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Inhomogeneities and junctions in wires are natural sources of scattering, and hence resistance. A conducting
fixed point usually requires an adiabatically smooth system. One notable exception is “healing,” which has been
predicted in systems with special symmetries, where the system is driven to the homogeneous fixed point. Here
we present theoretical results for a different type of conducting fixed point which occurs in inhomogeneous
wires with an abrupt jump in hopping and interaction strength. We show that it is always possible to tune the
system to an unstable conducting fixed point which does not correspond to translational invariance. We analyze
the temperature scaling of correlation functions at and near this fixed point and show that two distinct boundary
exponents appear, which correspond to different effective Luttinger liquid parameters. Even though the system
consists of two separate interacting parts, the fixed point is described by a single conformally invariant boundary
theory. We present details of the general effective bosonic field theory including the mode expansion and the finite
size spectrum. The results are confirmed by numerical quantum Monte Carlo simulations on spinless fermions.

We predict characteristic experimental signatures of the local density of states near junctions.
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I. INTRODUCTION

Transport in quantum wires is a rich field bringing together
conductivity experiments [1-5] and Luttinger liquid theory
which describes the crucial electron-electron interaction ef-
fects in one dimension [6—8]. Scattering from a single impurity
or other inhomogeneities, for example, becomes renormalized
by the interaction and can lead to insulating behavior at low
temperatures even for weak impurities [9—14].

To determine the conductivity of a one-dimensional wire it
is necessary to couple it to some leads or reservoirs, normally
a two-dimensional electron gas (2DEG). Such a setup can be
mostreadily described as an inhomogeneous wire, in which the
2DEGs are modeled as noninteracting wires. In this case the
conductance is usually controlled by the parameters of the lead
rather than of the wire [15-28], in contrast to what a naive
calculation on an infinite interacting wire would suggest. The
conductance for perfect adiabatic contacts and wires can be
understood by the decomposition of an electron into fractional
charges [16,29]. Additional relaxation processes which take
place within the interacting region of the wire do, however,
lead to a resistance which is affected by the wire parameters.
The resistance due to impurity scattering [30] or phonon
scattering [28] within the interacting wire, for example, will in
general depend both on the Luttinger liquid parameter of the
leads and the wire.

In this paper we consider the intrinsic scattering from the
junctions between the wire and leads, which is generically
present due to the abrupt change of parameters even for
otherwise perfect ballistic connections. This scattering is
renormalized by the interaction [30], leading to a vanishing
dc conductance in the low temperature limit for repulsive
interactions within the wire. However, perfect conductance is
still possible by tuning the parameters on the two sides of the
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junctions as has been analyzed in detail for a particle-hole
symmetric model [27]. In this case a line of conducting
fixed points in parameter space exists as only one relevant
backscattering operator is permitted by symmetry which can
always be tuned to zero. Here we generalize to the more
experimentally relevant case where particle-hole symmetry
is no longer present. Even in this more general case we
still find a line of conducting fixed points provided the
underlying microscopic theory has certain local symmetry
properties. Even though the systems under consideration
are inhomogeneous, it is possible to characterize the fixed
points by a single conformally invariant boundary theory with
a characteristic mode expansion and finite size spectrum.
The results are confirmed by numerical quantum Monte
Carlo (QMC) simulations on spinless fermions. Characteristic
experimental signatures for the local density of states near
junctions can be predicted.

For conductivity experiments we must typically consider a
system with two junctions, one at each end of an interacting
wire where it is connected to the leads (e.g., 2DEGs). These
junctions are intrinsic sources of inhomogeneity, but in most
cases the junctions do not influence each other since the length
of the wire is much larger than the coherence length up,
where f is the inverse temperature and u the velocity of the
collective excitations. For our purpose to make predictions for
the backscattering and the local behavior near the leads, it is
therefore sufficient to analyze one junction between a lead and
a wire.

As an introduction in Sec. II we consider an idealized
junction in a noninteracting lattice model and discuss the ap-
plicability of a narrow band approximation. In Sec. III we start
from a microscopic interacting model and demonstrate how
the backscattering terms arise, and then introduce the general
effective bosonic field theory. Focusing on abrupt junctions
connecting otherwise homogeneous wires, we examine the
renormalization group flow of perturbing operators in the
model. We discuss the locations of the unstable conducting
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fixed points in relation to the symmetry properties of the
underlying microscopic model. Finally in Sec. IV we describe
the conformally invariant boundary theory for the conducting
fixed point and the scaling of the local correlation functions at
the boundary. In Sec. V we conclude.

II. NONINTERACTING MODELS

Before considering the interacting model it is instructive
to analyze the backscattering seen in inhomogeneous systems
of free particles, where exact results are obtainable and can
be compared directly with low energy approximations. We
start with a lattice model of noninteracting spinless fermions
described by the Hamiltonian

Hy— uN = = [t;(0 11 +He) — Viyly;l. @)
J

1//} creates a particle at site j, f; and V; are the position-
dependent hopping elements and local potential energy re-
spectively, and N the total particle number. We set i =1
and include in the following the chemical potential u in the
local potential energy V;. Generically we consider situations in
which we have two homogeneous regions on the left (j < jy)
and right (j > j,) sides of the wire. In these asymptotic
regions the plane-wave solutions have the same energy so
the parameters are related by

—2ty coslkea] + Ve, = —2t, cos[k,a] + V,, 2.2)

with k, , the momenta, V, , the potential, and #, , the hopping
on the left (¢£) and right (r) sides. We have also introduced the
lattice spacing a. We consider a wave-function incident from
the left

etk 4 Re=ike |
Y= { (2.3)

J<
Tk, j=
The region from j, to j. is the region of inhomogeneity

describing the junction.
There are two velocities

u; = 2at; sinlk;a], 24
i = {¢,r}, and the current conservation implies
(1= [RP)ug = T u,. (2.5)

It is natural to refer to R =0 as “perfect transmission,”
although this does not necessarily maximize |T'|*. A reasonable
definition of perfect transmission would be maximizing the
outgoing current on the right for a given value of the incoming
current from the left u,; that is, maximizing |T|2ur/ug.
Noting that | T |>u, /u; = 1 — | R|* we see that the condition for
perfect transmission equivalently corresponds to minimizing
|R|?>. This can also be seen by considering the Landauer
transmission, see Appendix A.

In general, accurate results cannot be obtained by ignoring
states far from the Fermi energy. This can be seen from the
fact that the off-diagonal components of the 7" matrix, Tj y/,
are nonnegligible when |£’| is not close to |k|. This implies a
nonnegligible mixing of low energy states with high energy
ones due to scattering near the interface. However, in certain
limits, a narrow band theory can be used, in which we keep

PHYSICAL REVIEW B 89, 045133 (2014)

only a narrow band of states, of width A < kr, where kp is the
Fermi momentum, and linearize the dispersion relation. This
can be justified in one of two cases. (a) If all potential energy
terms V; and all hopping terms #; are nearly equal, including
the asymptotic ones #, & t,. This corresponds to the adiabatic
limit where a local density approximation suffices. (b) If there
are one or more very weak hopping terms separating otherwise
uniform chains. In this latter case the ratio #, /¢, can be arbitrary.
These are the limits of weak backscattering or weak tunneling.
Starting with the unperturbed basis of translationally invariant
wave functions, or wave functions vanishing at the interface,
respectively, a small perturbation only mixes states with energy
differences of the order of magnitude of the perturbation.

In these cases we may keep only a narrow band of states
near zero energy and introduce left and right moving fields in
the usual way,

% ~ ety () + e Y (1), (2.6)

with x = aj a continuous variable and kr, being the Fermi
momentum in the left, kr y<q4j, = kre, orright, kg y>qj, = kp,
of the wire.

Here we want to consider only the simplest model for a
junction while various other types of junctions are discussed in
Appendix B. In the simplest model two homogeneous regions
are connected at one site such that

te, j<0,
=1, 70
r»s ]/ bl

2.7)
Vi= V[, ‘]:<0,
Vi, Jj>0,

and Vj is kept as a free parameter. The reflection amplitude
is determined by the Schrodinger equation for the central site
and results in

a(Ve+V, = 2Vo) —iue — uy)

= - - . (2.8)
aVe+V, =2Vo) +i(u¢ + u,)
The conditions for perfect transmission are therefore
ug = u, , and
(2.9)

Vo = (VZ + Vr)/2

When these conditions are satisfied, R =0 and |T|> = 1.
Curiously, the maximum possible value of |T'|? actually occurs
when Vp = (Vy + V,)/2 and u, = 0, in which case |R| =1
and |T| = 2. But in this case the current is actually zero on
both sides, so calling this perfect transmission would seem
inappropriate. The existence of the two conditions (2.9) for
perfect conductance is related to the breaking of particle-hole
symmetry, see Sec. [I[ A.

Next, we consider the abrupt junction of Eq. (2.7) in
a narrow band approximation setting t, =t — 8¢ and ¢, =
t 4 8t, with |§t| < t. When §t = 0 we obtain the usual free,
translationally invariant Dirac fermion model, with uniform
velocity uog = 2atsinkp. Here we treat the §f term as a
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perturbation. Using the separation into right and left moving
fields, Eq. (2.6), the backscattering at the junction is given by
—1

Z (2t¢eik”a _ Vz)eh’kmja 4 Ztreikpru

Jj=—00

SH ~ —a

oo
— Vot Y @t — v, )etrie vy, +He (210)
j=1

Since ¥_(x) and ¥, (x) are assumed to vary slowly on the
scale of k;[} /» the oscillating terms in the bulk cancel, leaving
only the contributions at x = 0. We may then write the local
backscattering at x = 0 as

8H ~ 2iry !y (x = 0) + H.c. 2.11)
with (see also Appendix E)
a 17 1,
Red = — | — — =
2 (sm[kpga] sm[kp,a]>
— o (Vecotlkpal = V, cotlkr,a)
d 2.12)

= % (¢, sinlkpeal — t, sin[kp,al),
21

ImA = i(Ve+Vr -2V,
4

where we have used Eq. (2.2) to simplify the real part. We
see that the scattering amplitude A is real if the local potential
energies are equal, Vo = V, = V,.. This is surprising because
for any nonzero local potential the problem is no longer
particle-hole symmetric. In Appendix B we show that this
is a special property of the junction (2.7) and does not hold
in general. Finally, we can use the fact that we are treating
the difference in hopping 6¢ perturbatively and approximate
kp¢ = kg, =~ kp in which case the real part of the scattering
amplitude further simplifies,

Up — Uy

dr
where the difference in velocities on the two sides of the
junction is given by u, — u, = 4adt sinlkra]. We see that
for Vo~ V,~V, and u; =~ u,, required for the narrow
band approximation to be valid, the result for the scattering
amplitude A is fully consistent with the exact result for
the reflection amplitude (2.8) by using the general relation
R = 4w A /(u, + uy) between these two quantities in this limit.
In Sec. IIT A we will discuss how the narrow band calculation
for this type of junction can be extended to the interacting case
using bosonization.

5t
Rea = — 2% Ginkpa] = 2.13)
T

III. INTERACTING MODEL

_ Asamicroscopic interacting model we use the Hamiltonian
H = Hy + H,, where H is given by Eq. (2.1) and

H; = ZUJ : wj'wj i W;H%H : 3.1
J

for interactions with a position-dependent nearest-neighbor
interaction strength U;. Normal ordered operators are given

PHYSICAL REVIEW B 89, 045133 (2014)

by 1 ¥ ¥; i= ¥l ¥; — (01¥v;10), with |0) the ground state.
It is assumed that the spatial variation of U, ¢;, and V; in I:IO,
is consistent with the narrow band approximation explained in
the preceding section. Later we will focus on the limiting case
of an abrupt jump in the interaction and hopping parameters
at the junction, as used elsewhere [16,17,27,29,30].

To find the underlying low energy bosonic theory, we first
need to linearize the spectrum. Analogously to the normal
Luttinger liquid theory [6—8], one can linearize around the bulk
band structure in the left and right regions of the wire [27].
Linearization is performed around the Fermi momenta k , for
left and right movers:

% =y = ;e"“’“x%(x),

with the appropriate commutation relations
[V (). ¥p()] e =0 and [e(0). Y ()]s = Sapd(x — x").
Here kr , is defined by —2t cos kr , + V, = 0. Note that it is
not necessary to assume that kry = kp,.

After linearization of the free Hamiltonian we find

3.2)

Ay = — / dx Z at, [e" Yl (), (x) + Hee]

a==%

_ / dx Z[ztxe—ZiaK;r _ Vxe—2i0{kp.x]

a==
X YL O _a(x),

where the Fermi momenta are determined by

(3.3)

Ve = 2t, cos[k, ], 34

and we have defined k, = kp r4,(x +a) — kp x and 2« =
kp x+qa(x + a) + kg x. Similarly, one can write the linearized
interaction as

A=) /dxaUx(: Yiva () = Ylps(x +a) :

o, f=%
P Ly () 5 Y p(x )

e Byl (1) s Y +a)

1 o= 2ikeax—PRike ralx-ta)

X L YSY_a) YU px +a) D),

keeping for the moment all of the terms. If the interaction
acts homogeneously then many of the terms can be neglected
as they are suppressed by the rapidly oscillating phases.
Due to the inhomogeneity in U, this is no longer true and
all processes could in principle be important. In fact we
find that umklapp scattering is generically irrelevant under
renormalization group (RG) flow, see Appendix D, and to
lowest order the backscattering only renormalizes the single
particle backscattering already present in the noninteracting
Hamiltonian.
We bosonize using the local vertex operator [31,32]

(3.5)

| B
Ve(x) = ezw«/ﬂ[%(ﬂ] . (3.6)

2ra
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We use the following convention: ¢(x) = ¢ (x) + ¢_(x)
and its adjoint ¢(x) = ¢4(x) — ¢_(x) with the conjugate
momentum, [1(x) = d,¢(x). These fields obey

64 (0).6_ ()] = —2,

[ (). Pu(¥)] = % sen(y — x), and
[$(x). TI(y)] = i8(x — y).

Some further useful formulas for bosonization are given in
Appendix C.

The full Hamiltonian A = Hy + H, can be rewritten in
the bosonic representation as a quadratic Hamiltonian, a local
backscatterer, and umklapp scattering: H = Hj, + H' + Hy,
see Appendix C for details. As already mentioned, away from
half-filling the umklapp scattering term Hy becomes a local
perturbation confined to the regions where U is varying, and is
then irrelevant under RG flow. It is neglected in the following.
We find the quadratic term to be

(3.7)

A, = f ax's (gi(ax¢>2+gx(ax<5>2) Y

To lowest order we can determine the renormalized velocity

U
uy ~ 2at, sin[k; ] <1 + ; sin[x;]> : (3.9)
Tty
and the Luttinger parameter
g ~1-— al sin[«,]. (3.10)

X

The local backscattering from all processes in Eqgs. (3.3)
and (3.5) can be summarized in one term

N 1 . . ey
H = Z — e VATOWdikrex | T Xy 4,
fyd 2mi asinfky |
JjEZ

@3.11)

We keep the sum over x = ja here discrete to avoid ambiguity
as to what the alternating terms are in the continuum limit. This
also helps the precise calculation of these sums.

A. An abrupt junction

Let us now focus on the simple junction considered already
in the previous section for the noninteracting case where two
semi-infinite wires are joined at x = 0 with t, o = #;, t,>0 =
t., and U, defined equivalently. The local potential energy is
taken to be uniform, V; =V, except where explicitly said to
the contrary. The Fermi momenta, kr ., can also be written
with a similar structure as kr , .o = kr¢ and kg ,>0 = kp,. In
this system backscattering can be rewritten as

A

A~ pe V00=0 L g

1 . e iy
A= —j 6721kF,xX - Val . 3.12
! Z 27-[a [Sin[/{x_] } ( )

X
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With the help of Appendix E, and noting that for an abrupt
jump k. = kp ca, we have to lowest order in the interaction

N 1 1y +Ug 1, U,
27 | sin[kpeal T sin[kfg,a] T

— l[cot[kpga] — cot[kp,all, (3.13)
4

which generalizes the noninteracting result, Eq. (2.12). As A
is real we find that there is no sin[+/47 ¢(0)] operator present
at the boundary and the total backscattering is

H' = 2) cos[v4m $(0)]. (3.14)
The perhaps surprising absence of the sin[+/47 ¢(0)] operator
is connected to the local properties of the Hamiltonian in
the vicinity of the boundary, see Appendix B. As such there
remains only one condition to fulfill for the conducting fixed
point: A = 0 with A real.

For V = 0 when there is particle-hole symmetry present,
corresponding to the mapping ¢ — —¢ and ¢ — —¢, it is
transparent that sin[v/47w¢(0)] is forbidden. For V # 0 we
find that A remains real for the specific junction considered—
analytically to first order in the interaction U, see Eq. (3.13),
and numerically for all interactions strengths, see below. We
do not have a simple argument why this is the case and
Appendix B shows that this is in fact not a generic feature
of an abrupt junction.

B. Local density and compressibility

For the system with an abrupt jump in hopping and
interaction strength it is possible to calculate a variety of
properties perturbatively in the boundary operators using the
exact Green’s function for the Hamiltonian (3.8), see Eq. (D2)
in the Appendix. In addition to the dc conductance one can
also consider local properties such as the local density and
compressibility of the wire. For abrupt changes in parameters
the local density is known to show characteristic oscillations,
the Friedel oscillations [33], which give information about the
interacting correlation functions [34-36] and the strength of
the backscattering [27,37].

The bosonized density operator for the fermions becomes

1
n(x) = no(x) — ﬁax(p(x)

const.

sin[2k} . x + VAT g, ]. (3.15)

As before we keep the local potential energy constant V, = V.
The oscillating contribution to the density, i.e., the Friedel
oscillations, which are given by

const.

pa(x) = < sin[2k} x + \/E¢(x)]> , (3.16)

will be calculated to first order in A. k7.  is the renormalized
Fermi momentum at finite temperature which can be found
from the bulk density: px = (no.x) = ki, /7.
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U; = 0 noninteracting | U, = 1.8t, interacting

FIG. 1. (Color online) The full density including Friedel oscilla-
tions near the boundary, numerical results (filled circles) are fitted to
the analytical result of Eq. (3.19) (lines) with 7, = 1.308¢,, U, = 0,
and U, = 1.8t,. The local potential energy is V = —0.25¢, and
t. = 10. Underneath a schematic of the system under consideration
is shown.

For this we require the following integral
B
T(x) = 2/ dt (cos[v/4m ¢(x,0)] cos[v/4m $(0,7)])
0
B
— f d.ce27r[G(x,O;r)7G(O,0;O)]
0

1 (4nTa\® ([ u, . [272Tx]\"®
— sinh P_;(2),
T Uy 2waT Uy

(3.17)

which has been calculated using the Green’s function in
Appendix D. We introduced

(3.18)

|:271 Tx ]
z = coth ,

Ux
and P;(z) is the Legendre function. This gives

const.

B
pa(x) = — / dt (sin[2k}  x + Varp(x)1H')
0

const.

=—A T(x) sin[2k,  x]. (3.19)

mla
To test the calculations we have developed a quantum Monte
Carlo (QMC) code using a stochastic series expansion (SSE)
with directed loops [38,39]. In Figs. 1 and 2 we show a
comparison of this analytical result with the outcome of QMC
simulations on spinless fermions. Even for a very large jump
in parameters the fit remains very good. Note that what is
seen in the local density and compressibility profiles, see
below, is an interplay between the shape of 7(x) and the
incommensurate oscillations from sin[2k}, . x]. For the fitting
procedure between the analytical and numerical results there
are two parameters. The first is the amplitude of the effect
due to the unknown constant in Eq. (3.16) and the cutoffs
in the field theory. The second is a small offset in position,
pait(x — @), due to an effective width of the scattering center,
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0.5 F
0.48
0.46
0.44

0.42}

0.4f E

-40 0 x 40

FIG. 2. (Color online) The full density including Friedel oscilla-
tions near the boundary, numerical results (filled circles) are fitted to
the analytical result of Eq. (3.19) (lines) with #, = 1.31¢,, U, = 0, and

U, = 1.8t,. The local potential energy is V = —0.75¢, and ¢, 8 = 10.

with a being of the order of the lattice spacing a. The Luttinger
parameters g, can be found from the Bethe ansatz [40-43].
The local compressibility is defined as
9 (Ay)
e =~ ) (3.20)

I8V lsv—o
analogous to the local susceptibility in a spin chain [35]. For
the alternating contribution this yields

Xaie ¢ AxT(x) cos[2ky. . x]. (3.21)

Unlike the Friedel oscillations in the density this observable
remains nonzero even for half-filling and is therefore in that
particular case a more useful quantity to study.

C. Conducting fixed points

In Sec. IIT A we have predicted that for the abrupt junction
considered only one parameter needs to be tuned to find a
conducting fixed point. The low-order expansion for A given
by Eq. (3.13) is not sufficient, however, to find the location
of the fixed points for the large interaction strengths we want
to consider in general. Only in the limit U, — 0, where we
know the exact result, can we be confident of its predictions.
An exception is the half-filled case where we have previously
argued [27] that the scattering amplitude A vanishes for all
interaction strengths if uy, = u,, with the velocities at half-
filling known in closed form as a function of the interaction
strength from Bethe ansatz [40,41].

Instead, at generic fillings, we can find the locations of the
solutions #*(V) which solve (¢, = t*,V) = 0, keeping U, and
t. fixed, by analyzing the local density or compressibility of
the system by QMC simulations described in the preceding
subsection. We find that, away from half-filling, these do
not correspond to u, = u,. For A = 0 the density is deter-
mined entirely by the Hamiltonian Eq. (3.8), plus irrelevant
perturbations. For A 7 0, on the other hand, the relevant
backscattering term contributes. By plotting the density for
different ¢, in Fig. 3 we can find the places where the leading
corrections vanish and A changes sign [27], which typically can
be observed in the range 5a < x < 10a. Since we can always
identify a value of hopping where the leading contribution
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0.01

0.02

20
x/a

30 0 10 30

FIG. 3. (Color online) Plotted are the Friedel oscillations for
different local potential energies V calculated by QMC simulations,
see main text for details, on the right-hand side of the junction
(x > 0). We only show the longer wavelength amplitude of the rapid
oscillations. In each panel from top to bottom: #, = 1.3¢, for (black)
circles, t, = 1.4t, for (red) squares, t, = 1.5¢, for (green) diamonds,
t, = 1.6¢, for (blue) up-triangles, and #, = 1.7z, for (purple) down-
triangles. We have used everywhere U, = 0, U, = 1.8¢, and inverse
temperature ¢, 8 = 10.

vanishes, there must be a line of conducting fixed points in
parameter space. In turn the existence of a full line of fixed
points demonstrates that there is only one condition for the
conducting fixed point, A = 0 with real A. We want to stress
though that even at such a point in parameter space there are
still irrelevant backscattering processes present which only
vanish in the zero temperature limit 8 — oo.

IV. CONFORMALLY INVARIANT BOUNDARY THEORY

In the preceding sections it has been demonstrated that it
is possible to find an unstable conducting fixed point in two
wires connected at a junction by appropriately tuning the
bulk parameters of the wires. The existence of this fixed point
immediately invites the question of the nature of the effective
low energy theory. Obviously translational invariance is lost
and it is also not possible to use mirror charges as would be
the case for an open boundary condition. Therefore it is highly

J

() = ngx & e—imlt/L
X,t) = + - + +
¢ %0 2L 2yL ;[ V27l

>[5

=1

—_

dix, r>—¢o+f%

2gx
As before we have the boundary Luttinger parameter

1 1
[— + —} , (“8)
8¢ 8r

[\/gcos(nlx/L)aez +

(o[
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nontrivial to postulate a description in terms of a conformally
invariant theory in this case. Nonetheless, as we will show in
this section it is possible to characterize this fixed point in terms
of mode expansions and two effective boundary Luttinger
liquid parameters. Particular attention is paid to the case of
half-filling where we can pinpoint the fixed point precisely.
This allows convenient numerical checks of the results.

A. Mode expansion and finite size spectrum

In the absence of backscattering at a junction we have the

bosonic Hamiltonian [17,27,30]
N 1 /1 5 -~
dxi g—(3x¢>) + 8x(3x) 4.1
X

Compared to Eq. (3.8) the position x was rescaled on the two
sides of the junction such that ug,u, — 1. The fields obey the
canonical commutation relation: [¢(x),d,¢(y)] =id(x — y).
Therefore we have the relation

dp(x) = i[H,p(x)] = g:8:p(x).

The corresponding Green’s function can be determined
from Eq. (4.1), see Eq. (D2). Here we explore other properties
of this boundary condition. We are interested in the solutions
of the classical equation of motion,

“4.2)

1
[83 — &b <g—ax)} $x.1) =0 43)
on a ring with circumference 2L where
_Jg if —L<x<0,
g"_{g, if 0<x<0L. @5

At the boundaries ¢(x) and 9,¢(x)/g, have to be continuous
leading to the boundary conditions

$(07) = ¢(0%),  P(—L) = $(L), ws)
0.6(00) _ 2607 2.p(-L) _ :$(L) '
8¢ & 8¢ &

The classical equation of motion (4.3) has oscillatory solutions
as well as solutions linear in x, see Appendix F for details. We
may expand the field ¢(x) in these solutions, while respecting
the canonical commutation relation

[P(x),0:¢(y)] (4.6)

= ngS(x - Y) .
This leads to

——isin(wlx/L)a,, 1] + H.c.i| , 4.7

ﬁ

isin(wix/L)a,; + — cos(nlx/L)ao,l} + H.c.:| .

(

which describes the conductance [16,27,30]. Interestingly, we
find in addition a second boundary Luttinger parameter

7=3lg+gl. (4.9)
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which is important for other correlation functions as we will
see below. IT is the field conjugate to ¢y with [¢g,[1] =i.
As this field is periodic, ¢g — ¢ + /7, it is clear that the
eigenvalues of the conjugate field IT must be 2./ m, where
m is an integer. Q is the field conjugate to ¢y and ¢y —
@0 + v/4m so that the eigenvalues of the conjugate field Q are
/7 n for integer n.

The classical equation of motion (4.3) has to follow from
a classical least action principle from which the classical
Hamiltonian

2L
H= / X | 6,0 + (0.:07) (4.10)
0 X

28
is determined. Substituting the mode expansion into the
Hamiltonian, we may read off the finite size spectrum

= m E m, m, .
2 V> g L i |1

4.11)

Here n and m are arbitrary integers while m,,; are nonneg-

ative integers corresponding to the eigenvalues of ai Jo,1Gefo.l-
We have included the universal term in the ground state energy
—cm/(12L) with ¢ = 1 for a periodic system of length 2L.

B. Scaling properties of the conducting fixed point

As usual, since we have imposed the same boundary
condition at both ends, we may read off the scaling dimensions
of all single-valued boundary operators in the bosonized theory
from the finite size spectrum. The scaling dimensions are

2

n B
{m,n = E +m 8 + lzzll(me,l +mo,1)-

4.12)
Each dimension corresponds to a different boundary operator.
m?g corresponds to exp[im+/4m ¢(0)] with the m = 1 oper-
ators being the leading relevant operators at the unstable fixed
point. 7 /4 is the dimension of the operators exp[2i /T (0)],
which effectively correspond to spin operators S*(x = 0), see
below.

To analyze the scaling properties of the system, and
compare the results to numerical calculations, it is convenient
to introduce correlation functions for a spin system equivalent
to our fermionic system. The mapping between spin operators
and fermionic operators is given by the Jordan-Wigner
transformation

St=ylem T v, (4.13)
The leading S* S~ correlation function at the boundary x = 0
is, in bosonized form,

(SF(0,1)S7(0,0)) ~ (e VTHON=IVTHO0) - (4.14)
Using Eq. (4.7) this results in
1
_ sin[wt/2L] | ¥
ST0,087(0,0)) ~ |[———=| 4.15
(§7(0,1)57(0,0)) sinla/2L] (4.15)
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with the boundary exponent y. For the S° operator we have
after bosonization

i =yly,; - % = —%axcp + (—1)/ const x sin[v/47].

(4.16)

The leading S° spin density waves are described by the
autocorrelation function at the boundary

(S7(0.0)S7(0,0)) ~ Y (elVH#ON=000]) = (417)
a==%
From this one finds
sin[m¢/2L] | %%
540,0)5%(0,0) ~ |———" 2 4.18
(§7(0,)5°(0,0)) sinlra/2L] (4.18)

with the boundary exponent g. Thus the boundary theory is
described by two different boundary Luttinger parameters, g
and y.

In the QMC simulations we consider finite temperatures
in the limit of large system sizes L > uf and calculate the
imaginary time correlation functions. In this case the results
are most easily accessible by considering the Green’s function
Eq. (D2), and the equivalent correlation function for the adjoint
field ¢(x,7). Then we find

_ L
2y

Co(t) = (SH(0.0)S-(0.0)) ~ | SMTT/BL = 4 1)
wa/p
and
. 2z
C.(1) = (S5(0.0)5°(0,0)) ~ | ST T/Al (4.20)
walB

We compare the predicted scaling of these correlation func-
tions to the results of QMC simulations. The predicted
exponents are well verified, see Fig. 4. Not only can one clearly
distinguish the two boundary exponents, but we have also
checked that the bulk exponents do not fit the scaling. Note

0.3 :; »"
e O
o Joak
0.01:
- (b)
sl " MR " MR i
0.1 004 0.1 1
sin[rt/B] sin[rtt/B]

FIG. 4. (Color online) The scaling of the local spin correlation
functions C,(t) and CL(7) at the fixed point: #, = 1.518¢,, U, =0,
and U, = 1.8t,. The magnetic field is zero (i.e., V =0 for the
corresponding fermion system) and the temperature is f, = 25.
(a) Numerical data, black circles, are compared to the predicted
scaling f(7)" with f(t) = |sin(rt/B)|"% and v = g (red curve). As
a comparison we also plot f(r)” with v = g, g,, 7, see Eq. (4.20).
(b) Numerical data, black circles, are compared to the predicted
scaling f(z)"/* with v = 7 (red curve). As a comparison we also
plot f(t)"/* with v = g, g,, &, see Eq. (4.19).
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C, (0

0.01F

0.001 e P, . |
0.01 0.1 1

sin[nt/B]

FIG. 5. (Color online) The scaling of the local spin correlation
function C,(7) at the conducting fixed point with z, = 1.518¢,, U, =
0, and U, = 1.8¢,. The magnetic field is zero (i.e., V =0 for the
corresponding fermion system). Numerical data for different inverse
temperatures (as indicated on the plot) are compared to the predicted
scaling (lines). As temperature is lowered the field theory becomes
more accurate.

that the analytical formula are only valid in the asymptotic
limit T 3> B. The values of g, ,, and hence of  and g, can be
found exactly from the results of the Bethe ansatz [40—43].
Figure 5 shows the temperature scaling of C.(t) at the
conducting fixed point #, = 1.518¢., and Fig. 6 the scaling
away from it. At the conducting fixed point the field theory,
as expected, does not describe the data at high temperatures,
such as 7,8 = 0.5 or ¢, = 2.5. As temperature is lowered
the field theory becomes a better and better fit, showing
good scaling already by 7.8 = 5. As we move away from the
conducting fixed point the corrections to scaling are expected
to grow while lowering the temperature but are only O(A?).
This makes it impossible to see the approach to the insulating
fixed point in C, (7). The Friedel oscillations of the density and
compressibility considered in Sec. III B are, in principle, better
to see the crossover to the insulating fixed point. However,
the expected cross-over temperature is of order 7 ~ 10~%t,

0.1
g
o
001E B =05,1,25,5,10, 15,20, 25
0.001 A N
0.01 0.1 1

sin[mt/B]

FIG. 6. (Color online) The scaling of the local spin correlation
function C,(r) away from the conducting fixed point with #, =1¢,,
U, = 0,and U, = 1.8¢,. The magnetic field is zero (i.e., V = 0 for the
corresponding fermion system). From top to bottom we plot different
values of the inverse temperature ¢, 8 = {0.5,2.5,5,10,15,20,25}.
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(Ref. [27]), which is unfortunately well beyond the reach of
the numerical QMC simulations.

C. Local density of states

One possible experimental test on boundary exponents
is the measurement of the local density of states with
local spectroscopic tools, such as scanning tunneling spec-
troscopy [44]. Theoretically a characteristic depletion with
the boundary exponent has been predicted [9,45-49], which
may be corrected by irrelevant operators [50]. It is therefore
interesting to calculate the characteristic signatures of the local
density of states for this unusual fixed point.

The local density of states is defined as

v(x,w) = ! / dte’ Re(y(x,0) ¢ (x,0))

iwt 7 {(o (X,1) — o (x,0)bm)? )
72, / dte Z e

a==%

421

Using the correlation functions calculated from the mode
expansion, see Appendix F, and, neglecting the cutoff for the
moment, this results in

1 .
v(x,w) ~ i dte' |4 sin®[mt /2L

x |4sin[z (¢t — 2x)/2L] sin[m (t + 2x)/2L]|
. _ /2
y Z sin[z (t — 2x)/2L]
a==%

sin[w (¢t + 2x)/2L]
The exponents are given by
1[_+1 g gﬁ} lgx—gx(l )
= l8+- -5 -2 =17 ——&),
8 7 o&g vl 4ate \&

1 1 2 2 1/1
8 vy & v 4\ g»

In the bulk regions near x ~ L/2 we recover v(0,0) ~ ||
with the usual exponents &, = 2§, — 1.

The local density of states at the boundary x = 0 therefore
becomes, reinstating a cutoff of the order of the lattice spacing

4.22)

(4.23)

a,
0,0) ~ — 4.24
v(0.0) / na/2L ( )
giving v(0,w) ~ |w|2§ ~! with scaling dimension
17,17 1+ge
{E_[ +T]=—, (4.25)
2577 ] T 2+ g0

Note that this is not one of the dimensions of single-valued
operators, expli/m(n¢ + 2m@)] for integer n, m listed in
Eq. (4.12). Rather ¥ ox exp[i/7(£¢ + ¢)], corresponding
to n = £1, m = 1/2. The non-single-valued nature of these
operators is a result of their being fermonic. ¢ is the same
as the bulk scaling dimension in a homogeneous spinless
Luttinger liquid with g — gand g~' — 7~!. Surprisingly, the
density of states at the junction scales as in the free fermion
case if either side of the junction is noninteracting: g, = 1
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or g, = 1. This can be understood from the density of states,
Eq. (4.22), if we have g, = 1 then the exponent k.o = 0.
Both in the vicinity of the boundary and in the bulk the last
line in Eq. (4.22) does not affect the scaling properties of
the density of states. Hence the scaling of v(x < 0,w) on the
noninteracting side is no longer position dependent and shows
the bulk scaling right up to the boundary itself. This is not true
on the interacting side (x > 0) where the scaling modulates
from the noninteracting result at the boundary x = 0, to the
bulk interacting value far inside the wire. In contrast to the
density or compressibility of Sec. III B there is no proximity
effect near the boundary in the noninteracting wire.

D. Fixed points and the g theorem

From the finite size spectrum, Eq. (4.11), we may also read

off the partition function in the scaling limit:
Z(B/L) = (e ™) (e BT ED g5 (e7TP2EIE) - (4.26)

Here we have introduced the Dedekind eta and Jacobi theta
functions,

n@)=q"*[[(1—q") and

n=1

4.27)
o0
i)=Y q"".
In the thermodynamic limit, /L — 0, this becomes
Z— \/7/ge" P (4.28)

Apart from the usual bulk free energy, F = —m L/(38?), there
is also a “ground state degeneracy” g, associated with the two
interfaces in the system. The factor for each interface is

1
g = (Z)“ (gt g
4 g (4geg)V/*

This may be compared to the ground state degeneracy for
the insulating fixed point where the junction consists of the
perfectly reflecting ends of two quantum wires with Luttinger
parameters g, and g,. This fixed point has [11]

gh = (gegn'*, (4.30)

According to the ‘‘g theorem,” boundary RG flows between
fixed points can only occur when g; is reduced during the
flow [51]. Therefore, it is interesting to consider the ratio

(4.29)

: 1
Glgn=—=. 4.31
gd / gd \/g: ( )
The g theorem states that flow from the conducting to
insulating fixed point is only possible when g < 1. This is
consistent with the analysis here since g is the dimension of
the operator cos[\/éﬁqb(O)] which drives the flow. The flow
only takes place when the operator is relevant, corresponding
to g < 1. For sufficiently large gi, the renormalization flow can
occur from insulating to conducting fixed points. As shown in
Ref. [11], the fermion operator, or equivalently spin raising
operator, at the end of the open chain, has scaling dimension
1/(2g¢) or 1/(2g,) as appropriate. We might expect the flow
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from insulating to conducting when the tunneling between the
two open chains is relevant which occurs when
1 1 1

S =—<1
2¢¢ 28 &

4.32)

and hence § > 1. In this case g < g’ so this flow is also
consistent with the g theorem.

It is also interesting to consider the flow starting from the
insulating fixed point, but with a weakly connected resonant
site in between the two wires: the resonant fixed point. Then
for a range of Luttinger parameters an RG flow from the
resonant to the conducting fixed point is expected. A necessary
condition for the flow from resonant to conducting fixed points
is that the tunneling operators from each chain to the resonant
site are relevant, g, , > 1/2. The ground state degeneracy of
the resonant fixed point is bigger by a factor of 2 than that
of the insulating fixed point due to the two-fold degeneracy of
the resonant site and

g =2(geg)"*. (4.33)

Thus the ratio of ground state degeneracies of the resonant to
conducting fixed points is

80/85=2V%.

We can see that g,/g5 > V2 whenever g;,g, > 1/2 so the g
theorem is also obeyed by this RG flow. Even when 2 is tuned
to zero, corresponding to resonance, the next most relevant
operators, exp[£2i \/Ed)(O)] will still be present. This can
drive the flow from the conducting to the resonant fixed points
when it becomes relevant, i.e., for 4g < 1. Since g5/g); =
1/(2/%) we see that this flow is consistent with the g theorem
as it only occurs when g < 1/4. Therefore all expected RG
flows are consistent with the g theorem.

As first observed by Kane and Fisher [9] in the case g, = g/,
there is a range of Luttinger parameters where both conducting
and resonant fixed points are stable. In this case they are
separated by an intermediate unstable fixed point.

(4.34)

V. CONCLUSION

In conclusion, we have described a novel conducting
fixed point in inhomogeneous quantum wires. This fixed
point is reached by tuning to zero the amplitude of the
leading backscattering operator at the junction between two
homogeneous parts of the wire. We have, in particular, studied
a lattice model of spinless fermions with nearest-neighbor
hopping and interaction in the critical regime. For the case
of an abrupt junction we have derived the backscattering
amplitude for all fillings in lowest order in the interaction.
For the half-filled case it is even possible to give a condition
for the vanishing of the backscattering amplitude valid for
all interaction strengths. The prediction of a conducting fixed
point were numerically confirmed by QMC calculations of the
Friedel oscillations in the local density and compressibility
close to the boundary which vanish in leading order at the
fixed point.

One of our main results is the derivation of the boundary
conformal field for this novel unstable conducting fixed point.
The conformally invariant theory for this case is highly unusual
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because the two parts of the wire are governed by different
bulk Luttinger parameters g, and g,. As a consequence, we
find that the scaling dimensions of boundary operators are
also governed by two different Luttinger parameters given by
7 =8 +&)/2 and § = 2848, /(8¢ + &) We showed, both
analytically and numerically that ¢ is controlling the transverse
spin autocorrelation function while g controls the longitudinal
one in the corresponding spin model. Experimentally, a test
of the boundary exponents could possibly be obtained by
scanning tunneling microscopy which would allow one to
measure the local density of states which shows energy scaling
with an exponent being determined by 7 and g.
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APPENDIX A: LANDAUER FORMULA
FOR TRANSMISSION

The significance of the measure of transmission R = 0 can
be verified by considering the Landauer formula [52]. Thus
we imagine attaching the wire to reservoirs on the left and
right sides with different chemical potentials w; and pug. We
consider particles emitted from the left reservoir with a thermal
distribution with chemical potential ; = —eV, and from
the right reservoir with a thermal distribution and chemical
potential g = —eVg. At zero temperature the Fermi wave
vectors on the left and right sides, kr, and kf,, are given by

—2t coSkpe,r — ey = ULR - (A1)
Suppose that the bottom of the band on the left has higher
energy than the bottom of the band on the right. Then the total
current, at zero temperature, is

kre
I= e / Sl - RG]
0 T

_kZmaX dk
+e / 2—ug(k)|T(k)|2 ) (A2)
_ JT

kry

The first term is the current emitted by the left reservoir and
partially reflected at the interface. The second term is the
current emitted by the right reservoir and partially transmitted.
The maximum wave vector for the second integral, kopmax > O,
is given by ex(—komax) = €1(0) since lower energy incoming
particles from the right have zero transmission probability.

It is convenient to change integration variables to €; in the
first integral and €; in the second, giving:

222 d61 )
I =—c¢ —[1 —|R(eDI"]
() 27

MR d
+e/ ﬂwg(ez)ﬁ
€

(A3)
(o) 27 ur(€)
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Since |T|*ug/u, = 1 — |R|? this can be written as

1223 d
1= —ef - R@P. (Ad)
MR 2”
Now taking the limit u; — ug = €, we find
2
e
I— - |R(er)P1(VL — Va). (A5)
Hence the linear conductance is
dl &2
Akl |R(ep)I]. (A6)
T

— v

This is another way of seeing that [1 — |R|?] is the suitable
measure of the transmission of the interface.

APPENDIX B: NONINTERACTING CALCULATIONS

In the main text in Sec. II we have considered the simplest
possible junction, a jump between two homogeneous regions,
in the noninteracting case. Here we want to present calculations
for more general junctions to study the influence on the
backscattering term.

1. Abrupt junction with additional local variation

The calculation of Sec. I can be extended straightforwardly
to a more general model where the hopping amplitude varies
near the origin. Suppose, for example, that the hopping
amplitude from site —1 to 0 is 7_; = ¢, and from O to 1 is
fo =t/ with the rest as given by Eq. (2.7). For simplicity we
concentrate again on half-filling, V; = 0. Then we may write
the wave function for an incoming wave from the left as in
Eq. (2.3) with j, = —1 and j, = 1. v is now a free parameter.
Solving for the reflection amplitude as previously gives

2 2
1{2 1/2 ICZ 1/2
r ]
|R| — ¢ £

2 2 2 2 1:2 2 (Bl)
[Fuct | +ae - - %]
Solving for R = 0 one finds
(t)/te,1/1,) = v/2(cos B, sin ) (B2)

with tan?6 = uy/u,. Thus maximal conductance can be
achieved for any choice of energy €, and thus any value of
u¢/u, that can occur as € is varied.

We see that the simple condition u; = u, for perfect
conductance is a special result, which only holds for the
“abrupt junction” considered in the main text. In general, the
condition uy = u, can be regarded as removing the intrinsic
scattering from a sharp jump between bulk values of the
hopping. Additional variation on top of this will naturally
result in scattering and an additional fine-tuning is required to
reach the conducting fixed point.

Note that the fact that two parameters ¢, and ¢, need to be
adjusted to achieve perfect conductance, in general is in accord
with the renormalization group (RG) viewpoint. For nonzero
energy €, particle-hole symmetry is broken so the scattering
amplitude A can be complex. In the special case € = 0 where
particle-hole symmetry holds there is only one condition for
perfect conductance #,>/t7 = t/*/t? and only one parameter
needs to be adjusted.
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Now let us consider the case with nontrivial #/ within the
narrow band approximation. We use the parametrization
t, =t +38t, =1t — 8t + 8t,,
(B3)
1 =1t +38t =1+t + 6t .
In this case, there is another backscattering perturbation term
SH = —28t)y e — 251/  yr e 4 Hec.
—(8t + 812 coslkral Wy + yly).  (B4)

where ¥_ and v, are evaluated at x = 0 in all terms. Focusing
on the backscattering term the perturbation becomes

SH +8H = 2miry ¢ (x = 0) + He. (B5)
with

s ol —ikpa co.t ikpa
)\:ug—ur_i_létle PG i85t e'tr .

dra T

(B6)

Although the variations in #; are small, they occur over only
three sites, so this is not an adiabatic change. Note that while
we were able to determine A explicitly in this model, with all
t; nearly equal, it may not be feasible to do so in all cases.
In fact, a reduction to a narrow band model is not accurate in
general, as discussed in the main text.

2. Next-nearest-neighbor hopping

Next-nearest-neighbor hopping can also be added to the
Hamiltonian, explicitly breaking particle-hole symmetry. We
consider the Hamiltonian

Ay =Y =09 Vi1 — ¥ Y2 + Hel.  (BD)

To keep things as simple as possible we choose

t ) ] g -1 ) 14 ) ] g _2 )
=l (l. ) L (l. ) (BS)
IR, (l 2 0)7 IR, (l 2 0)

There is no particularly simple or natural choice for #, _; so
it is kept as a free parameter. Let us assume that all the #; ;
are close together and all the #, ; are close together so that the
narrow band approach is applicable. Thus we write

hy =t =08, by =t—20h,
hr=tu+68, hr=h+dn, (B9)
h_1 =L+ ot .

A simple extension of the previous calculation gives

A = =81, csclkpa] — 8tr cotlkpal + iste* ¢ (B10)
for the backscattering coupling constant.
As a simpler special case, consider kr = /2. Now
A= =8t — 8t —idt, (B11)

and X is complex in this case despite being at half-filling; this
is natural since #, breaks particle-hole symmetry at all fillings.
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APPENDIX C: BOSONIZATION DETAILS

First we note the following useful relations:

, 1
T = = __
V(DY (x) = po(x) = ﬁaxm(x),

Y ()0 Yu(x) = aimpy(x), and (Cn

YL o) = e,
2ra

Due to the inhomogeneous nature of both the Fermi mo-
mentum and the interactions, the 2k , oscillating terms in the
interaction can no longer be neglected, see Eq. (3.5). One finds
anonzero contribution to the backscattering around any region
of inhomogeneity. These terms must be treated carefully, as
an example we can take : Y] ¥, (x) 2 Yl_o(x + a) :. Direct
rearrangement gives for ¥ v, (x)¥ 1 ¥_,(x + a) either

YY) Yy (x +a)
+ 01 P (0)10) : Yl _a(x +a) : (C2)

or
— YOV + @) YL+ @) :
— Y)Y + @) OIYf(x + a)Ya()[0), (C3)
which are therefore equal. Then, using
Ol + @) ()|0) ~ ia/2na, (C4)
and expanding in the cutoff a this allows us to write

YY) Yl o (x + a)
A — (0[P Ya()]0) : YiYa(x +a) :
— YLV W(x +a):

x (i—“+pa(x>+aw;axwa<x)> (o)

2ra
Now keeping only the leading order terms we find
p—iaVATp(x)

Similar expressions hold for the other terms.
The bosonized free and interacting Hamiltonians become

PV () Yl (x + a) i~ (C6)

Ay = — Zaitxaze"‘”x’ (0:¢)* + H.oc.
xXo

_ Z iot, e—zmk”x—m\/ﬁzp(x) el 4 1 (C7)
~ 7 2t |’

and

. - (0:0)?
H = ZazUx [(1 — 2ok )%

) o ) eiaﬂ¢(x)
Qiakp x o 2iak
F.x X 1 -
te (e ) " omay
. emzﬁan
_84“)"‘)( , (C8)
2ma)?
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respectively. Included in this is the irrelevant umklapp scatter-
ing

N U,
Ay = =) a——cosl4k; + 2v/4mp(x)] . (C9)
— 7’a
Away from half-filling this is only a boundary contribution.

APPENDIX D: GREEN’S FUNCTION AND
RENORMALIZATION GROUP CALCULATIONS

For the abrupt jump of Sec. IIl A the Green’s function, at
A = 0, can be calculated exactly. We have

Gx,y;t)=T Zeiw"lme(x,y) and

a),zn d [ uy 0 G (xoy) = & )
- — — m(x,y) =368(x —y).
2g,uy  0x \2g, 0x Y Y

(D)

Solving this differential equation subject to the appropriate
boundary conditions [17,27] gives

G(x,y;7) = (9(x,000(y,7))

sinh [nT (m + m — ir)”
Uy uy
; x] Il :
L[x. smh[nT (Z+K_ZT)]
n [x,y]gx In )

m sinh [T (221 — i) |

We have introduced 2L[x,y] = 1 + sgn[x] sgn[y].

The renormalization procedure is done in the standard
manner by expanding the perturbation, exp(— [ dtH’), to
first order and integrating out the fields with fast Fourier
components near the band edge A’ < |k| < A. To recover the
original form after re-exponentiating the action we rescale
ATpew = A'7, and define the new coupling constant A, as

=—§ln
b4

(D2)

A ~
AMA) = FA(A)e*”G><X=>’=f=O>, (D3)

where G- is the Green’s function after integrating out the fast
modes.

Therefore for the RG equation what we need is the Green’s
function summed over the fast modes. First let us change
variables to r =x —y and R = (x + y)/2. Then, with
u(r,R = 0)=2uuy/(uy +uy)ly=—y=2ueu,/(u¢ +u,)=u,

we have
. Irl .
sinh|nT | — —it . (D4)
u

This is the same as the Green’s function for a homogeneous
case, but with a new velocity and a new Luttinger parameter

1_1[1+1]
g 2lg &l

Grh,R=0:1)=-%1n
T

(D5)
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Now we require

G-(0.0;0)= Y  GkR=1=0)
AN <|k|<A
= > / dré™ G(r,R =17 =0). (D6)
AN <|k|<A

Thus integrating out the fast Fourier components results in a
change of the Green’s function

G.~E&damn, (D7)
T
which governs the renormalization in the usual manner:
1_dx =1-z. (D8)
Adin A

We therefore expect that the effective backscattering renor-
malizes as a power law in the temperature R oc T4~!, which
in turn affects the conductance and other physical observables
accordingly. This has been confirmed numerically [27].

APPENDIX E: USEFUL SUMS FOR THE
BOUNDARY TERMS

To find the coefficients of the backscattering terms several
sums are needed. We want

I = Z e 2kEX F(x)O(x) (E1)
X = ja

jEZ

in the particular case where we can write

F(x) = F, ©(—x — a)+ F, O(x) (E2)
—_——— ——
=Fy(x) =F(x)

with ®(0) = 1. Assuming O, is slowly varying on a length
scale of a, this allows us to write

I~0x=0 Y Y e Fx)

x=ja i=12

JEZ

-
~ Ox =0) Z Z e*Z”‘F"'*T[F,-(x) — Fi(x +a)],
x = ja i=1,2
jeZ

(E3)

with Z; = 1 + i cotlkp;a]. Only a single term of each sum
over x is nonzero and we find

i Fettra i Fe'trre

2sin[kpeal  2sin[kpral | -

We may also be interested in the case where
Fx)=F,O(—x —a)+ F, ©(x — a) +Fyé(x) (ES)

=F.(x)

I~ O(x = 0)[ (E4)

=Fy(x)

and we can independently change Fj on the central site. Then
with I ~ O,_¢A we find

D F iFpe'*rt [ Fetkme

- . E6
0 S Sinlkreal  Zsin[kpa] (E)
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APPENDIX F: MODE EXPANSION AND ITS
CORRELATION FUNCTIONS

Let us first consider the solutions of the classical equation of
motion, Eq. (4.3), subject to the boundary conditions Eq. (4.5).
There are two types of oscillating solutions

P (x,1) ~ €™ cos(kx) (F1)
with 0, ¢(x = 0) =0, and
¢ ~ gee™ sin(kx) (F2)

with ¢(x = 0) = 0. In addition there are solutions linear in x
and t. The solutions linear in x have the form

¢ (x,1) ~ gex. (F3)
|
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The bosonization formula (3.6) implies that the bosonic field
¢ is periodic with period ¢ + /7. Furthermore we are
considering solutions on a ring with circumference 2L thus
¢(x) = ¢(x + 2L) + /7n. The oscillatory solutions of both

types therefore must have k = wl/L for [ =1,2,3,.... For
the solutions linear in x the same periodicity conditions imply
n
¢ (x,1) = ;/__ X8x - (F4)
yL

Let us now consider the mode expansion. IT is canonically
conjugate to ¢ and the normalization of each term is fixed
by requiring the canonical commutation relations to hold. For
g¢ # 8r, we may expand in solutions of the classical equa-
tions of motion, while respecting the canonical commutation
relations. This leads to the mode expansion given in Eq. (4.7).

Using the mode expansion we can first calculate the bosonic
commutators in the ground state. We find that

Re(@(x,)p(x,0)) = —ié In|2*sin[7 (+ — 2x)/2L] sin[r (t 4 2x)/2L] sin’[z¢/2L]|

n %SL In sin[m (¢t — 2x)/22L] sin[7 (¢t 4+ 2x)/2L] ‘ F5)
< 3 sin?[mt/2L]
and
Re(p(x,)p(x,0)) = _Si In |24 sin[rz (t — 2x)/2L] sin[7 (¢t + 2x)/2L] sinz[nt/ZL]|
bis
2 . _ .
n g__xi In sin[ (¢ 2x)/2L] sin[w (¢t + 2x)/2L] . (F6)
7 8w sin?[wrt/2L]
Finally
- _ 1 [ g g sin[w (¢t — 2x)/2L]
Re {00 (x,00) = o [7 + g_x:| I nlr + 20)/2L] &)

is also useful.
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