
PHYSICAL REVIEW B 89, 045305 (2014)

Spin relaxation in inhomogeneous quantum dot arrays studied by electron spin resonance
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Electron states in an inhomogeneous Ge/Si quantum dot array with groups of closely spaced quantum dots
were studied by the conventional continuous-wave electron spin resonance and spin-echo techniques. We have
found that the existence of quantum dot groups allows increasing the spin relaxation time in the system. The
created structures permit us to change the effective localization radius of electrons by an external magnetic field.
With the localization radius being close to the size of a quantum dot group, we obtain a fourfold increase in the
spin relaxation time T1 as compared to conventional homogeneous quantum dot arrays. This effect is attributed to
an averaging of the local magnetic fields produced by 29Si nuclear spins and a stabilization of the Sz polarization
during the electron back-and-forth motion within a quantum dot group.
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I. INTRODUCTION

Electron spins in quantum dots (QDs) can be considered
as promising candidates for the implementation of quantum
computation ideas and spintronics devices [1,2]. The main
parameter indicating the applicability of a system to quantum
computation is the spin coherence time. An extremely long
spin lifetime is observed in zero-dimensional structures due to
a strong confinement in all three dimensions [3]. An especially
great potential for a long coherence time is expected in the
Ge/Si system with quantum dots. The electrons in this system
are localized in strained Si regions, where the spin-orbit
(SO) coupling is very weak. However, recent investigations
of spin decoherence by the spin echo method in the Ge/Si
QD system [4] demonstrated that the spin relaxation times are
unexpectedly short (∼10 μs). It was suggested that the reason
of such an intensive spin relaxation consists of the appearance
of effective magnetic fields during electron tunneling between
quantum dots. These magnetic fields (Rashba fields) [5]
originate from the spin-orbit interaction and arise due to the
absence of mirror symmetry of the localizing potential for an
electron in the vicinity of a Ge QD. Spin relaxation occurs
through a stochastic spin precession in effective magnetic
fields during random tunneling between QDs (an analog of
the Dyakonov-Perel mechanism for delocalized carriers [6]).
Obviously, the suppression of the tunneling in an array
of well separated quantum dots allows us to eliminate the
existence of in-plane fluctuating magnetic fields. In this case
the hyperfine interaction with 29Si nuclear spins comes into
force and determines the spin relaxation time. If the tunneling
is suppressed not by the spatial separation of QDs, but by the
Coulomb repulsion [7], the anisotropic exchange interaction
can also control the spin relaxation process.
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The efficiency of each mechanism depends in different ways
on the localization degree of electrons. By changing the tunnel
coupling between quantum dots (by changing their density)
and, correspondingly, the localization degree of electrons,
it is possible to alter the relative contribution of different
mechanisms. With increasing electron localization radius the
contribution of hyperfine interaction becomes smaller due to
an averaging-out of different orientations of nuclear spins. A
related increase of the relaxation time occurs until the moment
when the wave function overlapping provides the hopping
between neighboring localization centers. In these conditions,
the Dyakonov-Perel mechanism begins to control the spin
relaxation process [8]. The longest spin relaxation time is
expected right before the point where the Dyakonov-Perel
mechanism comes into force. A similar effect was detected in
n-type GaAs, where a threefold increase of the spin relaxation
time was obtained in the vicinity of the metal-to-insulator
transition [9].

In self-assembled tunnel-coupled QD structures it is hard
to get a gradual change of the localization radius by changing
the QD array density. Stochastic nucleation of QDs upon the
Stranski-Krastanow growth mode [10] leads to the formation
of regions with a high local density of QDs. In such regions,
a strong tunnel coupling between the dots results in an in-
tense spin relaxation through the Dyakonov-Perel mechanism.
However, under certain conditions, the existence of groups of
closely located QDs can provide not a decrease, but rather
an increase of the spin relaxation time. First, the QD groups
should be well separated from each other. In this case, the
effective magnetic fields can be averaged due to the electron
back-and-forth motion within each QD group. Secondly, the
QDs inside a group should have a strong tunnel coupling
providing the effective localization radius comparable to the
QD group size. As a result, the averaging of local magnetic
fields related to nuclear spins will take place.

The present work is devoted to an electron spin reso-
nance (ESR) study of inhomogeneous QD arrays, where the
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averaging of the Rashba and hyperfine fields inside QD
groups is expected to provide a long spin relaxation time.
We succeeded in creating an experimental structure containing
well separated groups of QDs with a large electron localization
radius. The coupling between QDs and, consequently, the
electron localization radius in the structures under study turned
out to be dependent on the external magnetic field orientation.
A fourfold increase of the spin relaxation time as compared to
the previous data for dense homogeneous QD arrays [4] has
been detected at a special orientation of the magnetic field,
where the electron localization radius was close to the QD
group size.

II. SAMPLES AND EXPERIMENTAL CONDITIONS

The samples were grown by molecular-beam epitaxy on
n-Si(001) substrates with a resistivity of 1000 � cm. To
increase the response from the sample, we have grown 6
layers of Ge nanoclusters separated by 30 nm Si layers. Each
QD layer was formed by the deposition of 7 monolayers of
Ge at the temperature T = 550 ◦C. On top of the structure, a
0.3 μm epitaxial n-Si layer (Sb concentration � 1017 cm−3)
was grown; an equal layer was deposited also below the QD
layers. Scanning tunneling microscopy (STM) of the structure
with a single QD layer uncovered by Si shows a bimodal
distribution of QDs (hut and dome clusters) (Fig. 1). The
density of dome clusters is ∼1010 cm−2, their typical base
width is l = 50 nm, and the height is h = 10 nm. The hut
clusters are distributed between the dome clusters with a
density of ∼1011 cm−2, their typical base width is l = 15 nm,
and the height is h = 1.5 nm.

The obtained size of dome clusters has to provide a
strong localization of electrons at the apexes of domes with
a small localization radius. To increase the latter, we used a
temperature of 500 ◦C for the overgrowth of the QDs allowing
us to transform the dome clusters into disk-like ones without
a strong Ge-Si intermixing inside the QDs. Cross-section
transmission electron microscopy (TEM) images show that
the height of the disk-like dots does not exceed 3 nm in the
experimental structure. These dots, as well as the original
domes, are characterized by the absence of mirror symmetry

FIG. 1. (Color online) Left panel: STM of the uncovered sample
with two shapes of QDs (hut clusters and dome clusters), 1 μm ×
1 μm image. Right panel: A schematic structure of the investigated
sample. The examples of quantum dot groups are indicated by dashed
line loops.

due to a difference between the smeared top and the sharper
bottom of the QDs. After such an overgrowth the localization
radius is expected to be comparable to the lateral QD size.

STM data show a nonhomogenous in-plane distribution
of dome clusters and the existence of groups of 2–3 closely
spaced nanoclusters, on average (Fig. 1). A sufficient tunneling
coupling between them allows the electron wave function
to spread over the whole QD group and promotes a further
increase of the electron localization radius.

Hut clusters in these structures cannot be centers of
localization because the electron binding energy on huts is very
small (∼10 meV) [11]. Recently, to provide the localization
of electrons on hut clusters, stacked structures with four layers
of Ge QDs were grown [12]. The distances between the QD
layers were 3 nm and 5 nm, and this resulted in an effective
deepening of the potential well near the hut clusters due to
the accumulation of strain from different QD layers. In the
structure under study, the distance between the QD layers is
30 nm, so that the strain accumulation does not occur.

The ESR measurements were performed with a Bruker
Elexsys 580 X-band EPR spectrometer using a dielectric
Bruker ER-4118 X-MD-5 cavity. The samples were glued on
a quartz holder, and the entire cavity and the sample were
maintained at a low temperature in a helium flow cryostat
(Oxford CF935). The interfering ESR signal from dangling
bonds (g = 2.0055) was eliminated using the passivation
of structures with atomic hydrogen before measurements.
To increase the number of detectable spins, a sandwiched
specimen was prepared. The samples were thinned by acid
etching down to 150–250 μm. After thinning, the samples were
glued together; finally, the specimen composed of 4–5 wafers
was investigated.

The spin echo measurements were carried out at a tem-
perature of 4.5 K in a resonance magnetic field H = 3470
Oe (which could be slightly varied by ±5 Oe depending on
the resonance conditions) with the orientation corresponding
to the narrowest ESR line width, θ = 30◦, where θ is the
angle between the magnetic field and the growth direction
of the structure, [001]. A two-pulse Hahn echo experiment
(π/2–τ–π–τ echo) was used to measure T2 (a detailed
explanation can be found in Ref. [13]). In order to observe the
longitudinal spin relaxation (corresponding to the T1 time), a
different pulse sequence is applied (π–τ–π/2–T –π–T echo).
The first π pulse rotates the magnetization opposite to its
thermal equilibrium orientation, where the interaction with
the environment causes the spins to relax back to the initial
orientation parallel to H. After the time τ , a π/2 pulse followed
by another π pulse is used to observe the Hahn echo. In the first
and second type of experiment, the durations of the π/2 and
π pulses were 60 ns and 120 ns, respectively; the interpulse
time in the second experiment was kept at T = 200 ns.

III. RESULTS

The ESR spectra measured at different directions of the
magnetic field are shown in Fig. 2, where θ = 0◦ corresponds
to the magnetic field applied parallel to the growth direction Z.
At θ = 0◦ the ESR line has the most symmetrical shape, and
its profile is close to a Gaussian. The line asymmetry becomes
more pronounced with increasing angle θ , and the line shape
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FIG. 2. (Color online) ESR spectra at different orientations of
magnetic field. For θ = 0◦ the magnetic field is parallel to the growth
direction of the structure [001]; θ = 90◦ corresponds to magnetic
field applied along the crystallographic direction [110].

tends to a Lorentzian already at θ = 10◦. The line shape
analysis performed at θ = 30◦ is shown in Fig. 3. A careful
examination shows that the ESR line represents a sum of an
absorption line (dotted) and a dispersion line (dashed). The
rotation of the sample in the magnetic field results in a change
of the width and position of the resonance line. The orientation
dependence of the ESR line width for the structure under study
is demonstrated in Fig. 4. When the external magnetic field
deviates from the growth direction up to θ ≈ 30◦, the ESR line
width sharply decreases from �H = 1.9 Oe to �H = 1.4 Oe.
A further tilt of the magnetic field leads to a line broadening up
to a maximum of �H = 2.4 Oe at θ = 60◦. For the in-plane
magnetic field, the ESR line width is narrowed again down
to �H = 1.8 Oe. Such a nonmonotonous behavior is unusual
for electrons in a two-dimensional system and has not been
observed to date.

The angular dependence of the g factor is shown in Fig. 5. At
small angles (up to θ = 30◦) the g factor slightly varies near
g = 1.9994(5). Between θ = 30◦ and θ = 40◦ the g factor

FIG. 3. (Color online) Analysis of the ESR line shape for θ =
30◦. The solid line represents the sum of an absorption line (dotted),
and a dispersion line (dashed).

FIG. 4. (Color online) Experimental angular dependence of the
ESR line width and the corresponding theoretical approximation
[Eq. (6)] (solid line) for the structure under study. For θ = 0◦ the
magnetic field is parallel to the growth direction of the structure.

value jumps to g = 1.9992 and remains nearly constant up to
θ = 90◦.

The data of spin echo measurements performed at θ = 30◦,
when the smallest ESR line width is observed, are shown in
Figs. 6 and 7. According to the results of a two-pulse Hahn
echo experiment, the spin echo behavior can be described by
a superposition of two exponentially decaying functions:

M(t) = M (1)
x,y exp

(−2τ/T
(1)

2

) + M (2)
x,y exp

(−2τ/T
(2)

2

)
,

(1)

where M(0) = M (1)
x,y + M (2)

x,y is the lateral (in QD plane)
magnetization after a π/2 pulse. The decay parameters yield
two times the spin dephasing: T

(1)
2 ≈ 0.26 μs and T

(2)
2 ≈

1.5 μs.
The analysis of the inversion signal recovery measured

in three-pulse echo experiments shows a nonexponential
behavior (Fig. 7). The experimental curve can be described
by the superposition of two functions:

M(t) = M0z − M (1)
z exp

(−τ/T
(1)

1

) − M (2)
z exp

(−τ/T
(2)

1

)
,

(2)

FIG. 5. Angular dependence of the electron g factor for the
structure under study. For θ = 0◦ the magnetic field is parallel to
the growth direction of the structure.
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FIG. 6. (Color online) Results of two-pulse spin echo experi-
ments performed at θ = 30◦ (points) and the respective approxima-
tion by the superposition of two exponential functions, Eq. (1) (solid
line). The corresponding microwave pulse sequence is π/2–τ–π–τ

echo.

where M0z is the equilibrium magnetization, M0z = M
(1)
0z +

M
(2)
0z , M (1,2)

z = M
(1,2)
0z − M (1,2)

z (0), and Mz(0) = M1
z (0) +

M2
z (0) is the magnetization just after applying an inverting

π pulse. In accordance with this equation, at the beginning the
magnetization recovers very fast. After some time, a fraction
of spins returns to the equilibrium state, and the recovery rate
becomes much slower. The characteristic times obtained by
fitting the experimental data are T

(1)
1 ≈ 2 μs and T

(2)
1 ≈ 35 μs.

All values of the spin relaxation times were determined with
an uncertainty of ±20%.

IV. DISCUSSION

To explain the experimental results obtained in the present
work, we propose the following model (see Fig. 8). The
electrons are suggested to be localized mainly in the groups of

FIG. 7. (Color online) Amplitude of the inversion-recovery sig-
nal versus interpulse delay τ [symbols are experimental data, the solid
line is the approximation by Eq. (2)]. The corresponding microwave
pulse sequence is π–τ–π/2–T –π–T echo. The experiments are
performed at θ = 30◦.

FIG. 8. (Color online) Illustration of the hopping model for the
structure under study. Hopping transitions inside the QD groups
provide a narrowing of the ESR line with the deviation of magnetic
field from θ = 0◦ to θ = 30◦. Hopping transitions between the
QD groups provoke spin relaxation through the spin precession
mechanism and yield a special orientation dependence of the ESR
line width in the range of θ ∈ {30◦–90◦}.

closely spaced QDs containing 2–3 dots on average (see STM
data). During the overgrowth the QDs lose their apexes and
transform into the disk-like shape QDs. As a result, the electron
localization radius can become comparable with the QD lateral
size. Additional barriers for electrons limiting the electron
motion in the XY directions in the Si layer arise due to the
existence of regions with a nonzero Ge content. These regions
are located over the edges along the perimeter of the QDs, and
they are formed according to the formation mechanism of SiGe
rings described in Ref. [14]. Thus, the electron localization
radius can be taken to be about 50 nm for a spatially isolated
single QD. In the case of a group of closely spaced QDs, the
separating SiGe barriers between the dots inside the group are
absent because of energetically unfavorable positions of Ge
atoms between QDs due to a high strain [15]. SiGe barriers
remain only along the external borders of QD groups. Then the
electron wave function can spread to the size of the QD group,
l ∼ 100–150 nm. Since the confinement of the electrons is not
too strong, the tails of electron wave functions from different
QD groups can overlap, providing hopping between the QD
groups. The external magnetic field applied along the growth
direction can considerably change the described picture. The
magnetic length λ = √

c�/eH is in our experimental setup
(H = 3470 Oe) about 45 nm, which is comparable with
the electron localization radius for a single QD. In these
conditions, the magnetic field leads to depression of the
electron wave function tails [16], resulting in an enhancement
of electron localization. Thus, the perpendicular magnetic field
suppresses the transitions between QD groups and decreases
the electron localization radius in the QD group down to
the size of an individual QD. Nevertheless, the transitions
between QDs inside the groups still persist due to a small
distance between the QDs. With the deviation of the magnetic
field from the growth direction the wave function shrinking
effect vanishes and the probability of electron transitions
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between dots increases. The conductivity in local areas (QD
groups) becomes higher. In the experiment, this corresponds
to the appearance of a noticeable dispersion signal and to an
enhancement of the asymmetry of the ESR line (the ESR line
acquires a nearly Dysonian shape [17]). A similar effect was
observed for SiGe/Si/SiGe structures with a two-dimensional
(2D) electron gas [18].

At the same time, the increase of the effective electron
localization radius causes an averaging of the local magnetic
fields induced by nuclear spins and a smoothing of the QD
parameter differences within a QD group. As a result, the
narrowing of the ESR line upon deviation of the magnetic field
from θ = 0◦ to θ = 30◦ is observed. The minimum of the ESR
line width at θ = 30◦ indicates that the electron localization
radius reaches the size of the QD group, and a full averaging
inside each group takes place. A further increase of the electron
localization radius leads to an enhancement of the hopping
between the groups and a decrease of the spin lifetime through
the Dyakonov-Perel spin relaxation mechanism.

The decreasing spin relaxation time affects the ESR line
width. From θ = 30◦ on the broadening due to the spin relax-
ation, �H ∼= 1/T2, exceeds the nonhomogeneous broadening,
and the further orientation dependence of the ESR line width
is controlled by the spin relaxation time.

It should be noted that there is another mechanism
which can provide the anisotropy of the ESR line width,
viz., relaxation assisted by the spin-phonon interaction. This
mechanism can be effective due to the lack of phonon
bottleneck in our structures with large QD sizes resulting
in small confinement energies of electrons. In this case the
anisotropy of spin relaxation processes is determined by the
shape asymmetry of disk-like QDs. Their lateral size is one
order of magnitude larger than their height, therefore only kx-
and ky-phonon waves effectively influence the spin. However,
the experimentally observed maximum of the ESR line width
at θ = 60◦ cannot be described in the framework of the
spin-phonon interaction model [19], which should yield a
monotonous orientation dependence of the ESR line width.

The Dyakonov-Perel mechanism allows describing the
nonmonotonous behavior of the ESR line width on the
assumption that τh depends on the magnetic field. This
dependence, determined in the framework of the hopping
model [19], can be described as an exponential,

τh = τ0 exp
(
αHm

z

)
, (3)

where Hz is the projection of the magnetic field to the growth
direction; the coefficient m can be equal to m = 1/2 or m = 2
for the case of strong or weak magnetic fields, respectively.
For intermediate fields, λ ∼ l, this coefficient can take a value
in the range 1

2 < m < 2 (Ref. [16]).
The spin relaxation time T2 in the framework of the Redfield

theory [20] is given by the following expression:

1

T2
= γ 2δH 2

y sin2 θτh + 1

2T1
, (4)

with

1

T1
= γ 2

(
δH 2

x + δH 2
y cos2 θ

) τh

1 + ω2
0τ

2
h

, (5)

where the correlation time of spin-orbit field fluctuations τc

was replaced by the hopping time τh; ω0 is the Larmor
frequency; δHx , δHy are the components of the effective
magnetic field δH .

Thus, using Eq. (3) for τh, we obtain the following
expression describing the orientation dependence of the ESR
line width:

�H = B exp(A cosm θ )

(
sin2 θ + 1 + cos2 θ

1 + C exp(2A cosm θ )

)
,

(6)

where B = γ δH 2
y τ0, A = αHm, C = ω2

0τ
2
0 . The experimental

data �H (θ ) in the range of θ ∈ [30◦,90◦] are well approx-
imated by this expression (Fig. 4) with m = 3/2, A = 1.52,
B = 1.78, C = 795.2. The obtained coefficient m corresponds
to the case of intermediate magnetic fields (λ ∼ l) that argues
for the accepted hopping model with τh depending on the
magnetic field.

The magnitude of the effective magnetic field δH , estimated
from the B coefficient, turns out to be ≈15 Oe. This value is
twice as small as that determined in our previous work [21] for
hut clusters with the aspect ratio h/l = 0.1. It is known [22]
that in a QD system the effective magnetic field depends on
the h/l value: the higher the aspect ratio, the larger the δH

value. For the QDs under study the aspect ratio is about 0.05,
therefore the effective magnetic field proved to be smaller.

The spin echo data are in a good agreement with the
proposed model implying the existence of closed groups of
quantum dots being the centers of electron localization. The
experimental spin polarization behavior shows that the spin
relaxation occurs in two stages: a rapid and a slow one. To
understand the origin of this two-stage spin dynamics, we
simulated the spin relaxation process in a ring-shaped group
of QDs. The model includes a strong tunnel coupling between
quantum dots in the circle. Hopping between any neighboring
QDs is permitted with equal probability for the back-and-forth
motion. Each tunneling transition is accompanied by a spin
rotation by a small fixed angle α = 0.1. The direction of
the rotation axis is defined by the product [n × ez], where
n is the tunneling direction, and ez is the QD growth
direction. The external magnetic field is applied along ez and
provides the Larmor precession between tunneling events.
The time intervals between tunneling events are distributed
exponentially with a mean value τh. The spin relaxation caused
by the interaction with phonons and nuclear spins was not
taken into consideration. The transport was simulated by the
Monte Carlo method for different numbers of QDs in the circle.
The simulation results for a ring consisting of 10 quantum
dots are demonstrated in Fig. 9. The two-stage spin dynamics
is clearly seen. It turned out that this effect depends on the
relation between the hopping time τh and the Larmor frequency
ωl . The two-stage dynamics is observed when ωlτh � 1. For
example, the data in Fig. 9 were obtained at ωlτh = 0.1. The
first stage of spin relaxation is related to the processes of
electron spreading over the group of QDs. At this stage the
loss of spin polarization occurs due to the precession in the
effective magnetic field during the tunneling between dots.
The spin dynamics at the second stage is defined by the phase
breaking of the Larmor precession during a random walk along
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μ

FIG. 9. (Color online) Results of a spin relaxation simulation in
a closed ring-shaped group of QDs. The number of QDs in the ring
is n = 10. The hopping time is taken as τh = 10−11 s; the Larmor
frequency is one order of magnitude smaller, ω = 1010 s−1. A two-
stage dynamics is observed.

the QD ring. Generally speaking, this stage of spin relaxation
can be ruled by the spin-phonon or hyperfine interaction as
well, if one includes them in the consideration. The absence of
two-stage dynamics in the case of ωlτh � 1 can be understood
by the simple consideration of the spin behavior in a reference
frame rotating with the Larmor frequency. The randomness of
hopping between dots leads to an averaging of the effective
magnetic field (〈δH 〉 = 0) and elimination of spin relaxation
at the first stage of the electron extension over the QD group.
According to the simulation results, the first rapid stage is
characterized by a special relation between the longitudinal
and transverse spin relaxation times T1 and T2, akin to a 2D
system with the absence of mirror symmetry, viz., T2 ≈ 2T1.
Such a relation was obtained by spin echo measurements for
2D electron gas structures [23] and for dense homogeneous
QD arrays [4], and follows from the in-plane arrangement of
the fluctuating magnetic fields δH . Also we have verified the
presence of two-stage spin dynamics in QD clusters with other
spatial arrangements; for example, QD lines containing a few
dots. The described general features are well preserved upon
changing only the numerical values of T1 and T2.

In T2 measurements the first stage is characterized by
T2 ≈ 0.26 μs. Based on the simulation results one can expect
the same shortness for T1. However, the three-pulse method
has limitations in the measurements of such short times. The
difference between the durations of the pulse sequences in the
T1 and T2 experiments is comparable to the duration of the first
rapid stage of spin relaxation, which makes difficult the study
of the beginning of the Sz relaxation.

The second stage of spin relaxation has the characteristic
times T1 = 2 μs and T2 = 1.5 μs. Here, the special relation
T2 ≈ 2T1 is not fulfilled because of the presence of some
additional spin relaxation mechanisms, for example, Larmor
precession phase breaking during a random walk along the
QD group, or another one. The presence of long-living spin
polarization with the relaxation time T1 ≈ 35 μs is attributed to
some stabilization of the Sz component taking place during the
electron movement within a closed QD group. According to the

Ge QD SiGe

Si 

wave function
θ
[001]

[110] 

FIG. 10. (Color online) Schematic picture of the electron wave
function penetration into the SiGe barrier surrounding a Ge quantum
dot at different magnetic field orientations. The dashed line represents
the wave function at θ = 0◦, the solid line corresponds to the wave
function at θ = 90◦. The SiGe barrier is formed due to Ge diffusion
to the QD periphery during the growth of the Si cover layer [14]. The
case of a single quantum dot is depicted for simplicity.

simulation results at a high hopping frequency (ωlτh < 0.01),
the spin polarization after the rapid stage is settled at some level
depending on the parameters of the QD group. In this case, the
Larmor precession can be neglected, and the sequence of small
turnings in the Rashba fields can be considered as an effective
precession around the growth direction Z. In these conditions,
the Sz component is stabilized. In contrast, the transverse spin
component relaxes quickly, which is why in the experiment
we did not observe the rest transverse spin polarization with a
long relaxation time.

The orientation dependence of the g factor allows us to add
some details to the considered model. The value g = 1.9994
coincides, within the experimental error, with the typical g-
factor value for electron states near the conduction band edge in
Si [24]. The fact that the g factor stays close to this value up to
θ ≈ 30◦ confirms that the electron is located in silicon until this
orientation of the magnetic field. In other words, the electron
increases its localization radius remaining in silicon. After
the θ = 30◦ point, the electron localization radius exceeds the
size of the QD group, and the g factor drastically changes to
the value g = 1.9992. Such a behavior can be explained by
the change of the electron wave function penetration into the
SiGe barriers surrounding the QD groups (see Fig. 10). The
penetration depends on the magnetic field orientation due to
the wave function shrinking effect that is more pronounced at
small θ (dashed line in Fig. 10) than at large θ values (solid line
in Fig. 10). The presence of Ge atoms can provide a decrease
of the g factor [21].

Let us verify this assumption and estimate the value of the
Ge content in the localization area of the electron providing
the g-factor value g = 1.9992. One can write the following
expression for the electron g factor:

gel = g(Si)(1 − α) + g(Ge)α,

where α is the Ge content.
The conduction band minimum in silicon is located in the

� point. Since the Ge content is small, we assume that in the
SiGe regions the conduction band minimum is also located in
the � point. In our previous work [21] following the approach
of Liu [25] we have found the principal g-factor values for
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the � point in germanium, g
Ge�

‖ = 2.0412, g
Ge�

⊥ = 1.8873.
As the strain is small, for simplicity we use the value of the g

factor averaged over all � valleys, g(Ge) = 1/3g‖ + 2/3g⊥ =
1.9386. For g(Si) we take the value of the g factor of the
electron states at the conduction band edge, g = 1.9995. Then
the resulting g factor is given by

gel = 1.9995(1 − α) + 1.9386α.

Substituting gel = 1.9992 we find α ≈ 0.5%, which is a
reasonable value for our experimental structures. So, at
θ < 30◦ the g factor of electrons localized in the structure
under study is g ≈ 1.9994(5) which corresponds to the Ge
content in the electron localization area α ≈ 0. At θ > 30◦
the g factor of electrons is g ≈ 1.9992 which is provided
by α ≈ 0.5%.

It should be noted that the same value of electron g

factor was obtained by us in another ESR experiment for
a structure with large SiGe nanodisks having a diameter of
100–150 nm. For this structure we used a substrate with
specially created nucleation sites to obtain a more ordered
array of quantum dots. These nucleation sites originated due
to strain modulation in the surface layer induced by previously
buried QDs. Large dome-shaped clusters grown at a previous
stage at a temperature of 650◦ have a good spatial ordering
due to a long-range elastic interaction between the QDs [15].
On this strain-modulated surface we have grown 10 layers of
QDs using the same temperature regime as in the structure
under study (T = 550 ◦C for the QD growth and T = 500 ◦C
for the overgrowth by Si). However, we reduce the amount
of deposited Ge down to 4 ML in each QD layer, and, as
a result, we obtain a well ordered array of nanodisks after
the overgrowth with Si. Thus, we can compare two structures:
(1) a nonordered array with groups of closely spaced QDs, and
(2) a well ordered array of nanodisks, one nanodisk instead of
one QD group. The average size of QD groups coincides with
the characteristic size of nanodisks.

The ESR data obtained on the test structure with nanodisks
confirm the model proposed in this work. The ESR signal has

an isotropic g factor g = 1.9992 ± 0.0001 and an isotropic
ESR line width �Hpp ≈ 0.4 Oe. The absolute value of the
g factor is the same as in the structure with QD groups
at θ > 30◦. This can be explained by the identical electron
localization radius and identical temperature regime of the
QD creation. The last factor determines the GeSi intermixing
and strain in the QD system, which have a high influence on
the g-factor value. The isotropy of the ESR line is explained by
the absence of tunneling transitions between nanodisks which
are well ordered in the plane of QD array and positioned at
equal distances (∼100 nm) from each other. The narrowness
of the ESR line indicates a high averaging efficiency of nuclear
magnetic fields by the electron state with a large localization
radius and the high uniformity of the array of nanodisks
(negligible inhomogeneous broadening). In the structure with
QD groups the averaging by means of tunneling between the
dots is not so efficient, so that we observe a few times larger
ESR line width.

V. CONCLUSION

In summary, we demonstrate that the existence of closely
spaced QD groups provides an increase of the spin relaxation
time in the QD system. Changing the electron localization
radius by an external magnetic field allows us to catch the effect
of the ESR line narrowing and to obtain, at a special orientation
of the magnetic field, a fourfold increased relaxation time T1

as compared to the case of the recently studied homogeneous
QD arrays.
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