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Adiabatic quantum pumping of chiral Majorana fermions
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We investigate adiabatic quantum pumping of chiral Majorana states in a system composed of two Mach-
Zehnder type interferometers coupled via a quantum point contact. The pumped current is generated by periodic
modulation of the phases accumulated by traveling around each interferometer. Using scattering matrix formalism
we show that the pumped current reveals a definite signature of the chiral nature of the Majorana states involved
in transport in this geometry. Furthermore, by tuning the coupling between the two interferometers the pump can
operate in a regime where finite pumped current and zero conductance are expected.
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Introduction. Recently, a great amount of attention has
been paid to the possibility of realizing Majorana quasipar-
ticles in condensed matter systems.1–4 Majorana-like excita-
tions have been predicted to exist in the ν = 5/2 quantum
Hall state,5,6 p-wave superconductors,7 and semiconductor-
superconductor interfaces8–10 and on the surface of topological
insulators.11–14 Experimental progress on the latter is described
in Refs. 15–19. Zero-bias conductance anomalies20–23 associ-
ated with localized Majorana excitations have been measured
recently in semiconductor-nanowire-superconductor hybrid
structures.24–28 Measurements of unconventional Josephson
effects associated with these excitations have also been
reported.29,30 In addition, unique signatures of chiral Ma-
jorana fermions have been predicted in Mach-Zehnder31,32

and Hanbury Brown–Twiss33 type interferometers through
conductance and noise measurements. In this article, we
propose and analyze an adiabatic Majorana quantum pump
which can provide conclusive evidence of the chiral nature of
the Majorana modes. These chiral Majorana modes exist as
gapless, charge-neutral edge excitations in 2D chiral p-wave
superconductors (or systems equivalent to such superconduc-
tors) and should not be confused with Majorana bound states
existing in 1D chiral p-wave superconductors (or systems
equivalent to such superconductors).

Adiabatic pumping is a transport mechanism in meso- and
nanoscale devices by which a finite dc current is generated
in the absence of an applied bias by low-frequency periodic
modulations of at least two system parameters (typically
gate voltages or magnetic fields).34,35 In order for electrical
transport to be adiabatic, the period of the oscillatory driving
signals has to be much longer than the dwell time τdwell of
the electrons in the system, T = 2πω−1 � τdwell. Adiabatic
quantum pumping36 refers to pumping in open systems in
which quantum-mechanical interference of electron waves
occurs. Recently, adiabatic topological pumping in a spin-orbit
coupled semiconductor nanowire in proximity to an s-wave
superconductor and subjected to a Zeeman field was studied.37

In this study we consider an adiabatic quantum pump where
the carriers responsible for transport are chiral Majorana
fermions. A schematic of the proposed device is shown in
Fig. 1. The pump consists of two superconducting islands
supporting chiral Majorana edge states coupled via a quantum
point contact. While the conductance in this system can be used

to signal whether an unpaired Majorana bound state exists in
the superconducting region or not (as was predicted in Refs. 31
and 32), it does not contain information about the chiral nature
of the carriers. We show that, in contrast, the pumped current
in this system exhibits definite and measurable signatures of
the chiral nature of quantum transport. Furthermore, charge
neutrality of the Majorana modes (limiting interactions with
the environment) and the adiabatic operation of the pump
makes this system attractive for studying quantum interference
effects with Majorana modes in the presence of, in principle,
negligible dephasing.

Majorana quantum pump. The superconducting and mag-
netic correlations on the surface of a topological insulator (as
shown in Fig. 1, with ẑ being the unit vector in the out-of-plane
direction), as well as the gapless states at the interfaces between
them, can be described by the Dirac–Bogoliubov–de Gennes
(DBdG) Hamiltonian H = �†H�/2. In the Nambu basis
where � = (u↑,u↓,v↓,−v↑)T ,31 the Hamiltonian H is given
by

H = − i�vF τz ⊗ ẑ · �σ × ∇ − μτz ⊗ σ0

+ (�τ+ ⊗ σ0 + �∗τ− ⊗ σ0) + Mτ0 ⊗ σz. (1)

Here �σ and �τ represent vectors of Pauli matrices in spin
space and particle-hole Nambu space, respectively. Similarly,
σ0 and τ0 represent 2 × 2 identity matrices in spin and
Nambu space, and τ± = (τx ± iτy)/2. The first two terms in
H describe the free surface states of the three-dimensional
topological insulator with vF the Fermi velocity and μ the
chemical potential. We choose the coordinate system such
that this surface is parallel to the x-y plane. The first term in
the second line in H describes the superconducting proximity
effect due to an s-wave superconductor. The magnetizations
M↑ = (0,0,M) and M↓ = (0,0,−M) of the two ferromagnetic
insulators (as shown in Fig. 1) describe the effect of Zeeman
splitting as expressed by the last term in Eq. (1). � and M are
assumed to be spatially uniform. The excitation spectrum is
gapped in both the superconducting and the magnetic regions.
In the superconducting region the excitation spectrum is ES

k =√
(±vF |k| − μ)2 + |�|2. In the magnetic region it is EM

k =√
v2

F |k|2 + M2 ± μ (which is gapped if M > μ). Solutions
of Eq. (1) also include the subgap chiral Majorana branch
localized near the superconductor-ferromagnet interface with
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FIG. 1. (Color online) Schematic of the Mach-Zehnder interfer-
ometer studied in this paper. Two superconducting islands, SC1 and
SC2, are connected via a point contact (t). In the left (in) and right
(out) lead, two chiral Dirac fermion modes, φe and φh, propagate.
The entire setup is placed on top of a 3D topological insulator.
Majorana fermions γl (l = 1–4) are the mediating states in the central
interferometer region. See the text for more details.

group velocity vm = vF

√
1 − μ2/M2/(1 + μ2/|�|2).31 The

amplitudes of these chiral Majorana modes are denoted by
γl , l ∈ {1,4} in Fig. 1. The interface between regions with
opposite signs of magnetizations supports two chiral Dirac
fermion modes. One is the electron mode with amplitude
φe and the other the hole mode with amplitude φh. Within
the Landauer-Büttiker scattering matrix formalism we can
relate the two incoming modes φe

in and φh
in with two outgoing

modes γ1 and γ2 at the left tri-junction using (γ1,γ2)T =
S(E)(φe

in,φ
h
in)T . Particle-hole symmetry [S(E) = S∗(−E)τx]

along with unitarity [(S†)−1 = S] allows us to choose at E = 0

S = 1√
2

(
1 1

i −i

)
. (2)

Similarly we can relate the chiral Majorana modes γ3 and γ4 to
outgoing electron and hole modes at the right tri-junction. In
the following it is assumed that S(E) is well described by its
zero energy limit, which is appropriate for small energies E 

(vm/vF )min(|�|,M) and junctions with mirror symmetry.31

The Majorana modes γ1 and γ2 are coupled to Majorana
modes γ3 and γ4 via the Josephson junction between the
two superconductors (denoted as SC1 and SC2 in Fig. 1).
The junction acts as a quantum point contact (QPC) for the
Majorana modes and can be characterized by a 2 × 2 scattering
matrix, (γ3,γ4)T = SQPC(γ1,γ2)T ,31 where

SQPC =
(

r1 t2

t1 r2

)
. (3)

Here |t1|2 = 1 − |r1|2 and |t2|2 = 1 − |r2|2. The properties of
this QPC can be tuned by changing the phase difference φ1 −
φ2 of the Josephson junction (as shown in Fig. 1) or by altering
its shape. As explained in Ref. 31, this Josephson junction
describes superconductors weakly coupled by single-electron
tunneling at a point. Particle-hole symmetry and unitarity
imply that rj and tj are real coefficients. Below we assume
a symmetric Josephson junction and set r1 = r2 = r and t1 =
−t2 = t . The incoming electrons and holes can be related to
the outgoing electrons and holes by the full scattering matrix of

the system (φe
out,φ

h
out)

T = SRL(φe
in,φ

h
in)T . The scattering matrix

SRL can be decomposed into SRL = S†S2SQPCS1S, where

S1 =
(

eiβa 0

0 eiβb

)
, S2 =

(
eiβc 0

0 eiβd

)
(4)

denote the contribution from the phase shifts βk (k ∈
{a,b,c,d}) picked up by the Majorana modes by traversing
the kth arm of the interferometer. The relative phase shifts
βa − βb ≡ θ̃1 = πnν1 + π + Eδτ1/� includes a contribution
of π for every vortex enclosed, a Berry phase of π for spin-1/2
particles, and the dynamical phase. Similarly, βc − βd ≡ θ̃2 =
πnν2 + π + Eδτ2/�. Here nν1 and nν2 denote the number
of vortices in SC1 and SC2, δτ1 = La/(vm)a − Lb/(vm)b,
and δτ2 = Lc/(vm)c − Ld/(vm)d , where Lk and (vm)k are the
length and the velocity of the chiral Majorana mode in the kth
arm of the interferometer. We then obtain

SRL = ei(βb+βd )

[
η+

1 r − iη+
2 t −η−

1 r − iη−
2 t

−η−
1 r + iη−

2 t η+
1 r + iη+

2 t

]
, (5)

where η±
1 = (1 ± ei(θ̃1+θ̃2))/2, η±

2 = (eiθ̃1 ± eiθ̃2 )/2, and the
(2,1) element of SRL indicates conversion of an incoming
electron in the left lead to an outgoing hole in the right lead.

Adiabatic quantum pumping. In our device the adiabatically
pumped current through the Mach-Zehnder interferometer
is driven by periodic modulation of the phases θ̃1 and θ̃2

as θ̃1(t) = θ1 + δθ1 cos(ωt) and θ̃2(t) = θ2 + δθ2 cos(ωt + α).
The total pumped current I into the right lead (see Fig. 1) can
then be expressed as an integral over the area A that is enclosed
in (θ̃1, θ̃2) parameter space during one period, and is given by
the scattering matrix expression38,39

Ip,R = ωe

2π2

∫
A

dθ1 dθ2

∑
m ∈ L

n ∈ R

Im{�nm(θ1,θ2)} (6a)

≈ ωe

2π
δθ1 δθ2 sin α

∑
m ∈ L

n ∈ R

Im{�nm(θ1,θ2)}. (6b)

Here

�nm(θ1,θ2) =
(

∂She
RL

∂θ1

∂She∗
RL

∂θ2
− ∂See

RL

∂θ1

∂See∗
RL

∂θ2

)
nm

. (7)

Equation (6b) is valid in the bilinear response regime where
δθ1 
 θ1 and δθ2 
 θ2 and the integral in Eq. (6a) becomes
independent of the pumping contour. SRL,nm describes the
scattering of a Dirac fermion in mode m in the left (L) lead
to a Dirac fermion in mode n in the right (R) lead. The
explicit adiabatic condition for this system is given by �ω 

{�,M,�(vm)k/Lk} (k ∈ {a,b,c,d}).

After calculating the derivatives of the scattering matrix
coefficients using Eq. (5) and taking the imaginary part of the
product, we obtain for the pumped current into the right lead
of the single-mode pump of Fig. 1

Ip,R = I0

(
rt − 2rt sin2

(
θ2

2

)
− t2 sin(θ1 − θ2)

)
, (8)

where I0 = (ωe)/(4π ) δθ1 δθ2 sin α. From Eq. (8) we see that
the electron (hole) charge collected in the right lead is always
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mediated by the interference of two chiral Majorana modes
(see also Ref. 40). Notice that we can rewrite the pumped
current as a sum of two terms Ip,R(θ1,θ2)/I0 = I (0)(0,0) +
I (θ)(θ1,θ2) consisting of an Aharonov-Bohm flux-dependent
part I (θ)(θ1,θ2), and a flux–independent part I (0)(0,0). The
latter is given by I (0)(0,0) = rt which reaches its maximum
value of I (0)(0,0) = 1/2 at t = 1/

√
2. The flux-dependent part

is a sum of two terms. The second term on the right-hand side
of Eq. (8) is proportional to rt and only depends on θ2. This is a
consequence of the chiral nature of transport: If we reverse the
direction of transport, this term will only depend on the phase
θ1. From Eq. (8) we also see that the QPC plays an essential
role in generating a pumped current. For a closed QPC (t = 0)
no net pumped current is generated.

For carriers in the low-energy regime, E 
 �/δτi , we can
approximate θi = (nνi

+ 1)π . For a transparent point contact,
t = 1, the pumped current then reduces to Ip,R(θ1,θ2) = 0
for δn− = nν1 − nν2 integer and it achieves maximum values
Ip,R(θ1,θ2)/I0 = ±1 for δn− half integer. In the latter, the
pump produces a unit I0 of pumped current which is also
its maximum value (for t = 1). This is also true for t =
1/

√
2 at θ1 = −π/2 and θ2 = 0 (modulo 2π ). The pumped

current reaches a global maximum value of Ip,R/I0 = ±(1 +√
2)/2 ≈ 1.2 at t =

√
2 + √

2/2.
Figure 2 shows the pumped current as a function of the

phase shifts accumulated while traveling around the first
and the second superconducting islands for a fixed value of
the transparency t of the QPC. The pumped current Ip,R

clearly is a 2π -periodic function with respect to θ1 and
θ2. However, as expected from Eq. (8), the pumped current
is not a symmetric function under exchange θ1 ↔ θ2. The
pumped current oscillates between positive and negatives
values, meaning that the interferometer transmits alternatively
electrons and holes. As discussed above, in the low-energy
regime the pumped current has values near zero when the
phase difference δθ− ≡ θ1 − θ2 is an even or an odd multiple
of π ; see lines (a) and (b) in Fig. 2. The asymmetry between
the two phases can be seen from the difference between lines
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FIG. 2. (Color online) Contour plot of the pumped current
Ip,R/I0 [Eq. (8)] as a function of the phases θ1 and θ2 for t = 0.8.
(a) θ2 = θ1 line, (b) θ2 = θ1 − π line, (c) θ1 = 0 line, (d) θ2 = 0
line, and (e) θ1 = −π/2 and θ2 = 0 point. The maximum (minimum)
values Ip,R/I0 = ±1.12.
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FIG. 3. (Color online) Pumped current [Eq. (8)] as a function of
θ1 for different values of t and for three values of δθ− ≡ θ1 − θ2. The
legend shows the (t ,δθ−) values of each curve in each panel. (a) The
top panel shows six curves for (0.99,0), (0.7,0), (0.3,0), (0.99,π ),
(0.7,π ), and (0.3,π ). (b) The bottom panel shows three curves for
(0.99,π/2), (0.7,π/2), and (0.3,π/2).

(c) and (d) in Fig. 2. The pumped current exhibits maximum
values at θ1 = −π/2 and θ2 = 0 (modulo 2π ); see dot (e).

Figure 3 shows the pumped current as a function of θ1 for
different values of t and for three values of δθ−. Figure 3(a)
shows the pumped current for δθ− = 0 and δθ− = π . The
pumped current is symmetric around zero and the addition
of a π phase reverses its sign. At multiples of θ1 = π/2, the
pumped current goes to zero. Figure 3(b) shows the pumped
current for δθ− = π/2. In this case, the pumped current is no
longer a symmetric function around zero and remains nonzero
at multiples of θ1 = π/2.

Conductance. In this section we discuss the difference
between the conductance and the pumped current in our
system. This is of importance for being able to measure the
pumped current, as the main bottleneck for its detection is the
difficulty to distinguish between the two types of currents.
Using the Landauer-Büttiker formalism41 the conductance
across the interferometer can be written as

G(eV ) = e2

h

(|See
RL|2 − |She

RL|2) . (9)
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Using the scattering matrix Eq. (5), the conductance is then
given by

G(eV ) = e2

h

(
1 − 2

[
t2 sin2

(
δθ−

2

)
+ r2 sin2

(
δθ+

2

)] )
,

(10)

where δθ± ≡ θ1 ± θ2. In the low-energy regime, E 
 �/δτi ,
the conductance reaches the limiting values:

G(0) t = 0 (δn+) t = 1 (δn−)

δn± even +e2/h +e2/h

δn± odd −e2/h −e2/h

where δn± ≡ nν1 ± nν2 . When δn± is an even number the
Majorana states traveling along the two paths are unperturbed
and the right normal lead collects an electron. When δn±
is an odd number, one of the Majorana modes has acquired
an additional phase of π and the right lead collects a hole
due to crossed Andreev reflection in which a 2e charge
is absorbed by the superconductors. In both situations, the
conductance is sensitive to the number of vortices encircled
in the interferometer. This is in agreement with the single
Mach-Zehnder interferometer studied earlier.31,32

As for the pumped current, the conductance has two
contributions: an Aharonov-Bohm flux-independent part and
a flux-dependent part, G(eV ) = G(0)(0,0) + G(θ)(θ1,θ2). The
flux-independent term is G(0)(0,0) = e2/h, in which the
incident electron is transmitted as an electron. The flux-
dependent term has two terms which depend, resp., on the
sum and difference of the phases, δθ+ and δθ−. If we reverse
the direction of transport, the conductance has the same
dependence on θi for transport from left to right and from
right to left. Thus, the conductance reveals no signature of the
chiral nature of transport.

Figure 4 shows the conductance in units of e2/h as a
function of the phase accumulated in the first and second
superconducting islands for a fixed value of the transparency
of the point contact. Like the pumped current, the conductance
is a 2π -periodic function with respect to θ1 and θ2. An
interesting situation to analyze is when the interferometer
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FIG. 4. (Color online) Contour plot of the conductance G

[Eq. (10)] in units of e2/h as a function of the phases θ1 and θ2

for t = 0.8. (a) θ2 = θ1 line, (b) θ2 = θ1 − π line, (c) θ1 = 0 line,
(d) θ2 = 0 line, and (e) θ1 = −π/2 and θ2 = 0 point.

does not transmit any charge; i.e., G(eV ) = 0. This happens
in two different situations: first, when the point contact is
completely transparent (reflective), t = 1(0), and δθ± is a
half integer of π ; and second, when t = r = 1/

√
2, θ1 =

−π/2, and θ2 = 0 (modulo 2π ). In both cases, the processes
of transmitting an electron and transmitting a hole have
the same probability to occur. Since these two processes
have opposite charge contributions, on average the total
charge collected in the right lead is zero. Interestingly,
in the second case, at these same points in parameter
space the pump generates a maximum current, as discussed
earlier.

Figure 5 shows the conductance as a function of θ1 for
different values of t and for three values of δθ−. Figure 5(a)
shows the conductance for δθ− = 0 and δθ− = π . The con-
ductance remains symmetric around zero and the addition of a
π phase changes its sign. Figure 5(b) shows the conductance
for δθ− = π/2. We see that, in contrast to the pumped current
[Fig. 3(b)], the conductance remains a symmetric function
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FIG. 5. (Color online) Conductance [Eq. (10)] as a function of θ1

for different values of t and for three values of δθ− = θ1 − θ2. The
legend shows the (t,δθ−) values of each curve in each panel. (a) The
top panel shows six curves for (0.99,0), (0.7,0), (0.3,0), (0.99,π ),
(0.7,π ), and (0.3,π ). (b) The bottom panel shows three curves for
(0.99,π/2), (0.7,π/2), and (0.3,π/2).
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around zero and that for any value of t , the conductance
becomes zero at multiples of θ1 = π/2.

We thus predict three main differences between the
conductance and the pumped current in this system:
(1) Although the conductance and the pumped current both
contain a flux-independent part and a flux-dependent part,
the flux-independent part of the conductance is independent
of any system parameters while the flux-independent part
of the pumped current depends on the transparency of the
point contact. (2) While the conductance is insensitive to the
direction of transport, the magnitude of the pumped current
depends on whether the current is collected in the right or
left lead, thereby reflecting the chiral nature of the transport.
(3) At certain points in parameter space (i.e., for certain values
of t , θ1, and θ2), the conductance is zero, whereas the pumped
current reaches maximum values.

The proposed pumping mechanism requires the phases θ1

and θ2 to be varied in a periodic manner. One way to achieve
this would be by periodically varying the magnetic field in
each superconducting island. Alternatively, the velocity of the
chiral Majorana states could be changed, using the method
proposed in Ref. 14.

Conclusions. To summarize, we have analyzed quantum
pumping via Majorana fermions in a Mach-Zehnder in-
terferometer formed by ferromagnetic and superconducting
regions on top of a 3D topological insulator. We have
shown that in the low-energy regime the pumped current,
unlike the conductance, cannot be used to distinguish be-
tween an even or odd number of Majorana bound states
at the vortex cores in the superconducting islands. The
pumped current, however, can be used to reveal signatures
of the chiral nature of transport, whereas the conductance
is independent of the direction of transport. We have also
shown that the pumped current reaches maximum values in
certain regions of parameter space where the conductance
becomes zero. Tuning the system into the latter regions thus
creates chances for experimentally observing the adiabati-
cally pumped current induced by Majorana modes in this
system.
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