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Classical and semiclassical theories of atom scattering from corrugated surfaces
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A theory based in the semiclassical eikonal approximation is developed to describe energy transfer in the
collision of an atomic projectile with a surface which is either ordered or disordered. This theory is extended
from the quantum mechanical regime to the classical regime of complete quantum decoherence via the Bohr
correspondence principle of large numbers of excited quanta. In the quantum mechanical regime, the theory
reproduces the well-known eikonal approximation for elastic collisions, provides a simple and useful expression
for single-phonon inelastic scattering, and leads to further expressions for multiple-phonon transfers. In the
classical limit, the theory produces an expression that includes the effects of surface corrugation in addition
to the excitations of large numbers of phonons. This theory shows that a simple measurement of the most
probable intensity of energy-resolved scattering spectra taken as a function of surface temperature, with all other
experimentally controllable parameters held fixed, can be used to extract the surface corrugation amplitude.
Comparisons with data for Ar scattering from the molten metals Ga and In show good agreement with the
measured energy-resolved spectra, the in-plane angular distributions, the out-of-plane angular distributions, and
produces values for the corrugation amplitudes that range from 10% to 30% of the average interparticle spacing.
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I. INTRODUCTION

Essential for detailed understanding of gas-surface interac-
tions is knowledge of the interaction energy landscape. As a
working definition, the energy landscape can be viewed as
the height of the classical turning point of the interaction
potential energy evaluated at each point R parallel to the
surface. Knowledge of the landscape is essential for predicting
the results of state-to-state scattering experiments, explaining
self-diffusion or diffusion of adsorbates, and is necessary
for describing chemical reactions at surfaces as well as
heterogeneous catalysis. If the surface is regarded as a hard
repulsive barrier defined by the classical turning point, then the
energy landscape can be uniquely characterized and defined
by a corrugation function ξ (R) which gives the position of the
corrugated barrier.

There is a long history of developing gas-surface interaction
potentials as evidenced in earlier review articles.1,2 Current
theoretical treatments of atomic and molecular interactions
with surfaces include not only pairwise interactions with
the surface atomic cores, but also collective effects with the
electronic density distribution.3–6 The usual way of obtaining
the corrugation function of the surface energy landscape
is through comparisons with calculations of state-to-state
measurements using well-defined molecular beam scattering
experiments. The most extensive and accurate experiments
have been carried out in the quantum mechanical regime using
low-energy helium-atom projectiles and relatively low surface
temperatures.2,7–9 In the most precise of such experiments,
extremely accurate and extensive evaluations of the interaction
potentials have been obtained.10 However, many experiments
have been carried out in the regime of large projectile masses,
high incident energies, and large surface temperatures where
large numbers of quanta are transferred during the interaction,
the scattering becomes decoherent, and all detailed quantum

features disappear.11,12 Under such conditions, the scattering
can be treated with classical mechanics, but still a significant
amount of information about the interaction potential can be
obtained by comparison of calculations with experimental
measurements.13–20

The purpose of this paper is to develop a semiclassical
theory of atom-surface scattering, based on the eikonal
approximation,21,22 that can include inelastic transfers with the
phonons. This theory provides a simple but useful expression
for describing the quantum mechanical limit of single-phonon
transfers in atom-surface collisions. However, of importance
for the purposes of this paper it also provides a way of obtaining
useful expressions in the classical multiphonon limit of large
numbers of quanta transferred.

A result of significant interest presented here is a classical
theory of atom-surface scattering in the impulsive limit, e.g.,
the limit of short collision times, that can treat rough or
periodic surfaces and is capable of treating rainbow patterns
that can be exhibited by periodic surfaces. An interesting
result that was predicted some time ago,23 but only recently
verified in comparisons of calculations with experimental
measurements,24 is that a relatively simple temperature-
dependent measurement of the scattered spectrum can be used
to determine the amplitude of the surface corrugation. Namely,
for both amorphous or periodic surfaces, the dependence on
temperature of the most probable intensity of the typically
observed energy-resolved scattered spectra gives directly a
measure of the average corrugation amplitude of the energy
landscape.

That such a simple measurement should be useful for
providing information on the surface corrugation function
is evident from comparing two different but well-known
theoretical expressions for the transition rate w(pf ,pi) from
which one can readily obtain the differential cross section
for scattering of an atomic projectile initially prepared in a
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state of momentum pi into final states of momentum pf .
These equations describe the extremes of a surface that is
highly corrugated and thermally vibrating, or one that is
regarded as being flat except for small time-dependent thermal
corrugations.

The highly corrugated system is represented by an atomic
projectile of mass m colliding with discrete scattering centers
of mass MS that are initially moving with an equilibrium
distribution of velocities at temperature TS (Refs. 25 and 26):

w(pf ,pi) ∝
√

1

4πkBTS�E0
|τfi|2

× exp

{
− (Ef − Ei + �E0)2

4kBTS�E0

}
, (1)

where �E0 = (pf − pi)2/2MS is the binary collision recoil
energy, kB is the Boltzmann constant, and the transition matrix
element τfi is determined by the interaction potential.

Regarded as a function of final energy Ef , the transition
rate of Eq. (1) typically appears as a structure with a single
peak whose shape is primarily determined by the Gaussian-
type exponential function. The temperature dependence of the
width is governed largely by the factor of TS in the argument of
this exponential, which gives an approximate

√
TS dependence

on the full width at half maximum (FWHM) that is typical for
classical scattering. The most probable intensity occurs very
near the final energy for which the argument of the exponential
vanishes, implying that the temperature dependence of the
most probable intensity (at the maximum peak position) is
governed by the prefactor and consequently varies as 1/

√
TS .

The transition rate for an uncorrugated surface, i.e., a
surface with no static corrugation, but which has small time-
dependent thermal displacements caused by the underlying
motions of the bulk atoms, is27–30

w(pf ,pi) ∝ 1

(4πkBTS�E0)3/2
|τfi|2

× exp

{
− (Ef − Ei + �E0)2 + 2v2

RP2

4kBTS�E0

}
, (2)

where P is the component of the momentum-transfer vector
p = pf − pi parallel to the surface and vR is a constant having
dimensions of speed, but which is completely determined
by the phonon distribution. The parameter vR is a weighted
average over the distribution of phonon velocities at the
surface.28

Equation (2) differs from Eq. (1) by the additional
Gaussian-type factor in P2 and the prefactor, or envelope
function, is raised to the 3

2 power as opposed to the square
root. Under most experimental conditions, Eq. (2), like Eq. (1),
is also a single-peaked function of the final energy Ef with
the most probable intensity occurring near the final energy
Ef at which the total combined argument of the exponential
is a minimum. In this case, the temperature dependence of
the most probable intensity is approximately that implied by
the prefactor, which has the functional dependence given by
1/T

3/2
S .

It should be noted that the form factor |τfi|2 appearing
in Eq. (2) does not appear in the original derivation of the
scattering cross section of Brako and Newns.28 This is because

Brako and Newns considered in their derivation only the
inelastic part of the interaction potential and, in fact, only
the part of the inelastic interaction potential that is linear
in the phonon displacements. The need for the form factor
|τfi|2 becomes apparent when one includes the effects of the
elastic part of the interaction potential, which is the part of
the potential that guides the projectile towards the surface
before collision and away from the surface after the collision.
To make this point explicit, the total interaction potential
between an incoming atomic projectile and a vibrating surface
V (r,u) is usually expanded as a power series in the phonon
displacements signified by u:

V (r,u) = V (r,u)|u=0 + ∇uV (r,u)|u=0·u + . . . , (3)

and often the assumption is made that V (r,u) = V (r + u)
in which case the gradient with respect to the phonon
displacements u can be replaced by the gradient with respect
to the position variable r. The leading term on the right-hand
side of Eq. (3) is called the elastic potential since it does not
contribute to energy exchange with the surface. The second
term on the right is the term linear in the phonon displacements
and it is through using this part of the potential in the
impulse approximation that leads to the original Brako-Newns
formula.28 Higher-order terms in the expansion of Eq. (3) are
usually neglected and, in fact, have been shown to contribute
negligibly to the energy transfer for scattering of rare gases
from surfaces.31 Although Brako and Newns ignored the
elastic part of the potential in their treatment, it is inclusion
of the elastic potential that gives rise to the form factor
|τfi|2. The need for such a form factor can be most simply
demonstrated by obtaining Eqs. (1) and (2) by using the
kinematical approximation.27 A more general treatment based
on the full potential of Eq. (3) identifies τfi as the transition
matrix of the elastic potential extended off the energy shell in
order to account for energy transfer to the surface via excitation
of phonon quanta.30

The sharply contrasting behaviors of the most probable in-
tensity temperature dependence, i.e., those of Eqs. (1) and (2),
have been observed in scattering experiments. The 1/T

1/2
S

behavior for scattering from a highly corrugated discrete
particle target surface was clearly observed for the scattering
of low-energy alkali atom ions from a Cu(001) surface.32

Corresponding to the case of an uncorrugated surface, a
temperature dependence behaving very nearly as 1/T

3/2
S has

been verified using the two similar mass projectiles 4He atoms
and D2 molecules scattering under classical conditions at
hyperthermal energies from a clean Cu(001) surface.33

The simple and straightforward comparison of the most
probable intensities provided by Eqs. (1) and (2) shows
that there is a distinct difference in temperature dependence,
with the intensity of a strongly corrugated surface behaving
as 1/T

1/2
S while that of an uncorrugated surface having a

significantly stronger dependence going approximately as
1/T

3/2
S . The logical conclusion from this observation is that

a moderately corrugated surface should exhibit a temper-
ature dependence intermediate between these two extreme
behaviors.23,34,35 Thus, a measurement of the temperature de-
pendence of the most probable intensity of the energy-resolved
scattering spectra allows one to extract the strength of the
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corrugation when experimental measurements are compared
with appropriate theory. This is a major conclusion drawn from
the theory and comparisons with experimental data presented
in this paper.

It should be mentioned that this discussion of the determi-
nation of the corrugation amplitude through measurements of
the temperature dependence of the energy-resolved scattering
spectra makes the tacit assumption that the corrugation
function, measured for a particular incident projectile beam
momentum, is itself independent of temperature. The authors
are unaware of any experimental measurements that demon-
strate a temperature dependence of the corrugation amplitude
for fixed incident energy.

II. THEORY

Although the ultimate objective is to obtain a classical
theory of atom-surface scattering that can include the surface
corrugation, the simplest approach actually is to begin from
a quantum mechanical treatment and then go to the classical
limit of large quantum numbers. With this approach in mind,
an appropriate starting point is the generalized Fermi golden
rule

w(pf ,pi) = 2π

h̄

〈 ∑
{nf }

|Tfi|2δ(Ef − Ei)

〉
, (4)

where Tfi is the transition-matrix element taken with respect
to final and initial states of the system of projectile plus target
surface, Ei and Ef are the initial and final energies of the
entire system, and h̄ is Planck’s constant. The angular brackets
signify an average over all initial states of the surface and the∑

{nf } indicates a sum over all final states of the target.
The transition matrix Tfi will be developed in the semiclas-

sical limit using the eikonal approximation as developed for a
hard repulsive potential with a corrugation function ξ (R).21,22

This was originally formulated for the purely elastic scattering
problem of a quantum mechanical projectile colliding with a
hard corrugated wall. In the asymptotic region far in front of the
surface the wave function for the elastic part of the interaction
potential of Eq. (3) corresponding to an atomic projectile
initially prepared in a well-defined state of momentum pi is

ψi(r) = eipi ·r/h̄ −
∑

P

A(P)ei(Pi+P)·R/h̄eipf zz/h̄, (5)

where P is the component of momentum transfer parallel to
the surface, A(P) is the scattering amplitude, and the final
momentum component perpendicular to the surface is de-
termined by energy conservation as pf z =

√
p2

i − (Pi + P)2.
The eikonal approximation consists of two assumptions. First,
the Rayleigh ansatz which assumes that the asymptotic wave
function of Eq. (5) can be extended through the selvege region
up to the position of the hard wall at z = ξ (R), and second,
that the final momentum perpendicular to the surface pf z is
weakly dependent on parallel momentum transfer P. For the
elastic transition matrix associated with the elastic part of the
potential [i.e., the first term on the right side of Eq. (3)], the
eikonal approximation leads to

Tfi = ieiδf
h̄pf z

mL

1

L2

∫
dR e−iP·R/h̄e−i�pzξ (R)/h̄, (6)

where �pz = piz + pf z is the momentum transfer in the
direction normal to the surface, L is a quantization length, and
δf is a phase that is unimportant in calculating the transition
rate of Eq. (4).

In order to add the effect of thermal vibrations on the
transition rate, the repulsive surface is regarded as having
a time- and position-dependent vibrational displacement de-
noted by u(R,t) = {U(R,t),uz(R,t)}. Then, in Eq. (6) we have
R −→ R − U(R,t) and ξ (R) −→ ξ (R) − uz(R,t) leading to
a transition matrix taking the form

Tfi = ieiδf
h̄pf z

mL

1

L2

∫
dR e−iP·R/h̄e−i�pzξ (R)/h̄eip·u(R,t)/h̄.

(7)

The transition matrix of Eq. (7) is a special example of the
kinematic approximation that has been successfully applied
to x-ray, neutron, and electron scattering. In the kinematic
approximation, the transition operator for each lattice position
in the crystal is multiplied by the phonon displacement
operator exp{ip · u/h̄}.

The sum and average over target states in Eq. (4) can now be
carried out in a straightforward manner using the Glauber-Van
Hove transformation36,37

w(pf ,pi) = 1

h̄2

(
h̄2kf z

mL

)2 ∫ +∞

−∞
dt ei(Ei−Ef )t/h̄

× 1

L4

∫
dR

∫
dR′e−iP·(R−R′)/h̄e−i�pz[ξ (R)−ξ (R′)/h̄]

×〈eip·u(R,t)/h̄e−ip·u(R′,0)/h̄〉. (8)

Assuming displacements in the harmonic approximation leads
to expressions involving the displacement-displacement cor-
relation function

2W(p; R,R′,t) = 〈p · u(R,t)p · u(R′,0)〉/h̄2 (9)

and the transition rate takes the form

w(pf ,pi) = 1

h̄2

(
h̄2kf z

mL

)2 ∫ +∞

−∞
dt ei(Ei−Ef )t/h̄

× 1

L4

∫
dR

∫
dR′e−iP·(R−R′)/h̄e−i�pz[ξ (R)−ξ (R′)/h̄]

× e−2W (p)e2W(p;R,R′,t), (10)

where the argument of the Debye-Waller factor exp{−2W } is
given by

2W (p) = 〈(p · u)2〉/h̄2. (11)

Equation (10) is a fully quantum mechanical scattering
transition rate for a hard repulsive potential within the
eikonal approximation.22 The elastic and single-phonon limits
are obtained upon expanding the exponentiated correlation
function in powers of 2W(p; R,R′,t), and for completeness
these are developed in the Appendix. Of interest here, however,
is the the classical scattering limit which can be obtained from
Eq. (10) by applying the Bohr correspondence principle of
large numbers of quanta transferred in the collision.

The classical limit is achieved when large numbers of
phonon quanta are created and destroyed in which case the
scattering process becomes completely incoherent. The value
of the argument 2W of the Debye-Waller factor is a measure
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of the number of phonons transferred in the collision and
it becomes large in the classical limit of large energies or
when the mean-square displacement (or effectively the tem-
perature) becomes large. When the Debye-Waller argument
2W becomes large, the most important contributions to the
correlation function 2W of Eq. (9) come from the region of
small t and small R − R′. In this case, the correlation function
can be evaluated as an expansion. The simplest approximation
for evaluating the expansion is to assume a Debye model with
bulklike symmetry in which all cross terms vanish and this
leads to

2W(p; R,R′,t) ≈ 2W (p) − i�E0t − �E0kBTSt
2

− �E0kBTS(R − R′)2

2h̄2v2
R

+ . . . , (12)

where the classical recoil energy is given as in Eq. (1) by
�E0 = p2/2MS , and the velocity parameter vR is a weighted
average of phonon velocities parallel to the surface28 as in
Eq. (2). For several simple models of the surface phonon
density vR can be evaluated and these models produce values
that are of order of the bulk acoustic phonon velocities or the
Rayleigh wave velocity.

Insertion of the classical limit expansion of Eq. (12) into the
transition rate of Eq. (10) gives rise to two big simplifications.
First, the time and double-spatial integrals separate into two
simpler product functions. Second, and this is the hallmark of
the classical transition, the leading term in the expansion of
Eq. (12) exactly cancels the Debye-Waller factor. Thus, in spite
of the fact that the Debye-Waller factor becomes vanishingly
small and suppresses all quantum features, in the classical
limit it is canceled out leaving behind a function exhibiting
the broader features characteristic of classical scattering. The
time integral can be carried out using the method of steepest
descents and the result is

w(pf ,pi)

=
(

pf z

mL

)2 2πh̄√
4π�E0kBTS

exp

{
− (Ef − Ei + �E0)2

4�E0kBTS

}

× 1

L4

∫
dR

∫
dR′e−iP·(R−R′)/h̄e−i�pz[ξ (R)−ξ (R′)]/h̄

× exp

{
− �E0kBTS(R − R′)2

2h̄2v2
R

}
. (13)

In Eq. (13), the leading terms appearing before the spatial
integrals are identical with the transition rate of Eq. (1),
showing that if the displacement correlations arising from the
flat surface are completely ignored, the transition rate becomes
the form of Eq. (1) for a discrete surface. Alternatively, if
the corrugation function ξ (R) is set equal to a constant value
corresponding to a smooth plane, then the spatial integrals can
also be carried out using methods of steepest descents and the
result is that of Eq. (2). The overall product factors of pf z are
identified with the transition matrix τfi appearing in Eq. (2)
for the case of a hard repulsive potential. Equation (13) is the
central result used for the calculations in the next section of
this paper.

III. COMPARISON WITH EXPERIMENTS

The first angular distributions measured for the scattering of
atoms from surfaces were carried out by Stern and co-workers
and these used a thermal beam of low-energy He atoms or H2

molecules scattered from alkali-halide surfaces.38,39 A resur-
gence of interest in this field resulted from the development
of the supersonic molecular jet which provided energetically
well-defined beams of molecular and atomic projectiles.40,41

The modern history of energy-resolved measurements in the
classical regime which is usually defined by large mass pro-
jectiles, high incident energies, and large surface temperatures
started with the seminal experiments of Hurst et al. that
reported the results of a supersonic beam of Xe atoms reflected
from a Pt(111) surface.42 However, in spite of a history of
a large number of energy-resolved scattering experiments
carried out since, many of which even reported varying
aspects of temperature-dependent measurements, essentially
none reported the type of experiments that we are suggesting
here which are energy-resolved spectra with relative intensity
measurements over a range of different temperatures with
all other controllable parameters remaining fixed. In fact,
to our knowledge, there is only one series of experiments
reporting reliable relative intensity measurements as a function
of surface temperature and this is the work of Nathanson et al.
for the scattering of Ar from the molten metals indium and
gallium.11,12 This is the work that we analyze here using the
theory of Sec. II.

Figure 1 shows the three energy-resolved spectra taken
for in-plane Ar scattering from molten Ga at three different
temperatures of 313, 483, and 673 K. The incident energy is
95 kJ/mol (0.99 eV) and the incident angle is 55◦ and the
final angle is at the specular position, i.e., θi = θf = 55◦. The

FIG. 1. Energy-resolved spectra for Ar scattering from molten Ga
at three different temperatures TS = 313, 483, and 673 K as marked.
The incident energy is 95 kJ/mol and the incident and final angles
are θi = θf = 55◦. Data points are from Nathanson et al. (Ref. 11).
The solid curve is the present calculation for a corrugated surface,
and the dotted curve is for a surface with no static corrugation.
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experimental data are shown as open circles and consist of a
single broad peak, characteristic of scattering in the classical
regime, and a shoulder at low energies. The most probable
energy shows a typical energy loss of about one-third of the
incident energy. It is evident that as the Ga temperature is
increased, the full width at half maximum (FWHM) of the
peak broadens and the most probable intensity decreases.
This behavior is consistent with the principle of unitarity,
the assumption that the total flux of particles scattered from
the surface equals the flux of incident particles, i.e., as the
temperature increases the particles are scattered over a broader
energy range, and to conserve the number of particles the
maximum intensity decreases concomitantly. Two calculations
are shown in each panel of Fig. 1: the solid curve is carried out
using the transition rate for a corrugated surface of Eq. (13)
with the characteristic corrugation of the liquid surface as
discussed in the following paragraph and the dotted curve is
for a flat surface with no static corrugation. Both of these
calculations are for a single collision of the Ar projectile with
the Ga surface and they do not exhibit the shoulder feature that
is apparent in the data at very low energies (i.e., at large energy
loss). These shoulder features have been demonstrated to be
due to double scattering in which each of the two collisions
occurs with a large scattering angle, and are discussed further
in the following in connection with Fig. 5.

In the classical scattering regime, all quantum mechanical
interference arising from waves reflected from different parts
of the surface is suppressed. Thus, the surface integrals in the
transition rate of Eq. (13) can be limited to a single charac-
teristic scattering center of the surface. For the interaction of
Ar with the molten metal, a sinusoidal function representing
the boss presented by a surface-metal atom is chosen for the
corrugation function

ξ (R) = ha cos

(
2πR

a

)
, (14)

where a is taken to be the average interatomic spacing in the
bulk liquid, R is the two-dimensional displacement parallel to
the surface, and R is its magnitude which ranges from 0 to
a/2. This gives a corrugation profile for a typical surface atom
with a trough-to-crest height of 2ha or a root-mean-square
amplitude of ha/

√
2.

The solid curves shown in Fig. 1 were calculated with the
transition rate of Eq. (13) using the corrugation function of
Eq. (14) and a corrugation height h = 0.13 which for the
Ga interatomic distance of a = 2.78 Å gives a corrugation
amplitude ha = 0.36 Å. The two other parameters necessary
for the calculations are vR and the effective surface mass MS

and these were determined from an earlier analysis of these
same data using the smooth surface model of Eq. (2) to be
vR = 600 m/s and MS = 1.65 times the mass of a single Ga
atom, or 115 amu.43 In the three panels of Fig. 1, the solid-curve
calculations are normalized to the experimental data only for
the lowest panel at the temperature 313 K, and the other
two panels show actual relative intensities. The dotted-curve
calculations, done with the uncorrugated statically flat surface
calculation, are normalized to the data in each individual panel.
This need for a difference in normalization is evident from
the comparisons of the temperature dependence shown in

FIG. 2. Temperature dependence of the most probable intensity
for Ar scattering from molten Ga at incident energy Ei = 95 kJ/mol,
and incident and final angles θi = θf = 55◦. The experimental data
are shown as open circles and the solid curve is the calculation for
a corrugated surface. The dashed curve is the result of the discrete
surface theory of Eq. (1) and the dotted curve is for the smooth
uncorrugated surface model of Eq. (2).

Fig. 2, where it is seen that the temperature dependence of
the uncorrugated theory is substantially stronger than that of
the corrugated surface theory.

Figure 2 plots the most probable intensity of each of the
spectra shown in Fig. 1 as a function of molten Ga temperature.
The experimental values are represented as circles, the dashed
curve is the 1/

√
TS behavior of the highly corrugated discrete

surface model of Eq. (1), and the dotted curve is the nearly
1/TS

3/2 behavior of the statically uncorrugated smooth surface
model of Eq. (2). The solid curve is the fit to the experimental
data using the corrugated model theory of Eq. (13) with the
corrugation function of Eq. (14) and the best-fit corrugation
height h = 0.13.

It is interesting to note that the temperature dependence
plotted in Fig. 2 exhibits a significant difference in behavior
between the results of the corrugated surface and those of
the uncorrugated surface. The corrugated surface exhibits
a much weaker decrease in maximum intensity, in fact,
relatively close to that of the highly corrugated discrete surface,
than the strong nearly 1/TS

3/2 decreasing behavior of the
uncorrugated surface. This behavior contrasts sharply with
the two calculations shown in each panel of Fig. 1 where the
shapes (but not the relative intensities) of the two different
curves are quite similar. This fact illustrates an important
point that is to be drawn from the calculations presented
here, namely, that merely comparing normalized calculations
to the presently available data, all of which are taken at or near
specular conditions which correspond to the neighborhood of
the maximum scattered intensities, is not sufficient to detect
differences in the corrugation of the interaction potential.
Instead, it is in the temperature dependence of the scattered
intensities that the surface corrugation more strongly manifests
its presence.

The ability of a relatively simple temperature-dependent
measurement to reveal the corrugation parameter is the central
problem addressed in this paper, but to make this result
more convincing, the corrugated theory must be capable of
explaining all available scattering data for the system. That
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FIG. 3. In-plane angular distributions for Ar scattering from
molten Ga with incident energy Ei = 92 kJ/mol and incident polar
angle θi = 55◦. The liquid Ga temperatures are TS = 308, 436, and
586 K as marked. Open circles are the data (Ref. 11), the solid curve is
the present calculation for a corrugated surface, and the dotted curve
is for an uncorrugated surface.

this is the case is exhibited in the following Figs. 3 and 4,
which show two independent types of angular distributions
that were measured for Ar scattering from molten Ga at the
same incident angle and nearly the same energy as in Fig. 1.

The experimental points shown as open circles in Fig. 3 are a
series of three in-plane angular distributions for Ar/Ga with an
incident energy of 92 kJ/mol (0.95 meV) and temperatures of
308, 436, and 586 K as marked. For the fixed incident angle of
55◦, what is plotted is the total intensity collected as a function
of final detector angle regardless of energy. Since these
experiments were carried out with a stagnation-type detector,
the experimental results at each angle can be compared with
the integral over all final energies of the theoretical differential
reflection coefficient, i.e., there is no detector correction that
needs to be applied. The experimental results present a single
broad peak with a supraspecular maximum intensity at a
position approximately 10◦ greater than the specular angle of
55◦. There is a sharp cutoff in intensity as the scattering angle
increases towards the grazing angle of θf = 90◦, and there
is a long subspecular tail extending well into the quadrant of
the incident beam. Two calculations are shown as in Figs. 1
and 2: the solid curve is the calculation for the corrugated
surface and the dotted curve is for the uncorrugated surface.
Both of the theoretical curves have been normalized near the
maximum in the data in each of the three panels because
these angular distribution experiments did not produce good
relative intensities for different liquid-surface temperatures. It
is evident that both sets of calculations agree reasonably with
the experiment, and exhibit relatively insignificant differences.
The most notable difference is that the corrugated surface
calculation is slightly narrower in width than the uncorrugated
calculation, a result caused by the fact that its energy-resolved
intensities tend to be somewhat larger near the region of

FIG. 4. Out-of-plane angular distributions for Ar scattering from
molten Ga at TS = 308, 436, and 586 K as marked. The incident
energy is Ei = 92 kJ/mol and the incident and final polar angles
are θi = θf = 55◦. The angle αf is measured in the direction
perpendicular to the scattering plane as explained in the text. Open
circles are the data (Ref. 12), the solid curve is the present calculation
for a corrugated surface, and the dotted curve is for an uncorrugated
surface.

maximum in the angular distribution. However, consistent with
what we have previously said, there is relatively little that
can be discerned about the difference in interaction potential
by comparing the two different calculations to the angular
distributions.

Three out-of-plane angular distributions are shown in Fig. 4,
taken for the same temperatures and incident energy as Fig. 3.
In these measurements, the incident and polar angles are fixed
at θi = θf = 55◦ and the same detector as in Fig. 3 is moved at
fixed height above the surface in the direction perpendicular to
the scattering plane. The intensity is reported as a function of
the angle αf which is the angle whose tangent is the distance of
the detector from the scattering plane divided by the vertical
height of the detector above the surface. As in Fig. 3, the
data are reported in arbitrary units so the calculations are
normalized to the data at one point for each of the three
temperatures. Both the uncorrugated and corrugated surface
calculations give a reasonable explanation of the data, but
as expected the corrugated calculation exhibits a somewhat
broader out-of-plane angular distribution than that of the
uncorrugated surface because two mechanisms rather than
one, both phonon excitation and corrugation, are present in
these calculations. However, once again the small difference
between the two calculations and the fact that both compare
well with the data illustrates the fact that, at least over the range
of the present measurements, comparing only the shape of the
broad single-peaked curves to model calculations does not
provide an easy way to distinguish features of the interaction
potential.

To complete the description of the scattering of 1-eV
Ar from molten Ga, we discuss here the origins of the
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FIG. 5. Energy-resolved spectra of Ar scattering from molten Ga
at Ei = 95 meV, TS = 483 K, and θi = θf = 55◦ including double-
scattering contributions. The solid curve is the present calculation
for a corrugated surface, the dotted curve shows the single-scattering
contributions, and the dashed curve is the contribution from double-
scattering events.

prominent shoulder feature that appears in all the experimental
energy-resolved spectra of Fig. 1. Figure 5 shows the same
experimental data as in the middle panel of Fig. 1 for a molten
Ga temperature of 483 K. Three calculated curves appear in
this figure. The dotted curve is the single-scattering result
of the corrugated model, the same as in Fig. 1. The dashed
curve is the contribution from double collisions arising from
a ring of six Ga atoms in the surface plane surrounding the
original Ga atom at the average interparticle spacing, but with
an average over azimuthal orientation angles of the six-atom
ring in the surface plane.43 Both the single scattering and
the single plus double scattering, shown as the solid curve,
explain the shape of the large peak nearly equally well, but the
double-scattering contribution shows that the shoulder feature
at very low energy comes primarily from double collisions.
The dominant trajectories that contribute to the shoulder are
those in which the Ar initially scatters backwards from a
first collision with a Ga atom and then is scattered again in
the forward direction in the scattering plane by a second Ga
atom located on the surface in the region behind the first one.
Both of these two collisions have a large scattering angle,
each of which results in large energy loss, and the sum of
these energy losses is what causes the relatively large-intensity
shoulder at very low energies. However, it is interesting to
note that the temperature dependence of the most probable
intensity, as shown in Fig. 2, is not strongly affected by
the double-scattering contribution and the same value for the
corrugation amplitude h is obtained using either the single- or
single-plus-double-scattering calculation.

For the same Ar and molten Ga system, additional
temperature-dependent data have been published for an in-
cident Ar energy of 42 kJ/mol (435 meV). Figure 6 shows the
most probable intensity as a function of temperature ranging
from just above 300 to more than 460 K, the incident and final
angles are both 55◦, and the designations of the calculated
curves are the same as in Fig. 2. At this incident energy,
the corrugated surface calculation, shown as the solid curve,
explains the data quite well with a corrugation parameter
h = 0.07. When combined with the interparticle spacing of
2.78 Å for liquid Ga, this value of h implies a height amplitude

FIG. 6. Temperature dependence of the most probable intensity
for a 42 kJ/mol incident beam of Ar scattering from molten Ga with
θi = θf = 55◦. The data points are from Nathanson et al. (Ref. 11)
and the calculations are designated similarly to those of Fig. 2.

of 0.2 Å for the top of a Ga atom above the average surface level
as sensed by the incoming Ar. This is considerably smaller
than the corresponding value of 0.36 Å obtained from Fig. 2
for 95 kJ/mol Ar. It is expected that the corrugation of a soft
amorphous metal surface would increase with the energy of
the projectile due to larger penetration of the projectile into
the relatively soft electron cloud of the surface.

The remaining system for which temperature dependence
can be used to extract the corrugation amplitude is Ar scattering
from molten In, and this system has been discussed in an
earlier paper24 so we only briefly discuss the results of our
calculations here. The experimental data for energy-resolved
experiments were for an incident energy of 42 kJ/mol with
the detector set at the specular position θf = θi = 55◦. Both
in-plane and out-of-plane angular distributions were measured
for the same incident energy and angle. Again, as for the case of
Ar/Ga, the corrugated and uncorrugated surface calculations
are quite similar and both appear to explain the measured
data11,12 quite well. For these calculations, the effective surface
mass was taken to be the same as the mass of a single In
atom and the parameter vR is set to 450 m/s, the same as
the values previously obtained from an analysis of these data
using the uncorrugated model of Eq. (2).43 The temperature
dependence of the energy-resolved spectra was measured over
a range from 436 to 520 K,11 and the dependence of the most
probable intensity was well matched by our calculations using
the corrugation of Eq. (14) with the corrugation amplitude
h = 0.29. For the In liquid interatomic distance of a = 3.14 Å,
this gives a corrugation amplitude for a typical atom at the
liquid surface of ha = 0.91 Å.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have developed a theory, based on
semiclassical quantum mechanics in the eikonal approxi-
mation, that can treat energy transfer with the surface via
phonon excitation. For elastic scattering, including diffraction,
it reduces to the eikonal theory of Spadacini et al.21 but
with the additional feature that it includes a Debye-Waller
factor. For single-quantum excitation processes it produces
straightforward expressions for describing the intensity spectra
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for single-phonon creation or annihilation as developed in the
Appendix. The theory can be extended to the classical limit
of multiphonon transfer, essentially giving an interesting and
useful example of the Bohr correspondence principle of large
quantum numbers. This limit is an extension of the classical
atom-surface scattering theory of Brako and Newns28 to the
case of corrugated surfaces, in which the corrugation may be
either ordered as for crystalline surfaces or disordered and
amorphous as is the case for liquids.

The theory presented here, due to the fact that it is
developed within the framework of the semiclassical eikonal
approximation, is strictly valid only in the weak corrugation
limit. As the corrugation is made weaker, it goes to the flat
surface case first considered by Brako and Newns as presented
in Eq. (2). However, the development also illustrates how
the extreme large-corrugation-amplitude case of a surface of
isolated scattering centers, as shown in Eq. (1), can be obtained
when the corrugation is initially taken to be very strong. Thus,
this theory is intended to be a useful model for predicting
the response to experimentally controllable parameters of gas-
surface interaction systems in the classical regime, examples of
experimentally controllable parameters being the temperature,
incident energy, incident or final scattering angles, the effective
mass of the surface, and even projectile atomic species.

The primary interest of the present theoretical developments
is the result for scattering from corrugated surfaces in the
classical mechanical regime, although interesting quantum
mechanical results are presented in the Appendix. This
appendix includes useful results for elastic diffraction and for
single-phonon inelastic scattering, as well as an indication of
how the double-phonon and higher orders of coherent quantum
scattering can be developed. These quantum expressions
illustrate that quantum spectra from ordered surfaces contain
relatively sharp peaks for elastic scattering, particularly for
diffraction, and for single quantum excitation of surface-
specific phonons such as the Rayleigh mode.

In contrast to the quantum case, the classical limit is
distinguished by the Debye-Waller factor becoming vanish-
ingly small, for example, at high incident energies, large
projectile masses, or large temperatures. In the classical limit,
all uniquely quantum features such as diffraction peaks or
single-phonon peaks disappear, and what is left behind is a
much broader multiquantum background. It should be noted
that the classical limit is actually the limit of quantum deco-
herence due to large quantum numbers of phonon excitations.
Thus, this quantum decoherence can occur even under some
special circumstances in which the scattering conditions are
still quantum mechanical, in the sense that the de Broglie
wavelength of the projectile can be large. An example of
such a possible situation would be scattering of low-mass
atoms at very low incident energies, but with the surface at
high temperature which would lead to high probability of
multiphonon excitations.

It is clear that scattering spectra observed under classical
multiphonon conditions will be capable of providing much less
information about the interaction potentials as compared with
measurements done under quantum mechanical conditions.
Compared to quantum mechanical spectra, which can contain
sharp diffraction and single-phonon inelastic peaks, the rather
broad and relatively featureless peaks observed in the classical

regime will give less detailed information on the interaction
process. Nevertheless, scattering experiments under classical
conditions can still provide important information about
the interaction potential and the dynamics of the collision
process. Examples are the determination of collective effects
as evidenced by effective masses of the surface being different
from that of single-surface atoms, evidence for multiple
collisions such as the double-backscattering peak evident in
Fig. 5, obtaining corrugation shapes from rainbow features, or
determining the corrugation amplitude as emphasized here.

Although information about the corrugation of the surface
could be obtained by comparing this theory to experiments, and
particularly those done under conditions that exhibit classical
rainbow behavior, we have shown here that the corrugation
amplitude is readily extracted upon examination of the temper-
ature dependence of the most probable amplitudes of energy-
resolved atom-surface scattering spectra. By examining data
for the scattering of supersonic beams of Ar from molten metal
surfaces, we determine that the corrugation amplitude of the
interaction potential for liquid Ga is approximately 10% of the
interatomic spacing, and for liquid In the amplitude is about
30% of the interatomic distance.

Although we have demonstrated that the temperature
dependence of energy-resolved scattering spectra measured in
the classical regime is sensitive to the corrugation amplitude,
the same can not be said about the shape of the spectra.
Comparisons between the present theory with corrugation
and previous calculations for a flat surface, such as exhibited
in Fig. 3 as well as in the corresponding calculations for
In,24 show that the relative shape of the energy-resolved
spectra calculated with or without corrugation are quite similar.
For otherwise fixed experimental parameters such as energy
and initial and final angles, the corrugation makes a much
greater effect on the temperature dependence. The similarity
of the corrugated and uncorrugated calculations illustrates
a difficulty of trying to obtain a complete picture of the
interaction potential using measurements carried out in the
classical regime, especially when limited to a small range
of incident energies and scattering angles. This is also a
good illustration of the fact that there is typically much less
information that can be obtained from experiments done in
the classical domain, relative to those done in the quantum
mechanical regime. It appears that in order to obtain useful
and detailed information on the interaction potentials from
measurements executed only in the classical domain, it will
be necessary to carry out experiments over very large ranges
of incident and final angles as well as large ranges of incident
energies.

An important question in the field of atom-surface scat-
tering can be addressed based on the results of calculations
presented here and this is the question of the relative impor-
tance of the two mechanisms, corrugation or inelastic transfers
to phonons, in forming the widths of measured angular
distributions in scattering experiments using monoenergetic
and angularly well-defined incident beams. Two differing
theoretical approaches seem to indicate that either corrugation
or phonons can cause the rather large angular widths over
which well-defined incident molecular beams can scatter from
surfaces under classical conditions. The washboard model
of Tully44 is extensively used to interpret experimental data
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and often gives good comparisons with experiments for the
angular spread of the angular distributions in spite of the fact
that it does not include a mechanism for energy transfer with
the surface. However, theories that include energy transfer
involving large numbers of excited phonons, such as those
based on the Brako-Newns approach embodied in Eq. (2), also
explain many experimental measurements rather well.43,45 The
work presented here indicates that both static corrugations
as well as energy and momentum transfer through phonons
can contribute equally to similar angular spreads in measured
angular distributions. As mentioned above, this work appears
to indicate that in order to separate and define the importance
of the two contributions of corrugation and phonons, it will
require extensive comparisons of experimental measurements
over large ranges of angles and energies.

APPENDIX: QUANTUM MECHANICAL LIMITS

Although the main results of this paper, and all comparisons
with experiments, are for scattering in the classical limit,
the central expression from which the classical results are
derived, i.e., Eq. (10), is fully quantum mechanical within
the semiclassical approximation. It is of interest to present
the quantum results obtained from Eq. (10) for elastic and
single-phonon inelastic transfer. The classical results were ob-
tained by evaluating the correlation function 2W(p; R,R′,t) of
Eq. (9) in the classical limit where its important contributions
come from small times and spatial separations, as shown in
Eq. (12). In the quantum limit, the contributions from the
correlation function extend to larger times and separations,
and a development in terms of ordered numbers of phonons
transferred in the collision is obtained by expanding the
exponential in the transition rate of Eq. (10) as

exp{2W(p; R,R′,t)} = 1 + 2W(p; R,R′,t)
+ 2W2(p; R,R′,t) + . . . . (A1)

The constant term in the expansion leads to elastic scattering,
the first-order term gives contributions due to single-phonon
excitation, the second-order term gives double-phonon trans-
fers, etc.

1. Elastic scattering

The elastic scattering contribution comes from retaining
only the leading term in Eq. (A1) in which case the transition
rate of Eq. (10) becomes

w(pf ,pi) = 2π

h̄
|Tfi|2e−2W (p)δ(Ef − Ei), (A2)

where the transition matrix Tfi is identical with that of the
elastic eikonal approximation of Eq. (6). For scattering from
an arbitrary surface, this is consistent with the result obtained
in Ref. 21 except that it now contains the addition of the
Debye-Waller factor which gives the attenuation of the elastic
signal due to inelastic scattering.

In the case in which the scattering is from an ordered,
periodic surface, the only scattering is into the diffraction
peaks appearing at the positions denoted by the conditions
of conservation of energy Ef = Ei and parallel momentum
transfer given by a wave vector equal to a surface reciprocal

vector G according to K = (Pf − Pi)/h̄ = G:

w(0)(pf ,pi) = 2π

h̄

∑
G

|TG,i |2e−2W (p)

× δ(Kf − Ki − G)δ(Ef − Ei). (A3)

The transition matrix of Eq. (6) is evaluated over a single unit
cell (u.c.) of surface area Su.c. and is given by

TG,i = −h̄pf z

mL

1

Su.c.

∫
u.c.

dR e−iG·Re−i�kG,zξ (R), (A4)

where the value of the perpendicular wave vector transfer
�kG,z is fixed for each diffraction peak G by the conservation
of energy and parallel momentum.21

2. Single-phonon inelastic scattering

The transition rate for single quantum excitation is obtained
from Eq. (10) by retaining only the first-order term in the
expansion of the correlation function of Eq. (A1). This
leads to

w(pf ,pi)

= 1

h̄2

(
h̄2kf z

mL

)2 ∫ +∞

−∞
dt ei(Ei−Ef )t/h̄ 1

L4

∫
dR

∫
dR′

× e−iK·(R−R′)e−i�kz[ξ (R)−ξ (R′)]

× e−2W (p)〈k · u(R,t)k · u(R′,0)〉 (A5)

with k = p/h̄. The above is as far as one can go without
additional knowledge about the nature of the vibrations of the
surface. An interesting case, and the one most often used, is that
of a periodic crystalline surface. Assuming a Bravais lattice
with only a single atom per unit cell denoted by its lattice site
number l, the displacement correlation function becomes very
similar to the form used in neutron or x-ray scattering:46

〈k · ul′k · ul〉

=
3∑

α,α′=1

kαkα′
∑
Q,ν

h̄

2NMSων(Q)
eα(Q,ν)e∗

α′ (Q,ν)eiQ·(Rl−Rl′ )

×({2n[ων(Q)] + 1} cos[ων(Q)] − i sin[ων(Q)]), (A6)

where ων(Q) is the frequency of a surface phonon of parallel
wave vector Q and other quantum numbers ν, the Bose-
Einstein function is

n[ων(Q)] = 1

e
h̄ων (Q)
kB TS − 1

, (A7)

and eα(Q,ν) is the phonon polarization vector in the Cartesian
direction denoted by α. Parallel wave vectors are treated in the
extended zone scheme.

The transition rate for single-phonon transfer is con-
veniently written in terms of the surface phonon spectral
density, essentially the Fourier transform of the displacement
correlation function evaluated at zero temperature, which is
defined by

ρα,α′ (K,ω) =
∑

ν

h̄

2Su.c.MSων(K)

× eα(K,ν)e∗
α′ (K,ν)δ[ω − ων(K)]. (A8)
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In terms of the phonon spectral density, the transition rate for
single-phonon transfer becomes

w(1)(kf ,ki)

= 2πSu.c.

h̄

3∑
α,α′=1

kαkα′ |Tfi|2e−2W (k)

×{ρα,α′ (−K, − ω)[n(ω) + 1] + ρα,α′ (K,ω)n(ω)}.
(A9)

The term in proportion to [n(ω) + 1] describes phonon creation
and the term in n(ω) is for phonon annihilation.

Within the eikonal approximation that we have used in this
paper, the transition matrix has a form that appears similar to

Eq. (6), but with the final momenta taking on a new meaning:

Tfi = −h̄2kf z

mL

1

Su.c.

∫
u.c.

dR e−iK·Re−i�kzξ (R), (A10)

where k = {K,�kz} = (pf − pi)/h̄ with the final momentum
pf defined by including the energy and momentum transferred
to the phonon that is created or annihilated, i.e., via the
energy conservation law which is Ef − Ei = h̄ω and the
momentum conservation law which applies only to the parallel
direction and is given by Pf − Pi = h̄K. Thus, in the eikonal
approximation, the transition matrix for inelastic scattering
is the matrix element of the elastic potential operator, but
extended off the elastic energy shell, i.e., the matrix element
is taken with respect to eigenstates corresponding to the initial
and final momenta of the inelastic scattering states.
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