOWARDS MORE COMPLEX SYSTEMS

In order to extend the previous results to more realistic
systems, we need to include several electron states and
eventually several vibration modes in the central region. For
that, we follow the same reasoning as in Sec. III, and consider
the GFs as being matrices Gnm(ω) in the electron level (or site)
representation. The self-energies are also matrices in such a
representation. We then define a different matrix for the NE
distribution f NE

nm as follows:

G<
C,nm(ω) = −

∑
l

f NE
nl (ω)

[
Gr

C,lm(ω) − Ga
C,lm(ω)

]
. (15)

With a few lines of algebra, we find that

f NE(ω) = G<
C

[
Ga

C − Gr
C

]−1

= Gr
C�<Ga

C

[
Gr

C

[(
Gr

C

)−1 − (
Ga

C

)−1]
Ga

C

]−1

= Gr
C�<[�a − �r ]−1

(
Gr

C

)−1

= Gr
C

(
f NE

0
�L+R − i�<

int

)[
Gr

C(�L+R + �int)
]−1

,

(16)

where �int = i(�>
int − �<

int).
Equation (16) for f NE

nm is more complicated than Eq. (4)
because of the presence of the retarded GF terms which
do not cancel in the general matrix form. Furthermore, the
physical interpretation of f NE is more complicated. However,
the diagonal matrix elements f NE

nn represent the occupations
of the level n, and the off-diagonal matrix elements represent
some form of probability rate of transition between states.

It should noticed that, however, all the functional analyses
we have performed in Sec. III A and Appendix C still hold
for the matrix case, i.e., the interaction self-energy is a
functional of the spectral function and of the NE distribution.
Furthermore, Gr

C is also a functional of the spectral function,
AC,nm, which is now given in a matrix form, and Gr

C,nm(ω) =
H[πAC,nm(ω)] − iπAC,nm(ω).

Hence we can still use the functional property of the NE
distribution, that is, f NE = f NE[f NE(ω),AC(ω)], to devise
a self-consistently iterative scheme to solve the problem.
However, now, we have to take into account all the different
matrix elements of the NE distribution and spectral functions.

We can choose for convenience that the coupling of the
central region C to the lead α is diagonal in the n,m

representation: �αnm = �α,nδnm. Hence the noninteracting NE
distribution f NE

0
is diagonal as well, with matrix elements:

f NE
0,n = fL,n�L,n(ω) + fR,n�R,n(ω)

�L,n(ω) + �R,n(ω)
, (17)

with fα,n = fα(ω = εn) the population of the eigenvalue εn of
state n given from the statistics of the lead α.

Furthermore, if the interaction is such that �
≶
int is also

diagonal, the terms in Gr cancel in Eq. (16), and we end
up with a set of n = 1, . . . ,N equations such as Eq. (4) for
f NE

nn (ω), which need to be solve self-consistently for the n

distributions and the n spectral functions AC,nn(ω).

However, in the most general cases, �
≶
int is not diagonal,

and one would need to solve the problem in a matrix form.
For example, a generalization of the self-energies for electron-
phonon coupling, given in Appendix B, would be [44–50]

�
≶
int,nm(ω) =

∑
ν

i

∫
du

2π
D

≶
0,ν(u)γν,npG

≶
C,pq(ω − u)γν,qm,

(18)

where the coupling matrix elements γν,np correspond to an
excitation of the vibration mode ν (emission or absorption of
a quantum) with electronic transition between state n and p.

We provide in Appendix E a specific example of a two-level
model coupled to different vibration modes and show how to
calculate the different matrix elements of f NE.

As far as we know, calculations for realistic systems (i.e.,
several electron levels and vibration modes) still need to be
performed for the full range of NE and MB effects. NE
distribution functions have been used in large systems but only
for noninteracting cases or for cases where the interactions
are treated in a mean-field manner [51]. The effects of NE
and MB effects for e-ph coupled realistic systems have been
considered, however, only at the level of a lowest-order
expansion for the coupling, and in conjunction with some
form of self-consistency [45,48–50].

The really important point in the use of NE distributions for
complex systems is that both the NE and MB effects are taken
into account in the statistics of the finite size open quantum
system (the central region C). The NE distributions give the
(fractional) electron population in the corresponding electronic
levels in the presence of the NE conditions and for a given
model of the MB effects (self-energies). One could envisage
incorporating such NE statistics in density-functional-based
codes able to deal with fractional occupation numbers for the
corresponding Kohn-Sham states.

V. CONCLUSION

We have developed an alternative scheme to calculate the
nonequilibrium (steady state) properties of open quantum
systems. The method is based on the use of NE distribution and
spectral functions. The method presents several advantages,
but is strictly equivalent to conventional steady state NEGF
calculations, when using the same level of approximations
for the MB interaction. This is because there is a one-to-one
correspondence with the NE distribution and spectral functions
and the different GFs used in NEGF. The advantages of
our method resides in the fact that the NE distribution and
spectral functions have well behaved features for numerical
applications, and that, for the single-level model, one works
with purely real-number quantities.

Furthermore, our approach offers the possibility to intro-
duce further approximations, not only at the level of the MB
interaction (as in NEGF), but also at the level of the functional
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forms used for the NE distributions. Introducing approxima-
tions at this level is important to reduce the computational
cost of the method. For the model of the electron-phonon
coupled system we have studied, such approximations provide
a good representation of the full exact results, for either the NE
distributions themselves or for physical measurable quantities
such as the conductance and the IETS signal. An extension
to systems consisting of several electron levels and several
vibration modes has also been provided.

The concept of NE distribution functions also gives more
direct physical information about the open quantum system,
for example, in terms of depletion or accumulation of the
electron population induced by the NE and MB effects. The NE
distribution is also a useful concept to study other properties of
the open quantum system, such as the NE charge susceptibility
[5] and the NE fluctuation-dissipation relations [52].

We expect that such a method will be useful for the study of
large and more realistic systems [53], such as single-molecule
thermoelectric devices, as some approximated version of the
NE distributions could be implemented in density-functional-
based calculations [54].
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APPENDIX A: INTERACTING VERSUS
NONINTERACTING NE DISTRIBUTIONS

From the general expression of f NE(ω) in Eq. (4), there is
no a priori reason for f NE to be equal to the NE noninteracting
distribution f NE

0 . In the very special cases where the interaction
self-energy �<

int follows the noninteracting statistics, i.e., in the
sense that

�<
int

?= −f NE
0

(
�r

int − �a
int

) = −f NE
0 (�>

int − �<
int), (A1)

we obtain straightforwardly from Eq. (4) that f NE = f NE
0 .

Then all quantities, GFs and self-energies, follow the statistics
given by the noninteracting case, as suggested in Ref. [57].
However, this is generally not true.

Indeed, even when the interactions are present only in the
central region, it is not possible to ignore their indirect MB
effects which spread throughout the systems. Such effects need
to be incorporated into the local statistics. The latter cannot
simply arise from the (noninteracting) lead statistics only.

For example, in the Anderson impurity model, the Kondo
cloud generated by electron-electron interactions expands over
more than the single site where the interaction is present.
For electron-phonon interactions, when one performs a Lang-
Firsov unitary transformation to diagonalize the interacting
part of the Hamiltonian, one needs to keep the effects of
such a transformation onto the effective coupling matrix
elements between the (now diagonal) central region and the
leads’ Hamiltonians. In simple words, one could say that the
electron-phonon interaction is now crossing at the contacts
between the central region and the leads. Therefore, there is

no reason to assume that the corresponding statistics would be
given by the noninteracting one.

Moreover, there are clear indications from numerical cal-
culations that f NE �= f NE

0 . This has been shown for electron-
electron interactions (for example, see Fig. 3 in Ref. [37]) and
for electron-phonon interactions (for example, see Figs. 5 and
6 in Ref. [58], Fig. 6 in Ref. [59], and Fig. 7 in Ref. [60]). We
also provide a few examples in Sec. III C 2.

We can also convince ourselves that generally f NE �= f NE
0

by considering the following example for electron-phonon
interactions. The lowest-order diagram for which the self-
energies �

≶
int are not vanishing is the Fock diagram [39,40]

(see Appendix B):

�
F,≶
int (ω) = γ 2

0 [NphG
≶
C (ω ∓ ω0) + (Nph + 1)G≶

C (ω ± ω0)].
(A2)

One can use the ratio �
F,>
int /�

F,<
int to define a distribution

function

f NE
int (ω) =

(
1 − �>

int(ω)

�<
int(ω)

)−1

, (A3)

such as �<
int = −f NE

int (�>
int − �<

int) = −f NE
int (�r

int − �a
int). At

low temperature, Nph = 0 and the ratio

�
F,>
int

�
F,<
int

= G>
C (ω − ω0)

G<
C (ω + ω0)

(A4)

defines a distribution f NE
int which is clearly different from

f NE
0 . Indeed, if f NE

int = f NE
0 , one has �

F,>
int /�

F,<
int = (f NE

0 −
1)/f NE

0 , which is not possible from the definition of Eq. (A4).

To further convince ourselves, let us assume that G
≶
C were

following the distribution f NE
0 . Then from Eq. (A4), we would

have

�
F,>
int

�
F,<
int

= G>
C (ω − ω0)

G<
C (ω + ω0)

= f NE
0 (ω − ω0) − 1

f NE
0 (ω + ω0)

AC(ω − ω0)

AC(ω + ω0)

�= f NE
0 (ω) − 1

f NE
0 (ω)

, (A5)

where AC(ω) is the spectral function of the central region
C. The inequality in Eq. (A5) holds even for the symmetric
electron-hole case [61].

Hence, we can safely conclude that, in the most general
cases, the two distribution functions f NE and f NE

0 differ from
each other.

APPENDIX B: THE ELECTRON-PHONON
SELF-ENERGIES

The electron-phonon self-energies in the central region C

are calculated within the self-consistent Born approximation.
The details of the calculations are reported elsewhere [39,40],
so we briefly recall the different expressions for the self-
energies �x

int(ω) = �
H,x
C (ω) + �

F,x
C (ω) with

�
H,r
C = �

H,a
C = 2

γ 2
0

ω0

∫
dω′

2π
iG<

C (ω′) = −2
γ 2

0

ω0
〈nC〉,

(B1)
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with 〈nC〉 = −i
∫

dω/2π G<
C (ω) and

�
F,≶
C (ω) = iγ 2

0

∫
du

2π
D

≶
0 (u) G

≶
C (ω − u), (B2)

and

�
F,r
C (ω) = iγ 2

0

∫
du

2π
Dr

0(ω − u)
(
G<

C (u) + Gr
C(u)

)
+D<

0 (ω − u)Gr
C(u), (B3)

with the usual definitions for the bare vibron GF Dx
0 :

D
≶
0 (ω) = −2πi[Nphδ(ω ∓ ω0) + (Nph + 1)δ(ω ± ω0)],

Dr
0(ω) = 1

ω − ω0 + i0+ − 1

ω + ω0 + i0+ , (B4)

where Nph is the averaged number of excitations in the
vibration mode of frequency ω0 given by the Bose-Einstein
distribution at temperature Tph.

We are mostly interested to see how the inelastic effects
are reproduced by our method based on the NE distribution.
Therefore we ignore the contribution of the static part of the
interaction, i.e., the Hartree-like self-energy �

H,r/a

C , in the
calculations. Note, however, that since the NE distribution
is defined from the lesser and greater components of the
interaction self-energies, the Hartree-like component is not
relevant for the calculation of f NE.

APPENDIX C: FUNCTIONAL FORMS OF THE NE
DISTRIBUTION

We analyze in this Appendix the dependence of f NE on the
MB effects using a conventional diagrammatic NE approach
for the interactions. The lowest-order nonvanishing lesser and
greater self-energies have the form of a convolution product
of the following type:

�
≶
int(ω) = i

∫
du

2π
B≶(u)G≶

C (ω − u), (C1)

where B(ω) is related to a boson propagator.
For electron-phonon interactions, B(ω) is given by B(ω) =

γ 2
0 D(ω), where D(ω) is the phonon propagator and γ0 is

the electron-phonon coupling constant. Different levels of
approximation can be used by considering the bare phonon
propagator D0(ω), or a partially dressed phonon propagator
D0(ω), or the fully dressed phonon propagator D(ω).

For electron-electron interactions, B(ω) is the screened
Coulomb interaction W (ω) in which the screening is obtained
according to different levels of approximation. We describe a
few of them in the following.

Electron-phonon interaction. When dealing with the bare
phonon, the lesser interaction self-energy becomes

�<
int(ω) = iγ 2

0

∫
du

2π
D<

0 (ω − u) G<
C (u)

= −γ 2
0

∫
duD<

0 (ω − u) f NE(u)AC(u). (C2)

Clearly such a self-energy is a functional of the NE distribution
f NE(u) and of the spectral function A(u). One obtains a similar
result for the greater self-energy �>

int(ω).

For the partially dressed D0 or the fully dressed phonon
propagator D, we have the following expressions for the prop-
agator: D0(ω) = D0(ω) + D0(ω)γ 2

0 P (ω)D0(ω) or D(ω) =
[D0(ω)−1 − γ 2

0 P (ω)] with P (ω) being the polarization func-
tion. At the lowest order, the polarization is given by the
electron-hole bubble diagram and its lesser and greater
components are

P ≶(ω) = −i

∫
du

2π
G

≶
C (u)G≷

C (u − ω)

= −i2π

∫
du f NE(u)[1 − f NE(u − ω)]

×AC(u)AC(u − ω), (C3)

which is again a functional of f NE and AC . Therefore we find
that for any phonon propagator, we have �<

int = �<
int[f

NE,AC].
Electron-electron interaction. The screened Coulomb in-

teraction W (ω) = vq/ε
−1(ω,q) can be calculated within a

different level of approximation for the dielectric function
ε−1(ω,q) (vq is the Fourier q component of the bare Coulomb
interaction).

In the plasmon-pole approximation [62,63], we have
ε−1(ω,q) = 1 + ω2

p/(ω2 − ω2
q), where ωp is the bulk plasmon

energy and ωq the plasmon dispersion relation. The dynamic
part of the screened Coulomb potential W (ω) − v can be
rewritten as

vq(ε−1(ω,q) − 1) = vqω
2
p

2ωq

2ωq

ω2 − ω2
q

= γ 2
p Bp(ω,q), (C4)

which involves a coupling constant γp and the bosonic
propagator Bp(ω) of the plasmon modes. This corresponds
to the similar case of the bare phonon propagator described
above. Using the same reasoning, we find that the interacting
self-energy �<

int is a functional of f NE and AC .
Within the GW approximation [62–67], the screened

Coulomb interaction is given by W (ω) = v + vP (ω)W (ω).
This expression is a formally equivalent to the case of the
fully dressed phonon propagator since D(ω) = [D0(ω)−1 −
γ 2

0 P (ω)] = D0(ω) + D0(ω)γ 2
0 P (ω)D(ω). Hence, applying

the previous analysis, we find again that �<
int = �<

int[f
NE,AC].

Vertex corrections and higher-order diagrams. We can also
consider higher-order diagrams for the electron-phonon and
electron-electron, as well as vertex corrections to build more
elaborate self-energies. From our earlier work [39,40,63],
it can been seen from the expressions of the second-order
and vertex correction diagrams that the self-energies �

≶
int can

always be expressed as a functional of the NE distribution
f NE(ω) and of the spectral function AC(ω) [68].

APPENDIX D: LOWEST-ORDER EXPANSION FOR THE
CURRENT

For the two-terminal quantum devices we consider, the
current I (V ) is given by the famous Meir and Wingreen
expression [69]:

I = ie

h

∫
dω Tr

{
[fL(ω)�L − fR(ω)�R]

[
Gr

C(ω) − Ga
C(ω)

]
+ [�L(ω) − �R(ω)]G<

C (ω)
}
, (D1)

045409-9



H. NESS PHYSICAL REVIEW B 89, 045409 (2014)

where we recall that �α(ω) is the spectral function of the lead
α self-energy, i.e., �α = i(�r

α − �a
α) = i(�>

α − �<
α ).

For the single-impurity model, the trace drops off and
one deals with functions only. Using the definitions 2πAC =
i(Gr

C − Ga
C) and G<

C = −f NE(Gr
C − Ga

C), we obtain

I = 2πe

h

∫
dω(fL�L − fR�R)AC − (�L − �R)f NEAC.

(D2)

The lowest-order expansion of the current, in terms of
elastic and inelastic processes, is obtained by introducing
the approximated form Eq. (12) for the NE distribution. The
current is built on two contributions I = Iel + Iinel with

Iel = 2πe

h

∫
dω(fL�L − fR�R)AC − (�L − �R)f NE

0 AC

= e

h

∫
dω(fL − fR)

2�L�R

�L+R

2πAC, (D3)

where the second line is simply obtained from the def-
inition of the noninteraction NE distribution Eq. (2).
We can identify Iel in Eq. (D3) as a Landauer-
like current expression with the transmission given by
the usual formula T (ω) = Tr[�L(ω)Gr

C(ω)�R(ω)Ga(ω)] +
[�R(ω)Gr

C(ω)�L(ω)Ga(ω)] ≡ 2�L�R/�L+R 2πAC(ω). This
is a purely elastic transmission when the GFs or AC(ω) are
calculated in the absence of an interaction. In the presence
of an interaction, we are dealing with elastic transport with
renormalized GFs [4].

The second contribution to the current is given by

Iinel = − e

h
(2πγ0)2

∫
dω

�L − �R

�L+R

× {
AC(ω + ω0)f NE

0 (ω + ω0)AC(ω)
[
1 − f NE

0 (ω)
]

−AC(ω)f NE
0 (ω)AC(ω − ω0)

[
1 − f NE

0 (ω − ω0)
]}

.

(D4)

This is simply the lowest-order inelastic contribution to the
current, corresponding to vibron emission by the electron
and hole. When Eq. (D4) is recast in terms of the Fermi
distributions fL and fR entering the definition of f NE

0 , one
recovers the lowest-order expansion results obtained from
scattering theory [70–72] and from NEGF [45,46,50,73] if
the spectral function AC is calculated in the absence of an
interaction.

The important point here is that our results are obtained
in a rather straightforward manner by using the concept of
NE distribution. They are equivalent to others when working
within with same degree of approximation for the interaction
self-energy. However, with the use of approximated forms
for the NE distribution, we can still perform self-consistent
calculations, which go beyond second-order perturbation
theory.

APPENDIX E: A TWO-LEVEL MODEL

In this Appendix, we provide an example for a model of
the central region consisting of two levels i,j = 1,2 with two
different kinds of e-ph coupling, a local Holstein-like coupling

on each site and an off-diagonal Su-Schrieffer-Heeger-like
coupling between the two levels.

The interaction self-energies are nondiagonal 2 × 2 ma-
trices with elements �

≶
ij (ω) given (in the limit of low

temperature) by

�
≶
int,11(ω) = γ 2

0,1G
≶
C,11(ω ∓ ω1)

�
≶
int,12(ω) = γ 2

0,odG
≶
C,12(ω ∓ ωod)

(E1)
�

≶
int,21(ω) = γ 2

0,odG
≶
C,21(ω ∓ ωod)

�
≶
int,22(ω) = γ 2

0,2G
≶
C,22(ω ∓ ω2),

where ωi and γ0,i are the energy and coupling constants for the
local e-ph interaction on level i = 1,2 and ωod and γ0,od are
the corresponding quantities for the nonocal e-ph interaction
between level 1 and 2.

For simplicity we consider the coupling to the lead is
diagonal, i.e., �L+R,ij = �iδij and therefore the noninteracting
NE distribution matrix f NE

0
is also diagonal, with elements f NE

0,i

given by Eq. (17).
We focus in the following on the LOE of f NE. This

approximation still shows how the different components of
the NE distribution matrix are obtained in the presence of a
nondiagonal interaction self-energy.

Following the derivation given in Sec. III C 3, Eq. (16) can
be recast as

f NE(ω) ∼ Gr
C

(
f NE

0
�L+R − i�<

int

)
�−1

L+R

(
1 − �−1

L+Ri�>−<
int

)
× (

Gr
C

)−1

∼ Gr
0,C

(
f NE

0
− i�<

int�
−1
L+R − f NE

0
�−1

L+Ri�>−<
int

)
× (

Gr
0,C

)−1
, (E2)

where we kept only the lowest-order terms, �>−<
int is a contrac-

tion for �>−<
int = �>

int − �<
int, and Gr

0,C is the noninteracting
GF of the region C. Such a GF is diagonal with elements
Gr

0,i(ω) in the two-level representation. Hence we obtain the
following LOE for f NE:

f NE
LOE

(ω) =
[

F11(ω) r(ω)F11(ω)

F21(ω)/r(ω) F22(ω)

]
, (E3)

where r(ω) is ratio r = Gr
0,1(ω)/Gr

0,2(ω) and Fij are the matrix
elements of

F = f NE
0

− i�<
int�

−1
L+R − f NE

0
�−1

L+Ri�>−<
int . (E4)

By the definition Eq. (15), the matrix elements of G
≶
C entering

the definition of the self-energies �
≶
int depend on both the

diagonal and off-diagonal elements of f NE.

However, at the LOE, we substitute f NE with the noninter-

acting distribution f NE
0

which is diagonal. Hence we have

G<
C,ij (ω) = i2πf NE

0,i (ω)AC,ij (ω)
(E5)

G>
C,ij (ω) = i2π

(
f NE

0,i (ω) − 1
)
AC,ij (ω).

After substitution into the definition of the self-energy
Eq. (E1), we obtain from Eq. (E4) the following matrix

045409-10
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elements of F :

Fii(ω) = f NE
0,i (ω) + 2πγ 2

0,i

�i

{
AC,ii(ω + ωi)f

NE
0,i (ω + ωi)

× [
1 − f NE

0,i (ω)
]− AC,ii(ω − ωi)

[
1 − f NE

0,i (ω − ωi)
]

× f NE
0,i (ω)

}
, (E6)

for the diagonal elements (i = 1,2) and for the off-diagonal
elements:

F12(ω) = 2πγ 2
od

�1

([
�1

�2
− f NE

0,1 (ω)

]
f NE

0,1 (ω + ωod)

×AC,12(ω + ωod) − AC,12(ω − ωod)

× [
1 − f NE

0,1 (ω − ωod)
]
f NE

0,1 (ω)

)
. (E7)

The matrix element F21 is obtained from the expression of F12

by swapping the indices 1 ↔ 2.
From Eqs. (E6), (E7), and (E3), we can see that the diagonal

elements f NE
LOE,ii are real and given by an expression similar

to the result Eq. (12) obtained for the single-level model. The
off-diagonal elements f NE

LOE,ij acquire an imaginary part via the
presence of the ratio r(ω). In some cases, such an imaginary
can be negligible or even vanishing.

The interesting point in the LOE is that each matrix
element f NE

LOE,ij is to be determined self-consistently with the
corresponding matrix element AC,ij of the spectral function.
There is no mixing between the different AC,ij and f NE

LOE,ij .
Obviously, beyond the LOE, there will be some mixing

between the different matrix elements of the NE distribution
and the spectral function, since Gr

C is generally not diagonal
and G<

C is given by

G<
C = i2π

[
f NE

11 f NE
12

f NE
21 f NE

22

] [
AC,11 AC,12

AC,21 AC,22

]
. (E8)
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[22] V. G. Morozov and G.Röpke, Condens. Matter Phys. 1, 673
(1998).
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