
PHYSICAL REVIEW B 89, 045402 (2014)

Two-electron state from the Floquet scattering matrix perspective
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Two single-particle sources coupled in series to a chiral electronic waveguide can serve as a probabilistic
source of two-particle excitations with tunable properties. The second-order correlation function, characterizing
the state of emitted electrons in space-time, is expressed in terms of the Floquet scattering matrix of a source. It
is shown that the Fourier transform of the correlation function, characterizing the emitted state in energy space,
can be accessed with the help of an energy resolved shot-noise measurement. The two-electron state emitted
adiabatically is discussed in detail. In particular, the two-electron wave function is represented via two different
sets of single-particle wave functions accessible experimentally.
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I. INTRODUCTION

The realization of a high-speed on-demand single-electron
source [1–3] has marked the birth of a new field focused
on operations with electron wave packets containing one to
few particles propagating in a ballistic conductor. Inspired
by quantum optics the several experiments demonstrating
a single-particle nature of emitted electron wave packets
were reported [4–6]. The dynamical switching into different
paths of individual electrons propagating ballistically was
reported in Ref. [7]. Provided the single-electron source is
available, the engineering of few-electron states becomes
possible. Controlled emission of few electron wave packets
in mesoscopic conductor was already realized experimentally
in Refs. [1,8–12] using a dynamic quantum dot and in Ref. [3]
using a voltage pulse with quantized flux as suggested in
Refs. [13,14].

The aim of this paper is to analyze a dynamical two-electron
source composed of two periodically driven single-particle
emitters attached to a chiral electronic waveguide, see Fig. 1,
as suggested in Ref. [15]. The advantage of such a two-particle
emitter is the possibility to vary the times when single electrons
are emitted by individual sources and, therefore, continuously
switch from the single-electron emission to emission of a
pair of electrons. The closely related source, addressed in
Refs. [3,13,14,16–24], would utilize quantized Lorentzian
voltage pulses with variable center position.

In order to characterize the emitted two-particle state I
extend the approach of Ref. [25] and introduce the second-
order correlation function for emitted electrons. Within the
scattering matrix formalism for noninteracting electrons [26],
which describes well the single-particle source of Ref. [2], see
Ref. [27], as well as the one used in Ref. [3], see Ref. [24], the
source of electrons is described by the corresponding Floquet
scattering matrix. I express the second-order correlation
function in terms of the Floquet scattering matrix of the source
and isolate the contribution due to emitted particles. This
contribution can be represented as the Slater determinant com-
posed of the first-order correlation functions, as it should be for
noninteracting fermions [28], that justifies the decomposition
into emitted electrons and electrons of the underlying Fermi
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FIG. 1. (Color online) Two single-electron emitters SL and SR

attached to the same chiral electronic waveguide serve as a two-
electron source if they emit electrons at close times. The arrow shows
the direction of movement of electrons.

sea we use. This procedure can be readily extended to describe
an n-particle emitter and n-electron states. A closely related
approach to the first-order correlation function (single-electron
coherence) is developed in Refs. [29,30] and applied to the
analysis of n-electron Lorentzian pulses in Ref. [31]. A Wigner
function representation of the first-order electronic coherence
is discussed in Ref. [32].

The correlation function fully characterizes an emitted
state. However, presently it is a challenge to access experi-
mentally a correlation function on a single-electron level. On
the other hand the first steps in this direction are already
done. A time-resolved current profile on a single-electron
level [2,33] and a single-electron wave-packet probability
profile [3,7] were reported. This inspires hope that the full
quantum characterization of an emitted single- to few-electron
state, like it is done for single photons in optics [34,35], is
coming soon.

Another interesting object to look at is the energy dis-
tribution function, which is easier to access experimentally.
The nonequilibrium single-particle distribution function was
already measured in Refs. [36–38] via the energy resolved dc
current and in Refs. [3,39] via the low-frequency shot-noise
spectroscopy. In this paper we discuss how to measure a
two-particle distribution function via the energy resolved shot
noise.

Though the distribution function provides only partial
information on the emitted two-particle state, nevertheless,
it already demonstrates an essential feature of the state of
two fermions propagating together, namely, an increase of
the energy compared to the case when they propagate sepa-
rately [3,24,40,41]. We demonstrate this explicitly analyzing
the evolution of the state emitted adiabatically. We calculate
a two-particle wave function and show that with decreasing
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the time difference between the emission of two electrons it
evolves from the product of single-electron wave functions to
the Slater determinant composed of them. The single-electron
wave functions in turn evolve from the bare ones emitted by the
single-electron sources to the mutually orthogonal functions.
The result of orthogonalization can be interpreted as if one bare
single-electron wave function remains unchanged while the
other one is adapted accordingly. Depending on which of two
wave functions is kept unchanged, there are two bases for the
representation of a two-electron wave function. Interestingly,
performing measurements on the system with either one or
two single-particle sources being switched on, one can access
all four single-particle wave functions mentioned above.

The paper is organized as follows: In Sec. II the second-
order correlation function for emitted particles is calculated in
terms of the Floquet scattering matrix of a periodically driven
electron source. In Sec. II C we discuss how the Fourier trans-
form of a correlation function, the energy distribution function,
can be accessed via current cross-correlation measurement. In
Sec. III the two-electron state emitted adiabatically is analyzed
in detail. A short conclusion is in Sec. IV. Some details of
calculations are given in the Appendixes.

II. GENERAL FORMALISM

A. Second-order correlation function for emitted particles

For a start let us define the second-order electronic
correlation function, in full analogy with how it is defined
in optics [42],

G(2) (1,2,3,4) = 〈�̂†(1)�̂†(2)�̂(3)�̂(4)〉, (1)

where �̂(j ) ≡ �̂
(
xj tj

)
is a single-particle electron field

operator in second quantization evaluated at point xj and time
tj , j = 1,2,3,4. The quantum-statistical average 〈. . . 〉 is taken
over the equilibrium state of electrons incoming to the source.
To access information about emitted particles let us evaluate
G(2) behind the source, where the field operator in second
quantization for chiral electrons reads [43]

�̂
(
xj tj

) =
∫

dE√
hv(E)

eiφj (E)b̂ (E) . (2)

Here 1/[hv(E)] is a one-dimensional density of states at energy
E, b̂(E) is an operator for electrons passed by (scattered off)
the source, and the phase φj (E) = −Etj/� + k(E)xj .

The electronic source driven periodically with frequency �

is characterized by the Floquet scattering matrix with elements
SF (En,E), En = E + n��, being amplitudes for an electron
with energy E to exchange n energy quanta �� with the
scatterer. In such a case we can write [44]

b̂(E) =
∑

n

SF (E,En) â (En) , (3)

where â(E) is an operator for equilibrium electrons incoming
to the scatterer. We suppose that incoming electrons are
emanated by the equilibrium reservoir characterized by the
Fermi distribution function f0(E) with temperature T0 and
the chemical potential μ. A quantum statistical average over
the equilibrium state of incoming electrons for the product of

two operators is calculated as follows:

〈â†(E)â(E′)〉 = f0(E)δ
(
E − E′) . (4)

The average of the product of more than two operators is
calculated using the well-known Wick’s theorem.

Using the quantities introduced above one can represent
the correlation function G(2) in terms of the Floquet scattering
matrix of the source,

G(2) (1,2,3,4)

= 1

2

∑
n,m,p,q

∫∫
dEdE′f0 (En) f0

(
E′

m

)
h2v(E)v(E′)

× S∗
F (E,En) S∗

F

(
E′,E′

m

)
SF

(
Ep,En

)
SF

(
E′

q,E
′
m

)
× det

(
eiφ1(E) eiφ2(E)

eiφ1(E′) eiφ2(E′)

)∗
det

(
eiφ4(Ep) eiφ3(Ep)

eiφ4(E′
q ) eiφ3(E′

q )

)
.

(5)

In the equation above I use a wide band approximation and
neglect the variation of the density of states on the scale of ��:
1/[hv (En)] ≈ 1/[hv(E)]. The structure of Eq. (5) tells us that
the correlation function G(2) is composed of elementary two-
particle propagators describing the transfer of two electrons to
points 4 and 3 from points 1 and 2. The action of the driven
scatterer is to change energies of electrons, En and E′

m, as at
destination points (to energies Ep ,E′

q) and as at initial points
(to energies E ,E′). The Fermi functions f0 (En) and f0

(
E′

m

)
describe whether the states with original energies En and E′

m

are occupied. To understand the content of G(2) even better let
us use the following identity:

f0(En)f0(E′
m) = f0(E)f0(E′) + f0(E)[f0(E′

m) − f0(E′)]

+ [f0(En) − f0(E)]f0(E′)

+ [f0(En) − f0(E)][f0(E′
m) − f0(E′)]. (6)

Four terms on the right-hand side (RHS) of Eq. (6) results
in four terms in G(2), Eq. (5). The first term, f0(E)f0

(
E′),

results in the second-order correlation function for the Fermi
sea incoming from the reservoir unperturbed by the driven
scatterer. This is so, since the Floquet matrix elements drop
out from the corresponding equation in force of the unitarity
condition [44],∑

n

S∗
F (E,En)SF (Ep,En) = δp,0. (7)

The next two terms result in contributions dependent only
on two Floquet scattering elements and, therefore, can be
interpreted as describing correlations between one unperturbed
electron of the Fermi sea and one excited electron. And finally
the last term on the RHS of Eq. (6) describes correlations
between two excited electrons. This last contribution is of our
interest here and we denote it as G(2). Therefore, the quantity
G(2) is referred to as the second-order correlation function
for emitted particles. As expected it can be represented as the
determinant,

G(2) (1,2,3,4) = det

(
G(1)(1,4) G(1)(1,3)
G(1)(2,4) G(1)(2,3)

)
, (8)
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composed of the first-order correlation functions for emitted
particles [25],

G(1)(j,j ′) =
∞∑

n,m=−∞

∫
dE{f0(En) − f0(E)}

hv(E)

× S∗
F (E,En)SF (Em,En)e−iφj (E)eiφj ′ (Em). (9)

The fact that G(2) is expressed in terms of G(1) is a mere
consequence of the well-known Wick theorem. Note that G(1)

is the first-order correlation function for the combined emitter.
It has no simple relation to the states emitted by the single-
particle sources working independently.

B. Distribution functions for emitted particles

To characterize the state of emitted particles in the energy
space it is convenient to introduce distribution functions.

1. Single-particle distribution function

The single-particle distribution function for emitted parti-
cles is defined as follows:

f (E)δ(E − E′) = 〈b̂†(E)b̂(E′)〉|E′=E − 〈â†(E)â(E′)〉. (10)

It is a probability (density) that one can detect one particle in
the state with energy E. According to Eq. (2) such a state is a
plane-wave state. In terms of the Floquet scattering matrix of
the source the single-particle distribution function reads [44]

f (E) =
∞∑

n=−∞
|SF (E,En)|2{f0(En) − f0(E)}. (11)

The difference of the Fermi functions, entering the equation
above, emphasizes that what is calculated is related to
excitations, not to the Fermi sea.

It is easy to see that f (E) can also be calculated as the
Fourier transform of the first-order correlation function for
emitted particles G(1)(j,j ′), Eq. (9), taken at xj = xj ′ ≡ x;
see also Ref. [31]. Note that G(1) is periodic in tj ′ when
the difference tj − tj ′ is kept constant. Therefore, performing
a continuous Fourier transformation with respect to τjj ′ =
tj − tj ′ and afterwards averaging over period T = 2π/� the
resulting function of tj ′ we obtain the desired relation

G(1)(E) =
∫ T

0

dtj ′

T

∫ ∞

−∞
dτjj ′e−i(E/�)τjj ′ G(1)(tj x,tj ′x)

= f (E)

v (E)
. (12)

2. Two-particle distribution function

One can derive a similar equation relating the two-particle
distribution function for emitted particles f (E,E′) and the
Fourier transform of the second-order correlation function
G(2). In the relevant for the present paper case, when E′ − E =
���, (� is an integer), the distribution function reads (for

details, see Appendix A)

f (E,E�) = f (E)f (E�) + δf (E,E�),

δf (E,E�) = (−1)

∣∣∣∣
∞∑

n=−∞
{f0(En) − f0(E)} (13)

× S∗
F (E,En)SF (E�,En)

∣∣∣∣
2

.

The quantity f (E,E�) admits an interpretation as a joint
detection probability to find one electron in the state with
energy E and the other electron in the state with energy
E� = E + ���. For � = 0 we find f (E,E) = 0. That is a
consequence of the Pauli exclusion principle, according to
which two electrons (fermions) cannot be in the same state,
i.e., cannot have the same energy in our case. This feature
becomes manifest if the distribution function is rewritten in
terms of determinants,

f (E,E�)

= 1

2

∞∑
n=−∞

∞∑
m=−∞

{f0(En) − f0(E)}{f0(Em) − f0(E)}

×
∣∣∣∣det

(
SF (E,En) SF (E,Em)
SF (E�,En) SF (E�,Em)

)∣∣∣∣
2

. (14)

The equation above is valid for arbitrary periodic driving.
A similar equation but valid for adiabatic driving only was
derived in Ref. [45].

C. How to measure distribution functions for emitted particles

The single-particle distribution function, as it was demon-
strated experimentally [36–38], is related to the dc current
through an energy filter, a quantum dot with a single conduct-
ing resonant level. By analogy the two-particle distribution
function can be accessed via the correlator of currents through
two energy filters.

The cartoon of a possible quantum coherent electronic
circuit is shown in Fig. 2. The two-particle source, composed of
two single-electron sources SL and SR , emits electrons in pairs
(possibly electrons and holes). All the metallic contacts 1–6
have the same potentials and the same temperatures. Electrons

FIG. 2. (Color online) Measurement of a two-particle energy
distribution function. 1–6 are metallic contacts. Blue lines with arrows
are electronic chiral waveguides. Single-electron emitters SL and SR

comprise a two-particle emitter. The quantum dots with active levels
E1 and E2 serve as energy filters.
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in contacts are in equilibrium and are characterized by the same
Fermi distribution function f0(E). Blue solid straight lines
are chiral electronic waveguides connecting metallic contacts.
Such a waveguide can be, for instance, the edge state in the
quantum Hall regime. The currents at contacts 4 and 6 and
their correlation function are of our interest.

The dynamical periodic source is characterized by the
Floquet scattering amplitudes SF (En,E), En = E + n��,
where n is an integer, and � = 2π/T with T the period of
a drive. Two energy filters κ = 1,2, quantum dots, having one
resonant level, Eκ , each are attached to the central waveguide.
The emitted electrons can escape to the contact β = 4,6 if they
pass through the filter κ = 1,2, respectively.

To calculate the current, Iβ , flowing to the contact β = 4,6,
let us start from the current operator in second quantiza-
tion [43],

Îβ(t) = e

h

∫∫
dEdE′eit(E−E′)/h

×{b̂†β(E)b̂β(E′) − â
†
β(E)âβ(E′)}. (15)

In the equation above the first term in curly brackets describes
particles entering the contact β while the second term describes
particles leaving the contact β. The path for the latter particles
is not shown in Fig. 2.

In the scattering matrix formalism the operators b̂β for
particles leaving the circuit to the contact β are expressed in
terms of operators âγ for particles entering the circuit from the
contact γ . For a dynamical circuit these operators are related
via the Floquet scattering matrix of the circuit, Scir

F [44]:

b̂β(E) =
∑

γ

∞∑
n=−∞

Scir
F,βγ (E,En) âγ (En), (16)

where γ counts all the contacts where electrons can enter the
circuit. For the circuit shown in Fig. 2, γ = 1,3,5. The Floquet
scattering matrix elements, Scir

F,βγ (E,En), relevant for us here,
are listed in Appendix B.

1. dc current

The dc current flowing into the contact β = 4,6 is calculated
as a quantum statistical average over the (equilibrium) state of
electrons incoming to the circuit,

Iβ =
∫ T

0

dt

T 〈Îβ(t)〉. (17)

We use Eqs. (4), (15), and (16) and find

Iβ = e

h

∫
dEFβ(E)

∞∑
n=−∞

|SF (E,En)|2{f0(En) − f0(E)},

(18)

where F4(E) = T1(E) and F6(E) = R1(E)T2(E) with Tκ =
|tκ |2, κ = 1,2 and R1 = 1 − T1; tκ /rκ is the transmis-
sion/reflection amplitude of the energy filter κ = 1,2. While
deriving the equation above I used the relation tκ rκ = −t∗κ r∗

κ ,
which follows from the unitarity of the scattering matrices
describing the energy filters. Comparing Eqs. (18) and (11)

one can relate the dc current and the distribution function for
emitted particles [46],

Iβ = e

h

∫
dEFβ(E)f (E). (19)

This yields the known possibility of measuring distribution
function with quantum dots as energy filters.

2. Zero-frequency noise

The zero-frequency cross-correlation function P46 for
currents flowing into contacts 4 and 6 reads [47]

P46 =
∫ T

0

dt

T

∫
dt ′

〈δÎ4(t)δÎ6(t + t ′) + δÎ6(t + t ′)δÎ4(t)〉
2

.

(20)

Here δÎβ = Îβ − 〈Îβ〉 is an operator of current fluctuations.
After some calculations, see Appendix C, we find

P46 = e2

h

∫
dET1(E)

∞∑
p=−∞

R1(Ep)T2(Ep)δf (E,Ep). (21)

The two Eqs. (19) and (21) allow us to reconstruct the
two-particle distribution function, f (E,E′) = f (E)f (E′) +
δf (E,E′), from all-electric measurements. To illustrate it let us
consider ideal energy filters with Tκ (E) = γ 2/([E − Eκ ]2 +
γ 2). The width of the resonance γ is assumed to be large
compared to the energy quantum �� but small compared to
the energy scale over which the Floquet scattering matrix
changes [46]. The latter requirement is essential to keep f

in Eq. (19) and δf in Eq. (21) at the resonant energies only.
The former requirement allows us to simplify calculations and
to replace

∑
n → ∫

dωn/(��) with ωn = n�� and whenever
necessary the Kronecker δ is replaced by the Dirac δ, δnm →
��δ (ωn − ωm).

After simple calculations one can find I4 = eC1f (E1)/T ,
I6 = eC2f (E2)/T , and P46 = e2C1C2δf (E1,E2), where
C1 = πγ/(��) and C2 = C1(x2 + 2)/(x2 + 4) with x =
(E1 − E2)/γ . Combining these equations together we finally
arrive at the following relation:

f (E1,E2) = T 2

e2C1C2

{
I4(E1)I6(E2) + P46(E1,E2)

T

}
. (22)

The equation above is derived in the case of a dynamical
emission of electrons if all the contacts are grounded. In the
stationary case but with biased contacts the analogous relation
is used in mesoscopics; see, e.g., Refs. [48] and [49].

Equation (22) is calculated within a noninteracting theory.
The Coulomb interaction, generally important for quantum
dots serving as energy filters, can be screened by the top gates
by analogy with how it is done in Ref. [2].

III. ADIABATIC EMISSION

As an example, showing how the general formalism
developed above can be used to analyze the emitted state, here
I consider in detail the case when particles are emitted adia-
batically into an electronic chiral waveguide. Such emission
can be realized, for example, with the help of a slow driven
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mesoscopic capacitor [50,51], such as the one used in Ref. [2],
or using Lorentzian voltage pulses such as in Ref. [3]. In the
former case the source emits a stream of alternating electrons
and holes, while in the latter case an electron stream is emitted.
The quantities related to adiabatic regime will be marked by
the subscript “ad.”

I present results for the low-temperature limit,

kBT0 � ��0. (23)

The generalization to finite temperatures is rather straightfor-
ward.

A. Wave functions

1. First-order correlation function and two single-particle bases

We calculate G(1), Eq. (9), for the source emitting particles
(electrons or electrons and holes) adiabatically and denote
it as G

(1)
ad . The adiabatic regime implies that the scattering

amplitudes can be kept almost constant over the energy
interval of order �� [44]. This allows us, first, to linearize the
dispersion relation, for instance, k (En) ≈ k(E) + n�/v(E).
And, second, to calculate the Floquet scattering amplitude as
the corresponding Fourier coefficient,

SF (En,E) = Sn(E) ≡
∫ T

0

dt

T S(t,E) ein�t , (24)

of the frozen scattering amplitude S(t,E), which is the
stationary scattering amplitude parametrically dependent on
time. For low temperatures, kBT0 � ��, let us make in Eq. (9)
the following substitution: f0 (En) − f0(E) ≈ δ (E − μ) n��,
and get [52]

G
(1)
ad (j,j ′) = ie−i[φj (μ)−φj ′ (μ)]

2πvμ

1 − S∗(τj )S(τj ′ )

τj − τj ′
. (25)

Here I introduced a reduced time τj = tj − xj/vμ, denote
vμ ≡ v(μ), and omit the energy argument, S(τ ) ≡ S (τ,μ).

Here we are interested in the regime when the source emits
wave packets comprising two particles. For definiteness we
consider a source composed of two capacitors, SL and SR ,
attached in series to the same chiral electronic waveguide,
see Fig. 1, and emitting particles at close times, t−L and t−R ,
respectively. To be precise, let us concentrate on a two-electron
emission. A two-hole emission can be analyzed in the same
way. An electron-hole pair emission in the adiabatic regime
is trivial [17] and we do not address it here. In particular, in
the case of two identical capacitors there is the reabsorption
effect [15,41]: an electron (a hole) emitted by the first capacitor
is reabsorbed by the second capacitor attempting to emit a hole
(an electron) at the same time. As a consequence nothing is
emitted. In contrast, in the nonadiabatic regime an electron-
hole pair is emitted [41]. The closely related case of n-particle
Lorentzian wave packets is discussed in detail in Refs. [24,31].

In the adiabatic regime the scattering amplitude of the
entire source is the product of scattering amplitudes of its
constituents, capacitors, S(τ ) = SL(τ )SR(τ ). Close to the time
of emission of an electron, t−α , the scattering amplitude
of the capacitor α can be represented in the Breit-Wigner

form [18,53],

Sα(τ ) = τ − τ−
α + i�α

τ − τ−
α − i�α

. (26)

Here τ−
α = t−α − xα/vμ is the reduced emission time with

xα the coordinate of the source α; �α � T is the half
width of the density profile [53] and, correspondingly, the
coherence time [25,52] of the single-electron state emitted
by the capacitor α = L,R. The equation above is given for a
single period, 0 < τ < T . To other times it should be extended
periodically, Sα(τ ) = Sα(τ + T ).

a. Single-electron emission. If each capacitor would work
independently then it would emit an electron on the top of the
Fermi sea in the state with the following wave function:

�α(j ) ≡ �α(xj tj ) = Aα(τj )e−iφj (μ),

(27)

Aα(τj ) =
√

�α

πvμ

1

τj − τ−
α − i�α

.

The wave function given above can be inferred from the first-
order correlation function, Eq. (25), with S = Sα , which is
factorized [31],

G
(1)
ad,α(j,j ′) = �∗

α(j )�α(j ′). (28)

See also Ref. [17] for an alternative derivation.
Straightforward calculations show that the corresponding

second-order correlation function, see Eq. (8), is zero, G
(2)
ad =

0, witnessing a single-particle emission. The times τj and
τj ′ belong to the same period, |τj − τj ′ | � T . Therefore, the
particles emitted during the different periods do not contribute
to G

(2)
ad .

b. Two-electron emission. To calculate G
(1)
ad for a two-

particle source with S(τ ) = SL(τ )SR(τ ), I use in Eq. (25)
the following identity: 1 − ab = 0.5[1 − a][1 + b] + 0.5[1 −
b][1 + a] with a = S∗

L(τj )SL(τ ′
j ), b = S∗

R(τj )SR(τ ′
j ) and find

G
(1)
ad (j,j ′) = 1

2

∑
α=L,R

{�∗
α(j )�α(j ′) + �∗

αᾱ(j )�αᾱ(j ′)}, (29)

where ᾱ = L(R) for α = R(L) and

�αᾱ(j ) ≡ �αᾱ(xj tj ) = Aαᾱ

(
τj

)
e−iφj (μ),

(30)
Aαᾱ(τj ) = Sα(τj )Aᾱ(τj ).

The pair of indices αᾱ can be either RL or LR.
The functions �α and �αᾱ (correspondingly, the envelope

functions Aα and Aαᾱ) are mutually orthogonal,∫
dx�α(xt)�∗

αᾱ(xt) = 0, (31)

and normalized. Therefore, they can serve as a basis for the
representation of a two-particle state of emitted electrons. Note
that this basis is time dependent. The unitary rotation from one
basis to the other is also time dependent. As we will see later
on, this results in a basis-dependent energy distribution for
each of the electrons, while the energy distribution for two
electrons is basis independent.

Let us choose the basis corresponding to some α. Then
representing �ᾱ and �ᾱα in terms of the basis functions �α
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and �αᾱ one can rewrite Eq. (29) as the sum of two terms,

G
(1)
ad (j,j ′) = �∗

α(j )�α(j ′) + �∗
αᾱ(j )�αᾱ(j ′). (32)

Note that here α = L or α = R. There is no a summation over
α on the right-hand side in the equation above.

The two terms on the right-hand side of Eq. (32) are single-
particle propagators for one electron emitted in the state with
the wave function �α and the other one with the wave function
�αᾱ , respectively. A closely related representation but for a
pulse comprising n identical (with the same � and emitted at
the same time) particles is given in Ref. [31].

If in a waveguide the electrons propagate to the right, see
Fig. 1, then it is natural to choose the basis corresponding
to α = R, i.e., the basis functions are �R and �RL. Then
the equation above admits an intuitive and transparent in-
terpretation. An electron in the state with a wave function
�R(xt) is emitted by the rightmost single-electron source
and propagates away. Another electron is emitted by the
leftmost single-electron source and it passes by the second
source. If the latter source would not work the wave function
of a second electron would be �L(xt) (times an irrelevant
constant phase factor SR(τ ) = const, |SR|2 = 1). However, the
working second source adds an extra nontrivial (i.e., time-
dependent) factor SR(τ ) to the wave function of an electron
passing it [54]. Therefore, the corresponding wave function
becomes �RL(xt) = SR(τ )�L(xt), τ = t − x/vμ. The extra
factor SR(τ ) in �RL is responsible for the orthogonalization
of single-particle states that is necessary for two electrons
(fermions) to propagate in close vicinity to each other. An
intuitive interpretation presented here is possible due to a
properly chosen single-particle wave function basis. If we
would use another basis the interpretation would be less
transparent, while the description would still be correct.

The effect of one source on the electron emitted by the other
source depends essentially on the difference of times, �τ =
τ−
R − τ−

L , when electrons are emitted. As an illustration, in
Fig. 3 the envelope functions AR (black solid line) and ARL are
contrasted in the case of equal coherence times, �L = �R ≡ �.
If the two electrons are emitted at the same time, �τ = 0, the
envelope function ARL (red dashed line) differs substantially
from AR . While if the two electrons are emitted with a long
time delay, �τ = 10�, the envelop function ARL (blue dotted
line) resembles essentially AR .

2. Two-particle wave function

Substituting Eq. (32) into Eq. (8) one can factorize the
second-order correlation function,

G
(2)
ad (1,2,3,4) = (

�(2)
α (1,2)

)∗
�(2)

α (4,3), (33)

and correspondingly find a two-particle wave function,

�(2)
α (j,j ′) = A(2)

α (τj ,τj ′ )e−i[φj (μ)+φj ′ (μ)],
(34)

A(2)
α (τj ,τj ′ ) = det

(
Aα(τj ) Aαᾱ(τj )
Aα(τj ′ ) Aαᾱ(τj ′)

)
.

Remember that the reduced time is τ = t − x/vμ. This wave
function is the Slater determinant composed of single-particle
wave functions �α and �αᾱ constituting the basis [31].
Therefore, the Pauli exclusion principle for fermions is
satisfied manifestly, �(2)

α (j,j ) = 0.

15 10 5 5
t

ReA

15 10 5 5
t

ImA

FIG. 3. (Color online) Single-particle wave functions for elec-
trons comprising a pair. The real part (upper panel) and imaginary
part (lower panel) of the envelope functions AR , Eq. (27) (black
solid line), and ARL, Eq. (30), are shown as a function of time. The
earlier times correspond to events happening first. At simultaneous
emission, t−

L = t−
R , ARL (red dashed line) is quite different from

AR . At successive emission, t−
R − t−

L = 10�R , ARL (blue dotted line)
and AL are essentially the same. The parameters are the following:
emission time t−

R = 0; coherence times of single-electron emitters
�R = �L = 1.

Note depending on the base wave functions chosen, α = L

or α = R, the time profile of a two-particle wave function �(2)
α

will be different, see insets to Fig. 4, while the propagator
G

(2)
ad , Eq. (33), remains the same. Note also that the two-

particle density profiles is basis independent, |�(2)
L (j,j ′)|2 =

|�(2)
R (j,j ′)|2.
When increasing the difference of emission times, �τ =

τ−
R − τ−

L � �� , the two-particle wave function �(2)
α (j,j ′) is

noticeable only for τj ≈ τ−
L , τj ′ ≈ τ−

R , or for τj ≈ τ−
R , τj ′ ≈

τ−
L . In any of these cases the matrix in Eq. (34) has only two

nonzero entries, either along the main diagonal or the other
two. Apparently the two-particle state is now the product of
two single-particle states.

3. Two bases: How to measure

One of the possibilities to access the basis wave functions
is to measure the first-order correlation function and utilize
its additivity property; see Eq. (32). Two protocols, a single-
electron quantum tomography [29,30] and a time-resolved
single-electron interferometry [25,52], are already proposed
for such a measurement.

First, let us switch on only one single-particle source. Then,
according to Eq. (28), if only the capacitor SL works, we
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FIG. 4. (Color online) The real part of the envelope of a two-
electron wave function emitted adiabatically. It is shown at some
position x after the two-particle source and is represented in two
different bases, A

(2)
L (t1x,t2x) (upper inset) and A

(2)
R (t1x,t2x) (lower

inset); see Eq. (34). The parameters are the following: emission times
t−
L = 2, t−

R = 1; coherence times of single-electron emitters �R =
�L = 1.

measure a single-particle propagator G
(1)
ad,L and derive the

wave function �L. In the same way, if only the capacitor SR

works, we measure G
(1)
ad,R and obtain the wave function �R .

As the next step let us perform a measurement with two single-
particle sources switched on. The corresponding measurement
provides us with the first-order correlation function, G

(1)
ad ,

Eq. (32). This correlation function can be represented either as
G

(1)
ad = G

(1)
ad,L + G

(1)
ad,LR or as G

(1)
ad = G

(1)
ad,R + G

(1)
ad,RL. There-

fore, combining the latter measurement with one of the former
measurements one can derive G

(1)
ad,RL(j,j ′) = �∗

RL(j )�RL(j ′)
and G

(1)
ad,LR(j,j ′) = �∗

LR(j )�LR(j ′), correspondingly. Com-
bining together �R and �RL or �L and �LR we, according
to Eq. (34) reconstruct a two-particle wave function �

(2)
R or

�
(2)
L , respectively. Therefore, the use of different measurement

setups allows us to explore different bases for a two-particle
wave-function representation.

B. Distribution functions

Electrons emitted by the source on the top of the Fermi
sea at low temperatures, Eq. (23), have energies larger than
the Fermi energy μ. It is convenient to count the energy E

from μ and to introduce the Floquet energy −�� < ε < 0 and
εn = ε + n�� with integer n. Then any energy E > μ can be
represented as E = μ + εn with some n � 1. For any function
of one energy, X(E), and two energies, Y (E,E′), let us use the
following notations: X(εn) ≡ X(E) and Y (εr ,ε

′
s) ≡ Y (E,E′),

where n, r , s are some integers.

1. Single-particle distribution function

For adiabatic emission we use Eq. (24) in Eq. (11) and at low
temperatures we arrive at the following equation for a single-
particle distribution function for electrons (εn > 0) [45]:

fad (εn) =
∞∑

m=0

|Sn+m|2 . (35)

Remember that the Fourier coefficients of the scattering
matrix, Sn+m, are calculated at the Fermi energy μ.

a. Single-electron emission. If the single-particle source α

works alone, we have to use S = Sα . Calculating the Fourier
coefficients for the function Sα(τ ) given in Eq. (26) and
substituting them into Eq. (35) one can find [17,55]

fad,α(εn) = 2��αe−2n��α . (36)

The mean energy of an emitted electron (counted from the
Fermi energy) is

〈ε〉α ≡
∞∑

n=1

εnfad,α(εn) = �

2�α

. (37)

This is compatible with dc heat calculations [40]. Note that
in the equation above we neglected |ε| ∼ �� compared to the
rest, since 1/�α � �.

Alternatively the distribution function fad,α(εn), Eq. (36),
can also be calculated via the Fourier transform of the envelope
function. Using Eq. (27) we find

fad,α(εn) = vμT |Aα,n|2,
(38)

Aα,n =
∫ T

0

dτ

T Aα(τ )ein�τ .

The relation above tells us that the mean energy 〈ε〉α can be
directly expressed in terms of the wave function �α (or in
terms of the envelop function Aα) as follows:

〈ε〉α =
∫

dx�∗
α(xt)

[
i�

∂

∂t
− μ

]
�α(xt)

=
∫

dxA∗
α(τ )

[
i�

∂

∂τ

]
Aα(τ ), (39)

where the expression in the square brackets is nothing but the
energy operator for emitted particles.

b. Two-electron emission. For a two-particle source com-
posed of two capacitors, S = SLSR , with Sα given in Eq. (26)
we calculate from Eq. (35)

fad (εn) = 2�
(
�τ 2 + �2

�

)
�τ 2 + ��2

×
{
�Le−2n��L + �Re−2n��R − 4�L�Re−n���

�τ 2 + �2
�

× [�� cos (n��τ ) + �τ sin (n��τ )]

}
. (40)

Here �τ = τ−
R − τ−

L , �� = �R − �L, and �� = �R + �L.
Remember that τ−

α = t−α − xα/vμ is a reduced emission time,
which accounts for the position xα of source α. The distribution
function fad (εn) is normalized as follows:

∞∑
n=1

fad (εn) = 2, (41)

indicating that there are altogether two electrons (emitted per
period) in the state of interest.

If the two sources would work independently they would
emit a particle stream which is characterized by the distri-
bution function f̃ad (εn) = fad,L(εn) + fad,R(εn). This is the
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asymptotics of Eq. (40) when two emitted particles do not feel
each other, i.e., do not overlap, |�τ | � �� . In contrast, at
closer emission times, |τ−

R − τ−
L | ∼ �� , the wave function’s

orthogonalization results in an increase of the energy of emit-
ted particles. For instance the mean energy 〈ε〉 of two emitted
particles exceeds the sum 〈ε〉� = 〈ε〉L + 〈ε〉R . Calculating 〈ε〉
with the help of the distribution function fad (εn), Eq. (40),
we find

〈ε〉
〈ε〉�

= 1 + |J (�τ )|2 , (42)

where J = ∫
dx�∗

L(xt)�R(xt) = 2i
√

�L�R/(�τ + i��) is
the overlap integral of the wave-functions �L and �R; see
Eq. (27). The same overlap integral appears [24] in the problem
of the shot-noise suppression for electrons colliding at the
quantum point contact [22,41,53]. Note that the mean energy
increase shown in Eq. (42) agrees with an enhanced dc heat
production of the two-particle emitter [40].

Since the two sources work jointly, the two emitted particles
are in states with wave functions �α and �αᾱ , see Eq. (32),
rather than with �L and �R . Correspondingly, the distribution
function given in Eq. (40) can be represented as the sum of
two contributions,

fad (εn) = fad,α(εn) + fad,αᾱ(εn). (43)

The first one, fad,α(εn), is due to a particle in the state with the
wave function �α(xt). It is given in Eqs. (36) and (38). The
second one, fad,αᾱ(εn), is due to a particle in the state with
the wave function �αᾱ(xt); Eq. (30). It can be calculated by
analogy with Eq. (38) as follows:

fad,αᾱ(εn) = vμT
∣∣∣∣
∫ T

0

dτ

T Aαᾱ(τ )ein�τ

∣∣∣∣
2

. (44)

For instance, for �τ = 0 and �� = 0 we have

fad,αᾱ(εn) = 2�� (1 − 2n��)2 e−2n��. (45)

where � = �L = �R . The energy-dependent prefactor in the
equation above is formally responsible for the increase of the
mean energy per particle; see Eq. (42). Using fad,αᾱ(εn) we
find the mean energy of an electron to be 〈ε〉αᾱ = 3�/(2�);
compare to Eq. (37). The energy-dependent prefactor also
modifies energy fluctuations 〈δ2ε〉 = 〈ε2〉 − 〈ε〉2 of emitted
electrons [56]. Using Eqs. (36) and (45) we find correspond-
ingly,

〈δ2ε〉α =
(

�

2�

)2

, 〈δ2ε〉αᾱ = 5

(
�

2�

)2

. (46)

The absolute value of fluctuations increases for an electron
in the state �αᾱ compared to that of an electron in the
state �α . However the relative strength of fluctuations, i.e.,
compared to the mean energy, decreases: 〈δ2ε〉α/〈ε〉2

α = 1
while 〈δ2ε〉αᾱ/〈ε〉2

αᾱ = 5/9 < 1.
The decomposition given in Eq. (43) depends on the basis

used, α = L or α = R. Therefore, one cannot attribute any
definite distribution function to a single electron, only to two
of them together. Generally this is due to indistinguishability
of particles caused by the overlap of their original wave
functions, �R and �L, and a subsequent orthogonalization
of their actual wave functions, �R and �RL (or �L and �LR).

However, there is also a particular reason why the energy
distribution for a single particle is not well defined. It is so
since the unitary rotation from one basis to another one is
time dependent. Hence the energy distributions for basis wave
functions are changed during rotation making meaningless the
question about energy properties of a separate electron. In the
limit when two electrons are emitted with a long time delay,
|τ−

R − τ−
L | � �� , the two bases converge to each other and

the emitted particles become distinguishable. In this case one
can say which electron is characterized by which distribution
function, fL(E) or fR(E).

All four distribution functions, fL, fR , fLR , and fRL, can be
accessed experimentally using the energy resolved dc current
measurement, see Sec. II C 1, with one or two sources being
switched on by analogy with what is sketched in Sec. III A 3
for a wave-function measurement.

2. Two-particle distribution function

Let us use the adiabatic approximation, Eq. (24), and
represent the two-particle distribution function, Eq. (14), with
E = μ + εr and s = r + � as follows [45]:

fad (εr ,εs) = 1

2

∞∑
p=0

∞∑
q=0

∣∣∣∣det

(
Sr+p Sr+q

Ss+p Ss+q

)∣∣∣∣
2

. (47)

Remember here all the scattering matrix elements are calcu-
lated at the Fermi energy, E = μ. In the equation above the
low-temperature limit, Eq. (23), is taken. It is supposed that
εr > 0 and εs > 0 since the electronic excitations above the
Fermi sea are of interest here.

a. Single-electron emission. If only one source α works, we
use S = Sα . Taking into account Eq. (26) we find the corre-
sponding Fourier coefficients, Sα,n>0 = −2��αe−n��αein�t−α .
Direct substitution into Eq. (47) gives fad (εr ,εs) = 0 (r > 0,
s > 0), as it should be for a genuine single-particle state. From
Eq. (13) we find in this case δf (εr ,εs) = −f (εr )f (εs).

b. Two-electron emission. In the case when two sources
work we have S(τ ) = SL(τ )SR(τ ). With Sα(τ ) from Eq. (26)
one can calculate

f
(2)
ad (εr ,εs) = 8�2�L�R(�τ 2 + �2

�)

�τ 2 + ��2
e−��� (r+s)

×{cosh([r − s]���) − cos([r − s]��τ )}.
(48)

Remember εr = ε + r�� with integer r � 1 and the Flo-
quet energy −��0 < ε < 0; �� = �R − �L is the differ-
ence of coherence times of two sources; �τ = τ−

R − τ−
L

is the difference of (reduced) emission times, τ−
α = t−α −

xα/vμ, with t−α an emission time and xα a position of the
source α.

Alternatively the distribution function f
(2)
ad (εr ,εs), Eq. (48),

can be calculated via the double-Fourier transform of the
(envelope of the) two-particle wave function, Eq. (34):

f
(2)
ad (εr ,εs) = v2

μT 2

∣∣∣∣
∫ T

0

∫
dτdτ ′

T 2
eir�τ eis�τ ′

A(2)
α (τ,τ ′)

∣∣∣∣
2

(49)

for either α = L or α = R.
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If we sum up f
(2)
ad (εr ,εs), Eq. (48), over one energy,

εs or εr , then we arrive at the single-particle distribution
function, Eq. (40), either fad (εr ) or fad (εs), respectively, e.g.,∑∞

r=1 f
(2)
ad (εr ,εs) = fad (εs). If we put r = s in Eq. (48) we find

f
(2)
ad (εr ,εr ) = 0 as it should be, since two electrons cannot be

found in the same state (i.e., with the same energy).
How to measure a two-particle distribution via an energy-

resolved shot noise was discussed in Sec. II C 2. Here
let us estimate a feasibility of such a proposal for an
adiabatic emission regime. The energy scale, over which the
distribution function, Eq. (48), changes, is ∼�/(�L + �R). For
the adiabatic regime of the source of Ref. [2] the coherence
time �α ∼ Tα/(2π�), where Tα is the transmission probability
of the quantum point contact connecting the capacitor and
the waveguide [53]. At Tα ∼ 0.2 and � ∼ 2π · 500 MHz
we find �α ∼ 10 ps. The width γ of the resonance level
of an energy filter should satisfy the following inequality:
�� � γ � �/(2�α). For the parameter chosen it becomes (in
temperature units) 24 mK � γ /kB � 380 mK. The energy
filter used in Refs. [36–38] is characterized by γ /kB ∼ 50 mK.
That is quite reasonable for the purposes we are discussing.

IV. CONCLUSION

I analyzed a two-particle state emitted by two uncorrelated
but synchronized single-electron sources (e.g., periodically
driven quantum capacitors) coupled in series to the same chiral
electronic waveguide. The two-particle correlation function for
the emitted state is expressed in terms of the Floquet scattering
matrix of a combined two-particle source. The Fourier trans-
form of the correlation function, the two-particle distribution
function, is calculated and related to a cross-correlation func-
tion of currents flowing through the energy filters, quantum
dots with a single conductive level each; see Fig. 2.

In the case of emitters working in the adiabatic regime, the
two-particle wave function is calculated and represented in two
equivalent but different forms depending on the single-particle

wave functions used as a basis; see Fig. 4. The existence of
these two bases is rooted in the presence of two single-particle
emitters, which affect each other. Let us denote as �L and
�R the wave functions of a single electron emitted by one or
another source if they would work independently. The presence
in a waveguide of an electron emitted by one source affects the
emission of an electron by the other source such that the actual
single-particle wave functions become orthogonal and hence
cannot be just �L and �R , which in general are not orthogonal.
The simplest way to construct orthogonal single-electron wave
functions is to take one of them, say �L, unperturbed and to
orthogonalize the other, denote it as �LR . Alternatively one
can keep �R unperturbed and orthogonalize the other, �RL.
These two bases, �L, �LR and �R , �RL, are exactly what
appears naturally when the first-order correlation function for
the state emitted by the two-particle source is considered; see
Eqs. (29) and (32). In particular, when the electrons are emitted
with a long time delay such that they do not overlap, the wave
functions �LR and �RL approach �R and �L, respectively.
What is important is that in the general case all four single-
electron wave functions are accessible experimentally.
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APPENDIX A: TWO-PARTICLE DISTRIBUTION
FUNCTION

The two-particle distribution function for emitted particles
f (E,E′) is related to the Fourier transform of the second-order
correlation function G(2)(1,2,3,4), Eq. (8), taken at x1 = x4

and x2 = x3. We perform a continuous Fourier transformation
with respect to τ14 = t1 − t4 and τ23 = t2 − t3 and average over
t4 and t3 and obtain

f (E,E′; x1,x2) = v(E)v(E′)
∫ T

0

dt4

T

∫ T

0

dt3

T

∫ ∞

−∞
dτ14e

−i(E/�)τ14

∫ ∞

−∞
dτ23e

−i(E′/�)τ23G(2)(t1x1,t2x2,t3x2,t4x1)

= f (E)f (E′) + δf (E,E′; x1,x2), (A1)

where the irreducible part is

δf (E,E′; x1,x2) = (−1)
∞∑

n=−∞
{f0(En) − f0(E)}

∞∑
m=−∞

{f0(E′
m) − f0(E′)}

∞∑
p=−∞

∞∑
q=−∞

eix1[k(E′
q )−k(E)]

× e−ix2[k(E′)−k(Ep)] (��/π )2 sin2
(
π E′−E

��

)
(E′ − E + q��)(E′ − E − p��)

S∗
F (E,En)SF (Ep,En)S∗

F (E′,E′
m)SF (E′

q,E
′
m). (A2)

Here En = E + n��. In general the equation above is com-
plex. However, if the energy difference is a multiple of the
energy quantum ��, i.e., E′ − E = ���, (� is an integer) then
Eq. (A2) becomes manifestly real and loses its dependence on

spatial coordinates x1 and x2. Taking into account that now
only p = −q = � contribute to Eq. (A2), we arrive at Eq. (13).
Note that namely Eq. (13) not Eq. (A2) is relevant for measur-
able quantities considered in this paper; see, e.g., Eq. (21).
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APPENDIX B: SCATTERING MATRIX ELEMENTS RELEVANT FOR THE CIRCUIT SHOWN IN FIG. 2

In order to calculate the operators b̂β(E), Eq. (16), and, correspondingly, Eqs. (17) and (20), we need the following scattering
matrix elements:

Scir
F,41(E,En) = eiϕ41(E)t1(E)SF (E,En), Scir

F,43(E,En) = eiϕ43(E)r1(E)δn0, Scir
F,61(E,En) = eiϕ61(E)t2(E)r1(E)SF (E,En),

Scir
F,65(E,En) = eiϕ65(E)r2(E)δn0, Scir

F,63(E,En) = eiϕ63(E)t2(E)t1(E)δn0, (B1)

where tκ /rκ is the transmission/reflection amplitude of the energy filter κ = 1,2, δn0 is the Kronecker δ, ϕβγ (E) is the phase of
the free propagation through the circuit on the way from contact α to contact β. Since the circuit under consideration has no
loops (it is single connected), the phases ϕβγ are irrelevant.

APPENDIX C: ZERO-FREQUENCY CURRENT CORRELATION FUNCTION

Let us substitute Eqs. (15), (16), and (B1) into Eq. (20) and calculate

P46 = e2

2h

∫
dET1(E)

[
−2R1(E)T2(E)

∞∑
n=−∞

{f0(En) − f0(E)}2|SF (E,En)|2 +
∞∑

p=−∞
R1(Ep)T2(Ep)

×
∞∑

n=−∞

∞∑
m=−∞

{f0(En) − f0(Em)}2S∗
F (E,En)SF (E,Em)S∗

F (Ep,Em)SF (Ep,En)

]
. (C1)

Since there is no direct path between contacts 4 and 6 in the circuit shown in Fig. 2, the thermal noise does not appear in the
equation above. To simplify Eq. (C1) let us represent

{f0(En) − f0(Em)}2 = {f0(En) − f0(E)}2 + {f0(Em) − f0(E)}2 − 2{f0(En) − f0(E)}{f0(Em) − f0(E)}. (C2)

One can use the unitarity of the Floquet scattering matrix, Eq. (7), and show that the two first terms on the right-hand side of
Eq. (C2) after substitution into Eq. (C1) cancel the first term on the right-hand side of Eq. (C1). What remains is an equation of
interest, Eq. (21), relating P46 and the irreducible part of the two-particle distribution function δf , Eq. (13).
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Phys. Rev. B 82, 201309(R) (2010).

[5] E. Bocquillon, F. D. Parmentier, C. Grenier, J.-M. Berroir,
P. Degiovanni, D. C. Glattli, B. Plaçais, A. Cavanna, Y. Jin,
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