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Effective model for the electronic properties of quasi-one-dimensional purple bronze
Li0.9Mo6O17 based on ab initio calculations
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We investigate the electronic structure of the strongly anisotropic, quasi-low-dimensional purple bronze
Li0.9Mo6O17. Building on all-electron ab initio band-structure calculations, we obtain an effective model in
terms of four maximally localized Wannier orbitals, which turn out to be far from atomiclike. We find two
half-filled orbitals arranged in chains running along one crystallographic direction and two full orbitals in
perpendicular directions, respectively. The possibility to reduce this model to only two orbitals forming two
chains per unit cell with interchain coupling is discussed. Transport properties of these models show high
anisotropy, reproducing trends of the experimentally determined values for the dc conductivity. We also consider
basic effects of electron-electron interactions using the (extended) variational cluster approach and dynamical
mean field theory. We find good agreement with experimental photoemission data upon adding moderate onsite
interaction of the order of the bandwidth to the ab initio derived tight-binding Hamiltonian. The obtained models
provide a profound basis for further investigations on low-energy Luttinger-liquid properties or to study electronic
correlations within computational many-body theory.
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I. INTRODUCTION

The electronic structure of highly anisotropic materials
shows a plethora of interesting effects. Quantum many-body
dynamics in quasi-low-dimensional systems becomes impor-
tant and dominant in many regions of their rich phase diagram.
This often implies unconventional ground states, such as
non-Fermi-liquid or Luttinger-liquid states. One prominent
example for this class of materials is the lithium molybdenum
purple bronze Li0.9Mo6O17 [1], a molybdenum oxide bronze
with quasi-one-dimensional properties. [2]

Experimental structure analysis using x rays [3] as well as
neutrons [4] determined a monoclinic crystal structure. The
conduction electrons are mostly located on two molybdenum
octahedral sites which are arranged in double zigzag chains
along the b axis. This leads to a very high anisotropy
of the material, which has been studied by several tech-
niques using resistivity measurements [5–10], conductivity
under pressure [11], magnetoresistance [8,12], thermal expan-
sion [13], optical conductivity [14,15], the Nernst effect [16],
thermal conductivity [17], thermopower [18], and muon
spectroscopy [19].

The electronic properties have been addressed using angle-
resolved photoemission spectroscopy (ARPES) [20–28] and
scanning tunneling microscopy (STM) [29,30], which ar-
gued for one-dimensional Luttinger-liquid physics [28,31–36].
Other studies disputed this claim [37]. The evolution and
the current status of work in that direction is summed up
in a recent review article [26]. A temperature-dependent
dimensional crossover [38–40], which induces coherence for
the perpendicular electron motion, has been studied using
neutron diffraction [4].

Apart from intriguing physical effects of effective low
dimensionality, the material shows superconductivity below
1.9 K [2,41–44] and a metal-insulator transition is observed at
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around 24 K [5,14,41,45]. No evidence for a Peierls instability
has been reported [46], and a possible charge-density wave
(CDW) phase is still under debate [29,47–49]. Recent studies
have argued for a compensated metal [50]. All data are summed
up in a conjectured electronic phase diagram as presented
in [49].

Theoretical ab initio studies of the electronic structure
using a tight-binding method [51] as well as a linearized
muffin-tin orbital (LMTO) [52,53] calculation in the local
density approximation (LDA) have been conducted. These
approaches were successful in providing a broad picture of
the “high-energy” physics of Li0.9Mo6O17, accounting for
the high anisotropy. Although experiments testified a wealth
of remarkable low-energy properties and different quantum
ground states, more detailed theoretical investigations, includ-
ing interactions and low dimensionality, emerged in recent
years only.

Chudzinski et al. [48] investigated the quasi-one-
dimensionality and have been able to extract an effective
low-energy theory within the Tomonaga–Luttinger-liquid
framework. Their approach is based on an atomic orbital
tight-binding model with parameters such that it matches
an LDA LMTO band-structure calculation. Motivated by the
crystal structure of Li0.9Mo6O17, the model was set up with
four molybdenum d orbitals in a zigzag ladder arrangement
including onsite as well as nonlocal electronic interactions.
It was found that within this model, Luttinger-liquid low-
energy parameters can be obtained, which are consistent with
experimental findings.

Another recent work [49] proposes a two-dimensional
model from Slater-Koster [54] atomic orbitals also including
nonlocal electronic interactions. Again, an ansatz with four Mo
orbitals in zigzag ladder arrangement was applied. The authors
argue, based on electron counting, that there are two electrons
to be shared among the four equivalent Mo atoms, leading
to quarter-filled orbitals. The bandwidth obtained with this
ansatz for the two bands crossing the Fermi level is in rough
agreement with density functional theory (DFT) calculations.
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Details of the band structure such as curvatures, however, and
also the bands just below the Fermi level which are of similar
Mo d character, can not be reproduced by this Slater-Koster
model.

The main purpose of this work is to establish an unbi-
ased, general purpose tight-binding model for the electronic
properties of Li0.9Mo6O17 based on ab initio calculations.
Such a model is intended to serve as a basis to study the
role of electronic correlations by adding interactions, be it
in a computational many-body theory or in a one-dimensional
renormalization group (RG) framework. In contrast to previous
work [49], we propose a model based on maximally localized
Wannier orbitals [55,56] instead of linear combination of
atomic orbitals. Four molecularlike orbitals are obtained in a
fully ab initio approach from an all-electron DFT calculation.
Our results unambiguously show that, using a set of four
Wannier orbitals in the unit cell, the model consists of two
half-filled as well as two filled orbitals. As we will show in the
following, the DFT band structure is perfectly reproduced in
this basis set of Wannier functions.

This model describes the momentum-resolved elec-
tronic structure as observed in ARPES [22] experiments
and reproduces highly anisotropic transport characteristics
[5–8,12,14,17]. Furthermore, we discuss an even simpler
two-orbital effective model which can be derived from the
four-orbital model.

In the second part of the paper, we conduct a first (qualita-
tive) study of effects of interactions on the electron dynamics
within this effective Wannier model. Even more so due to
the low dimensionality, the interacting model is in general
difficult to approach. By applying RG as well as density matrix
renormalization group (DMRG) [57] in certain limits (chains,
ladders), their essential physics can be understood [49].
To solve the full low-dimensional interacting Hubbard-type
model, general frameworks as for example (cluster) dynamical
mean field theory [(C)DMFT]-like approaches [58] have been
applied, where the self-energy of the system is restricted to a
finite length scale.

Realistic modeling is a relatively new and rapidly devel-
oping field [60–62]. In this work, we study (simple) electron-
electron interactions in the effective model using complemen-
tary numerical techniques. First, we use cluster perturbation
theory (CPT) [63,64] as well as the (extended) [65,66]
variational cluster approach [67] [(e)VCA] in the spirit of
LDA + VCA [68,69]. The choice of these methods is
motivated by the expected reduced effective dimensionality
of the material which renders the nonlocal character of the
VCA self-energy an interesting perspective. Second, we apply
the well-established LDA + DMFT [70–72] approach, which
neglects nonlocal correlations, but on the other hand performs
superior in describing the quasiparticle features at low energy
as compared to VCA. For all applied methods, we find that
a moderate value of onsite interactions strength is capable of
describing the electron dynamics best and in good agreement
with ARPES experiments. We discuss the influence of a
hybridization mechanism of the two bands right at the Fermi
energy with the two bands slightly below, not accounted for in
previous work.

This paper is organized as follows: In Sec. II, we report
accurate all-electron DFT data from which we obtain a model

in terms of maximally localized Wannier functions. A further
simplified model for Li0.9Mo6O17 with reduced number of
hopping parameters is discussed in Sec. II C. We present
results for the anisotropic conductivity in Sec. III and compare
to transport measurements. The electron dynamics of the
interacting effective model is presented and compared to
ARPES experiments in Sec. IV before concluding in Sec. V.

II. FROM CRYSTAL STRUCTURE TO AN EFFECTIVE
ELECTRONIC MODEL

A. Ab initio electronic structure

We obtain the electronic structure for ideal Li1Mo6O17

from a non-spin-polarized, full-potential linearized augmented
plane wave (FP-LAPW) [73–76] DFT [77,78] calculation
as implemented in the WIEN2K package [79]. The unit-cell
parameters and crystal structure are taken from x-ray data [3]
which have been recently confirmed by neutron diffraction
experiments [4]. The space group is monoclinic (prismatic)
P 21/m with lattice parameters a = 12.762(2) Å, b = 5.523(1)
Å, c = 9.499(1) Å, β = 90.61(1)◦, and Z = 2, leading to a
48-atom unit cell [Li1Mo6O17]2 [80].

All results presented in this work are calculated with
the exchange-correlation potential treated in the LDA [81].
We checked that the generalized-gradient approximation
(GGA-PBE [82]) gives indistinguishable results for the band
structures. Our results are converged in terms of the size
of the FP-LAPW basis set, which is determined by the
RKmax parameter in WIEN2K. By performing calculations for
different RKmax we found that RKmax = 7.0 and 6.0 gave
the same results, with band energies within 10−3 eV, only at
RKmax = 5.0 deviations become visible. Therefore, also due
to the computational complexity of the problem, all results
presented here are obtained with a RKmax = 6.0 basis set.

The obtained electronic structure εKS(k) is visualized along
the standard path of the b-c plane in reciprocal space (Y-G-
X-M) (see also Fig. 2) in Fig. 1 (left). In order to compare to
ARPES experiment, we modeled lithium-vacant Li0.9Mo6O17

by a rigid band shift of 0.03 eV of the LDA bands [52]. We find
a combined bandwidth of the four bands in the vicinity of the
Fermi energy εF of W ≈ 1.82 eV and two Fermi velocities of
vF,1 ≈ 0.99 × 105 m/s and vF,2 ≈ 0.93 × 105 m/s, roughly
one order of magnitude lower than in free-electron metals [83].
The corresponding electronic density of states (DOS) is shown
in Fig. 1 (right). The LDA DOS is obtained by Gaussian
integration (σ ≈ 0.02 eV) using the tetrahedron method on
a grid of 216 k points in the irreducible Brillouin zone (BZ).

By and large, the electronic structure compares well to
previous data reported in early works of Whangbo et al. [51]
from an empirical tight-binding method, and also to more
recent LMTO calculations within the atomic sphere approx-
imation (ASA) from Popovic et al. [52]. But note that in
particular the band crossings/hybridizations on the X-M line
as well as the lowest empty bands at ∼1 eV above εF

are apparently different. Since we checked accurately the
convergence of the all-electron FP-LAPW calculations, the
difference is most likely to come from the approximations
introduced in LMTO-ASA and tight-binding calculations.
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FIG. 1. (Color online) Left: LDA band structure (solid black) in the vicinity of the Fermi energy εF plotted along a two-dimensional path
in the reciprocal b-c plane. The four bands of the full Wannier projected Hamiltonian are shown on top (solid green) next to the data for the
reduced model (dashed-dotted blue line). Right: DOS of the LDA calculation (black), the full Wannier model (solid green line), and the reduced
model (dashed-dotted blue line).

The one dimensionality of the material becomes manifest
in the Fermi surface which is shown in Fig. 2 (left). Arising
from two bands crossing the Fermi energy, it consists of
two sheets warping in the c direction, cutting the b axis and
being roughly constant in the a direction. In experiments [84],
the maximum splitting of the Fermi surface (<10−3 Å−1)
is observed along the PK line. Our LDA calculations yield
the maximum splitting along the very same line (see Fig. 2),
but the magnitude is much larger (≈0.021 Å−1). In previous
LDA calculations [52], an even larger splitting of ≈0.045 Å−1

was found. This discrepancy of the theoretical results with
experiment is likely due to the improper treatment of strong
nonlocal electronic correlations in the LDA.

B. Realistic effective model

To construct an effective model, we have to identify the
origin (orbital character and atom) of those electronic states
which are most important for the physical properties, i.e., those
close to the Fermi energy εF . We plot in the bottom panel of

Fig. 3 the partial DOS for the six inequivalent Mo atoms in
the unit cell. One can nicely see that Mo1 and Mo4 contribute
most to the DOS at εF (for nomenclature see Fig. 2 in Onoda
et al. [3]). In the top panel of Fig. 3, we show the crystal
structure, with emphasis on those Mo1 and Mo4 (including
the equivalent Mo′

1 and Mo′
4) atoms. It is evident that these

atoms form the two adjacent zigzag chains running along the
b axis, giving rise to the two quasi-one-dimensional bands
crossing εF . The atoms Mo2 and Mo5 are sitting next to the
chains, and thus have some smaller contributions. The other
two Mo atoms are far away from the chains, and thus contribute
hardly anything to the weight around εF . This analysis of
the orbital character shows clearly that the bands around εF

originate mainly from only four atoms (Mo1, Mo4 and Mo′
1,

Mo′
4, respectively) in the unit cell.
To construct an effective model, we take the electronic

wave-function data φKS in an energy window of [−0.9,0.7] eV,
that comprises the four relevant bands as shown in Fig. 1.
The lower bound of the energy window for projection is
straightforward to choose because the gap between the four
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FIG. 2. (Color online) Calculated Fermi surface. Left: The ab initio result (image created using XCRYSDEN [59]). Center: In-plane projection
of the result for the four-orbital Wannier model. Right: In-plane projection of the result for the reduced model, where type-A orbitals are strictly
one dimensional and the two Fermi sheets are degenerate.
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FIG. 3. (Color online) Top plot: Crystal structure. In the a and
c directions one unit cell and in the b direction two unit cells are
shown. Big gray balls are Mo1/Mo′

1 and Mo4/Mo′
4 atoms, showing

the zigzag chain structure along b. Small gray: other Mo sites. The
numbers next to the black arrows denote the atom number. Small red
balls are oxygen, and the yellow balls Li atoms. This image has been
created using XCRYSDEN [59]. Bottom plot: Partial DOS of the six
inequivalent Mo atoms in the unit cell. Top row: atoms Mo1 and Mo4,
forming the zigzag chains. Middle row: Mo2 and Mo5. Bottom row:
Mo3 and Mo6.

considered molybdenum d bands and the next lower bands is
larger than 1.5 eV. The upper bound is more involved since
bands with different character penetrate the energy window
from above, and are entangled with the two bands crossing the
Fermi energy. In order to get a good description of the bands,
we had to use the disentanglement procedure of WANNIER90

with a frozen energy window of [−0.9,0.0] eV.
We project these data onto four maximally localized

Wannier orbitals [55] ωα using WANNIER90 [85] and the
WIEN2WANNIER [86] interfaces. As initial seed, we chose one
dxy orbital on each of the Mo1, Mo4, Mo′

1, and Mo′
4 atoms.

Although starting from a seed with atomic orbitals, the
calculated Wannier functions, however, have quite different
character. They can be divided into two kinds. Type A, which
is oriented along chains in the b direction, and type B which is
in some sense orthogonal in real space, mediating between the

b
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Mo15
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FIG. 4. (Color online) Visualization of one type-A Wannier
orbital. Similar as in Fig. 3, two unit cells in the b direction are shown,
the Wannier function is centered in the lower unit cell. The center of
the Wannier function is located in-between atoms Mo1 and Mo′

4.
Arrows mark the atoms with significant contribution to the Wannier
function: in-chain atoms Mo1 and Mo′

4, and adjacent atoms Mo2 and
Mo′

5. Color coding as in the top panel of Fig. 3. For the Wannier
functions, blue and green lobes denote positive and negative phases,
respectively. The image has been created using XCRYSDEN [59].

chains in the b direction. The orbitals contributing to the states
around εF are of type A, and one of these orbitals is shown in
Fig. 4. One can clearly see the dxy orbital character, forming
the zigzag chains, around atoms Mo1 and Mo′

4, where most
of the orbital weight is located. In consistency with the partial
DOS (Fig. 3), some contribution also comes from atoms Mo2

and Mo′
5 since they are adjacent to the chains, as shown in

Fig. 4.
The splitting into two types of orbitals can be understood

from the band structure. Only two bands cross εF , which results
in two equivalent Wannier functions (A). The other two bands,
lying below εF , are spanned by another set of two equivalent
Wannier functions (B), respecting the crystal symmetry.

We would like to emphasize that these orbitals are far from
atomiclike. We estimate their spread from the square root of the
spread functional of WANNIER90, which yields 5.2 Å for orbital
type A, and 4.4 Å for orbital type B. We also want to note that
the Wannier functions are not centered on a Mo site. Instead,
Fig. 4 clearly shows that the centers are located in the middle
of a bond between two Mo sites. For type A, one orbital has its
center between atoms Mo1 and Mo′

4, the other between Mo′
1

and Mo4, respectively. In that sense, these Wannier orbitals
can be regarded as bond-centered molecularlike orbitals.

The origin of the large spread in real space is the very limited
number of bands that are taken into account in the Wannier
construction scheme. Taking all d orbitals of the Mo1, Mo′

1,
Mo4, and Mo′

4 atoms as well as the bridging oxygen p orbitals
into account would of course result in much better localization.
However, the Hamiltonian then describes many bands, and not
only the most important four bands in the vicinity of εF . A
similar effect can be observed for instance in the construction
of the one-band model in cuprate superconductors. Also there,
taking only the dx2−y2 orbital into the construction results in
quite large Wannier orbitals with long tails [87].
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Concerning the electron charge in the Wannier orbitals, we
find that orbitals of type A are half-filled, whereas orbitals
of type B are identified as (almost) filled. For lithium-vacant
purple bronze, we find a total occupation of ≈5.8 electrons in
these four bands since there are two lithium ions in the unit
cell, each contributing ≈0.1 hole doping. In the remainder of
the paper, we will therefore use for all discussions an average
filling of the four bands of 〈n〉 = 1.44 [88].

Specifically, the downfolding procedure yields the matrix
elements of a single-particle Hamiltonian [89]

HWannier,αβ(k) = 〈ωα| ĤWannier(k) |ωβ〉
=

∑
δR

e−ik·δRMRαR′β (1)

in the four-orbital Wannier space α,β = {A,A′,B,B′} where
the sum runs over all lattice translations δR = (R − R′) and
the crystal momentum k is defined in the first BZ [90].

Our model (1) consists of two filled electronic orbitals, type
B, slightly below the Fermi energy εF (M0B0B = M0B′0B′ =
−0.423 eV), as well as two half-filled ones, type A, crossing
the Fermi energy εF (M0A0A = M0A′0A′ = 0.005 eV). The
largest energy scale for the hopping matrix elements is the
nearest-neighbor hopping along the b direction of orbitals of
type A which is tmax ≈ −0.35 eV.

This 4 × 4 noninteracting Wannier Hamiltonian can easily
be diagonalized by numerical means. Its band structure and
DOS are plotted on top of the LDA results in Fig. 1.
The Wannier DOS has been calculated from N1.BZ = 483

k points in the first BZ, using a numerical broadening of
0+ = 0.086 tmax. We obtain very good agreement except for
the upper band edges, where the accuracy is influenced by the
entanglement of the bands in this energy region. We find a
total bandwidth of the four bands in the vicinity of εF of W ≈
1.57 eV and two Fermi velocities of vF,1 ≈ 1.16 × 105 m/s
and vF,2 ≈ 1.06 × 105 m/s. Note that the Fermi velocity is
pointing along the b direction, while the other components
are three orders of magnitude smaller. The Fermi surface
(see Fig. 2, center) is also reproduced very accurately by the
Wannier model.

C. Effective interchain coupling

The Wannier model (1) consists of numerous single-
particle hopping terms between four Wannier orbitals in a
three-dimensional crystal. Many of the terms of the Wannier
model are orders of magnitude smaller than the dominant
hopping process of type-A orbitals along the b direction with
tAA ≈ −0.35 eV. For instance, all intra-unit-cell hybridizations
are negligibly small (of order 10−4 eV). This includes direct
hopping tAA′ between adjacent chains. The reason for this
is that the two orbitals type A and A′ are aligned parallel
to each other in the unit cell, with negligible overlap. The
hybridization perpendicular to the chains, which is responsible
for the dispersion in perpendicular direction, is predominantly
mediated through the type-B orbitals in an (A-B-A) or
(A-B-A′) fashion (see Fig. 5). In this section, we derive a
two-dimensional model in the b-c plane consisting of two
degenerate half-filled chains that comprises the fundamental

FIG. 5. (Color online) Visualization of the full effective Wannier
Hamiltonian (1). A schematic drawing of the most dominant hopping
processes is presented: type-A orbitals (red), type-B orbitals (blue).
Lines denote the dominant hopping paths, and the black square marks
the size of the unit cell.

model. The indirect hopping results only in a small effective
hopping between the chains, which we estimate perturbatively.

The starting point for perturbation theory is a Hamiltonian,
where orbitals of type A and type B are decoupled. For this
purpose we define a complete set of projection operators
projected Hamiltonians Ĥαα = P̂αĤP̂α on the type α = {A,B}
orbitals. In zeroth-order approximation, the hybridization
terms are set to zero, ĤAB = ĤBA = 0. For our Wannier
model, this corresponds to neglecting those matrix elements
which are less than 10% of the largest occurring hopping
energy |tmax| = 0.35 eV and leads to a Hamiltonian

Hreduced =
(

tAA2 cos (kbb) 0

0 εB + tBB2 cos (kbb ± kcc)

)
,

(2)

with tAA = −0.35 eV, tBB = −0.11 eV, and εB = −0.45 eV
accompanied by the rigid band shift of μ = −0.03 eV. One has
to keep in mind that both bands A and B are doubly degenerate.
We will refer to this Hamiltonian as reduced model throughout
this work.

Note that the two type-B orbitals disperse in orthogonal
diagonals. The bands crossing the Fermi energy arise due
to the two degenerate type-A orbitals which now represent
isolated, one-dimensional chains dispersing in the b direction.
Due to the missing hybridization between A and B orbitals,
fine features of the perpendicular (c-direction) dispersion
are not reproduced. Nevertheless, despite its simplicity, the
band structure and density of states (see Fig. 1) are still
described very well. Data in the figure have been obtained
using N1.BZ = 483k points in the first BZ and a numerical
broadening of 0+ = 0.086 tmax for the evaluation of the DOS.
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We find a bandwidth of the two bands in the vicinity of εF of
W ≈ 1.4 eV and a Fermi velocity of vF ≈ 0.93 × 105 m/s.

In order to estimate the effective interchain coupling,
we treat the indirect (A-B-A′) hoppings in second-order
perturbation theory. For that purpose, we project the full
four-orbital Wannier model (1) onto the type-A bands [91]

ˆ̃HAA = ĤAA + ĤAB(ω − ĤBB)−1ĤBA .

Upon approximating ω by the bare eigenenergies of ĤAA,
we arrive at a two-orbital model which reproduces the band
dispersions of the two bands crossing the Fermi energy (not
shown). We note in passing that this two-orbital model can
also be obtained by a Wannier construction where the basis is
restricting to bands of type A alone.

Keeping the number of hopping terms low, we now perform

a fit of ˆ̃HAA(k) with a Hamiltonian that contains perpendicular
hopping in addition to the terms of the A orbitals of the
reduced model [Eq. (2)] respecting the symmetry of the lattice.
In particular, we choose for the perpendicular hopping both
intrachain (A-A) terms as well as interchain (A-A′) terms.
The χ2 fit is done using 202 k points on an equidistant
grid in one fourth of the reciprocal b-c plane (ka ≈ 0)
plus 3 × 32 k points on the standard path Y-G-X-M. The
only relevant perpendicular hopping processes given by this
procedure are nearest-neighbor interchain terms of the order
of tAA′ ≈ −0.005 eV, as well as nearest-neighbor intrachain
terms of the order of tAA ≈ −0.02 eV. The hopping in the b

direction only slightly renormalizes to tAA/A′A′ ≈ −0.37 eV
accompanied by an onsite shift of εA/A′ = −0.01 eV.

Thus, we find an intuitive two-orbital model that consists of
two chains dispersing in the b direction with nearest-neighbor
perpendicular hoppings of type A-A and A′-A′ which are one
order of magnitude smaller than the hopping in the b direction.
The direct effective hopping of type A-A′ between the two
chains within one unit cell is again one order of magnitude
smaller. This small effective coupling explains the robust one
dimensionality of the compound. Our calculated values are in
good agreement with those discussed in [48].

We want to stress here that only in this section fitting of
parameters was performed, in order to estimate the effective
perpendicular hopping using only a few parameters. In all other
parts of this work, only ab initio calculated hopping integrals
are used.

III. ANISOTROPIC CONDUCTIVITY

We augment our discussion of the electronic structure by
computing the linear response transport and comparing it to
experiments. The conductivity tensor of Li0.9Mo6O17 consists
of three independent diagonal σa,σb,σc entries as well as one
nonzero off-diagonal element σbc = σcb (see Appendix A).
Literature provides values for the anisotropic resistivity at
room temperature (300 K) and zero magnetic field using
several experimental techniques. We summarized the reported
data in Table I which all agree on a highly anisotropic
resistivity. The ratio between the diagonal elements of the
resistivity tensor, however, strongly disagrees in-between
the individual measurements. In particular, ρa : ρb differs
by a factor of ≈60 while ρb : ρc differs even by a factor

TABLE I. Collected data for the anisotropic resistivity at T =
300 K and our low-temperature theoretical results for small scattering
γ [eV] ∼ 0.05 eV. Data from Refs. [5,12,14] were obtained via four-
point measurements, Refs. [6,7] report results using the Montgomery
method, Ref. [8] measurements are based on magnetoresistance, and
in Ref. [17] a Hall experiment was carried out. Resistivity values
which were not given in the respective publications are represented
by dashes in the ratio column.

Ref. ρa ρb ρc Ratio
m 
cm m 
cm m 
cm

[5] 2470 9.5 260:1:-
[12] 64.5 16 854 4.5:1:50
[14] 1.7 -:1:-
[6] 110(40) 19(1) 47(5) 6(2):1:2.5(4)
[7] 30 0.4 600 80:1:1600
[8] 0.4 100:1:>100
[17] 100:1:-
Full Wannier model ≈430γ ≈1.8γ ≈600γ 240:1:330
Reduced model ≈2γ -:1:-

of ≈640 from the lowest to the highest anisotropy found
in experiments. These discrepancies are often attributed to
experimental challenges when measuring the resistivity of
strongly anisotropic small samples.

A. Conductivity of the reduced model

The reduced model introduced in Eq. (2) consists of
Nband = 2 degenerate bands (type A) crossing the Fermi en-
ergy dispersing only in the b direction with velocity vAA

b (k) =
− 2tAA

�
b sin (kbb) [Eq. (A5)]. In this case of diagonal velocities

and spectral functions, the conductivity (see Appendix A1)
becomes

σbb = 16e2t2
AA

�

b2

ac

∫ ∞

−∞
dω

β

2{1 + cosh [β(ω − μ)]}

×
∫ π

b

0
dkb sin2 (kbb)

(
γ

π

)2

× 1

{[ω − 2tAA cos (kbb)]2 − γ 2}2
,

where we introduced a phenomenological scattering γ ∼
|Im[�(ω = μ)]| in the Lorentzian-shaped spectral function.
In the low-temperature small-scattering limit we find

σbb = 16e2t2
AA

�

b2

ac

∫ ∞

−∞
dω δ(ω − μ)

×
∫ π

b

0
dkb sin2 (kbb)

δ[ω − 2tAA cos (kbb)]

2πγ
,

which evaluates to

σbb = 4e2

hγ

b

ac

√
(2tAA)2 − μ2

μ=0≈ NspinNband
D

RKγ
b
ac

,

with D = 2tAA and RK = h
e2 the von Klitzing constant.

Using this expression we find for the resistivity ρbb = 1
σbb

≈
2γ [eV] m 
cm. Considering a reasonable mean-free path d

of the order of a unit-cell length and using the calculated
Fermi velocity of ≈105 m/s we can estimate a scattering
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of γ [eV] = 0.658
d[Å]

≈ 0.05 eV which implies a resistivity of
ρbb ≈ 0.1 m 
cm.

B. Conductivity anisotropy

The reduced model is limited to transport in the b

direction. To study the high transport anisotropy suggested by
experiments, we calculate the conductivity tensor of the full
four-orbital Wannier model. We evaluate Eq. (A1) numerically
at T = 4.2 K and for small scattering γ (for details see
Appendix A2). For the resistivity we obtain ρa ≈ 430γ [eV]
m 
cm, ρb ≈ 1.8γ [eV] m 
cm, and ρc ≈ 600γ [eV] m 
cm
(ρa : ρb : ρc ∼ 240 : 1 : 330). Note that the b-axis resistivity
in the strictly one-dimensional model (2) is only ≈10%
larger than the resistivity in the four-orbital model, which
means that the reduced model yields already a quite accurate
description of the b-axis transport. The a- and c-axis
resistivities are roughly two orders of magnitude larger
than in the b direction, compatible with experimental data.
Using the same phenomenological scattering γ ≈ 0.05 as
motivated in the previous section, we obtain ρa ≈ 20 m 
cm,
ρb ≈ 0.1 m 
cm, and ρc ≈ 30 m 
cm. The resistivity ratio
of ρa/ρb ∼ 240 does compare best to the experimental value
260 as obtained in [5] (see Table I).

IV. CORRELATED ELECTRONIC STRUCTURE

The obtained Wannier model is close to being half-filled
which indicates that the local part of the Coulomb interactions
is most important. The effects of off-diagonal Coulomb
interactions are small and further discussed in Appendix B. In
the following, we focus on local electron-electron interactions
of density-density type, which are added to the ab initio
tight-binding Wannier model

Ĥ = ĤWannier + Ĥint, (3)

where the single-particle part ĤWannier is defined in Eq. (1) and

Ĥint =
∑

R

∑
α

Uαn̂Rα↑n̂Rα↓, (4)

where n̂Rασ is the particle-number operator for Wannier orbital
α = {A,A′,B,B′} and spin σ = {↑ , ↓} in unit cell R. In order
to treat the different band fillings in the model properly, we
employ a simple double-counting correction [92] in ĤWannier,

M+DC
0α0α = M0α0α − Uα〈n0α〉Wannier, (5)

where the densities 〈n〉Wannier are taken from the noninteracting
Wannier model. Adding interactions we furthermore set the
chemical potential μ such that the average filling of electrons
in the system is at its physical value 〈n〉 ≈ 1.44.

This interacting theory is challenging to solve, even more so
because the expected results hint to low-dimensional physics
which can promote nonlocal self-energy effects. We employ
two complementary techniques to study on a first, more
qualitative level, the effect of interactions. First, we apply the
VCA, which contains nonlocal contributions to the self-energy
�. Second, we augment these results by a DMFT calculation
which neglects contributions of nonlocal self-energy terms,
but is superior in the treatment of the low-energy quasiparticle
resonance.

A. Variational cluster approach

The VCA [67] is a quantum many-body cluster method
which is capable of treating short-range correlations ex-
actly [65,67,93,94]. The given lattice Hamiltonian is parti-
tioned into a cluster and an intercluster Hamiltonian Ĥ =
Ĥcl + Ĥinter, where only single-particle terms are allowed in
the intercluster part (for details, see Appendix B). Clusters
consist of one or more unit cells and are chosen so that
their single-particle Green’s function gσ

ml(z) can be obtained
exactly. We use clusters consisting of two unit cells in the b

direction (LC = 8) to capture at least the most basic nonlocal
self-energy effects on the quasi-one-dimensional chains which
enable signatures of a possible spin-charge separation [66].
In this work, we employ a numerical band Lanczos scheme
and the Q-matrix formalism to obtain gσ

ml(z) [95]. The CPT
approximation to the single-particle Green’s function of the
full system G−1(z) is given within first-order strong coupling
perturbation theory by [63,64]

G−1(z) = g−1(z) − H inter, (6)

where H inter are the matrix elements of the intercluster
Hamiltonian in the basis of cluster orbitals. If the cluster is
larger than the actual unit cell of the crystal, we use a Green’s
function periodization prescription to project on the original
unit cell Gαβ(z) [94].

Within VCA, Eq. (6) is evaluated at the stationary point
of the generalized grand potential 
[�] (for fermions at zero
temperature) which is available from G and g [67]. The grand
potential is parametrized by the VCA variational parameters
� which are fixed by the VCA condition [67]

∇�
(�)
!= 0. (7)

The VCA improves the CPT (� ≡ 0) approximation (which
is to approximate the self-energy �G of the full system by
the self-energy of the cluster �g) by adding flexibility to the
cluster self-energy in terms of variational parameters �. We
consider the onsite energies of the four Wannier orbitals as
independent variational parameters � = {�εA,�εA′ ,�εB ,�εB′ }
(which implicitly includes an overall shift of the chemical
potential of the cluster) and use N1.BZ = 323 k points in the
irreducible BZ for the evaluation of Eq. (7).

Advantages of the VCA are that (i) it is exact in the
noninteracting system, (ii) the approximation is systematically
improvable by enlarging cluster sizes, (iii) or increasing the
number of variational parameters �, and (iv) it is possible to
work directly in the real energy domain as well as in Matsubara
space. VCA on small clusters is inherently biased towards the
insulating state, therefore we expect to overestimate a possible
Mott gap (see Appendix C for a discussion).

B. Dynamical mean field theory

A complementary approach that neglects nonlocal effects
but describes the local dynamical quantum fluctuations bet-
ter is the DMFT [96]. Within this theory, the interacting
lattice problem is mapped on a self-consistent four-orbital
impurity model coupled to an infinite electronic bath. The
DMFT approximation is to assume a momentum-independent
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self-energy of the original model �αβ :

�αβ(iω,k)
!= Sαβ (iω),

where Sαβ is the local self-energy generated by the auxiliary
quantum impurity system.

As impurity solver we use the continuous time quantum
Monte Carlo (CT-QMC) code of the TRIQS [97] toolkit
and its implementation of the hybridization expansion (CT-
HYB) [98,99] algorithm using Legendre polynomials [100].
This sign-problem free method works in Matsubara space and
provides statistically exact and reliable results even at very
low temperatures [101]. We used a low temperature of β =
150 eV−1 and a k mesh of N1.BZ = 800. The imaginary-time
data are continued to the real-frequency axis using a parallel
tempering analytic continuation method [102].

Different to VCA, the DMFT as applied here neglects
nonlocal correlations. On the other hand, it treats the local
dynamical quantum fluctuations accurately.

C. Discussion of the interacting dynamics

For models based on atomic orbitals, constrained LDA
calculations suggest an onsite interaction for the atomic d Mo
orbitals of U ≈ 6.4 eV and a nearest-neighbor interaction of
V ≈ 0.2 eV [52] in Li0.9Mo6O17, while the bulk Mo value
for the onsite interaction is U ≈ 3.8 eV [48]. As we will
discuss in the following, in our model these larger interaction
values U , which have been proposed and used for model
calculations [48,49], do not give results in accordance with
experimental data. Obtaining the interaction parameters in
an ab initio way by, e.g., the constrained random phase
approximation (cRPA) [61,103], would be highly desirable,

but is beyond our present computational capabilities due to the
very large unit cell of the system.

In the following, based on physical arguments, we will
nevertheless argue that a moderate value of U is appropriate
for our model. We use uniform onsite interactions Uα = U

only and estimate the magnitude of the interaction strength to
be of the order of a few tmax. The reduced value, compared
to the atomic one, can be motivated by (i) the large spread
of the orbitals [104] and (ii) the effective screening of other
Mo 4d states near the Fermi level. We want to remind the
reader that we are not dealing with atomic orbitals (where for
molybdenum the interaction U could be of the order of several
electron volts) but with extended, even molecularlike, orbitals
(see Fig. 4).

Let us start the discussion using interaction values of the
order of the bandwidth, i.e., using U = 1 eV. We show results
for the single-particle spectrum and orbitally resolved DOS of
the interacting model in Figs. 6 (left and center) and 7 [105].
We used a Lorentzian broadening of 0+ = 0.05 eV for plotting
the spectral functions, as well as 0+ = 0.025 eV for plotting
the DOS. As discussed in the previous section, the VCA is
biased towards an insulating solution (see also Appendix C),
that is why there is a small gap in the conduction band visible in
the spectral function, which is not seen in the DMFT results.

Comparing the single-particle dynamics to recent experi-
ments (ARPES data from Refs. [21,22]), we find very good
agreement for the bands at the Fermi energy (Fig. 6, right). The
renormalization of the effective mass of the half-filled orbitals,
calculated from the DMFT self-energy, is m ≈ 1.2m0, where
m0 is the LDA band mass.

Regarding the bands crossing the Fermi energy, their slope
improves in VCA/DMFT with respect to the LDA data,

FIG. 6. (Color online) Spectral function and DOS of the interacting model. Top row: VCA data for U = 1 eV using eight-orbital clusters.
Bottom row: DMFT data for U = 1 eV. Left: Spectral function plotted along a two-dimensional path in the reciprocal b-c plane. The
noninteracting dispersion is plotted on top (dashed green line). Center: Orbitally resolved density of states. Right: Zoom to the spectral function
in the respective red rectangle compared to ARPES data from Ref. [22] which are indicated as red circles.
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FIG. 7. Cuts through the spectral function along the b axis. The parameters and labels (I, II) correspond to those in Fig. 6.

and compares well with the measured excitations in ARPES
experiments [22]. Note that the upmost branch provides only a
very weak signal in the ARPES data as compared to the lower
branch. In our DMFT calculation, the electronic correlations
suppress the hybridizations between chains A and A′, making
them equivalent. This leads to only one dispersing feature
crossing the Fermi energy (see Fig. 6, lower right panel).
The red circles at lower binding energy correspond to the
shoulder in the ARPES data, which are very likely due to
nonlocal correlation effects that are completely neglected in the
single-site DMFT approach. A final statement on the impact
of nonlocality of the self-energy and spin-charge separation on
the single-particle excitations requires a detailed investigation
on large systems, which is beyond the scope of this paper.

Increasing the interaction value further, for instance to U =
1.5 eV, does not change results significantly (left aside the
artificial gap in the VCA calculation). Above a certain limit,
however, which is around U = 2.5 eV in our calculations,
a Mott gap opens in the two half-filled bands. An extreme
example is using the atomic value for the interaction U = 6 eV,

which is shown in Fig. 8. The half-filled bands are in the Mott
insulating state, with the spectral weight transferred to roughly
±3 eV. The only spectral weight left close to the Fermi level
originates from the two almost filled orbitals, type B. This is
of course qualitatively different from experimental results.

The values of U given here can only be seen as rough
estimates to the actual value, and are by no means ab initio. The
DMFT overestimates the metallicity of a system, in particular
in low dimensions, while the VCA underestimates it. Hence,
using different techniques which are tailored more towards
low dimensions, the needed value of U to open a Mott gap
might be even smaller. As has been shown by Chudzinski
et al. [48], the system should be metallic, but very close to an
insulating state. Our observations can be used as a guideline
in further studies to determine the value of U . At very large
coupling U = 6 eV, however, the system as modeled here is
strongly localized, and the insulating state there should be
very robust. This is supported by the fact that both methods,
VCA and DMFT, give indistinguishable results in this (almost)
atomic limit. It clearly shows that taking atomic values

FIG. 8. (Color online) Spectral function and DOS of the interacting model for high values of onsite interaction strength as one would
expect for atomiclike molybdenum d orbitals: U = 6 eV. For legends, arrangement of the subplots, and color coding, see Fig. 6. On the far
right we show cuts through the spectral function as in Fig. 7.
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for U is inadequate for the effective model derived in this
work.

Let us shortly comment on the effect of correlations in
the reduced model (Sec. II C). There, the Hamiltonian of
the half-filled and the filled bands decouples exactly, which
means that one is left with a standard one-dimensional
(almost) half-filled Hubbard model with nearest-neighbor
hopping only [106]. As discussed in Secs. II C and III A,
this gives a quite good description of the dispersion in
chain direction including transport properties. Effects beyond
the one-dimensional Hubbard model can be included using
the effective perpendicular hopping terms as estimated in
Sec. II C. In a recent study on dimensional crossover [40],
the critical perpendicular coupling to enter the regime of
one-dimensional physics is tp ≈ 0.18t at interaction strength
U = 3t . Of course, this value depends on model details such
as frustrated hopping and interaction strength. However, since
our estimated value for tp in Li0.9Mo6O17 is significantly
smaller than this boundary, we suggest that this can explain the
robustness of one-dimensional (1D) physics in this compound.
We leave a more detailed study of the dimensional crossover
in Li0.9Mo6O17 for further investigations.

V. CONCLUSIONS

We have devised a model for the electronic structure
of the highly anisotropic low-dimensional purple bronze
Li0.9Mo6O17. Starting from ab initio calculations, applying
density functional theory in the local density approximation,
we constructed a four-orbital model based on molybdenum
d states in terms of maximally localized Wannier functions.
This leads to an effective theory with two filled bands slightly
below and two half-filled bands crossing the Fermi energy.
We obtained an even more elementary effective model with
reduced dimensionality consisting of two orbitals only, tailored
towards studies of interactions at low energies.

We showed that basic electronic properties of our model
are in good agreement with experimental data and ab initio
results. Estimated anisotropic transport coefficients reproduce
experimental trends. The model enables us to study effects of
many-body correlations. In a first approach, we made use of
the (extended) variational cluster approach which takes into
account nonlocal contributions to the self-energy and dynam-
ical mean field theory to study the effects of density-density
type electron-electron interactions. Our results indicate that
moderate onsite interactions (of the order of the bandwidth) are
essential, while nearest-neighbor density-density interactions
play a minor role. The so-obtained single-particle spectra agree
well with recent angle-resolved photoemission experiments.
Our study sets some qualitative limits on the value of the
interaction parameters. In particular, we could show that
the values used for atomiclike molybdenum d orbitals are
completely inappropriate for our Wannier model of lithium
purple bronze.

We would like to point out that our model is very different
from previously proposed descriptions for Li0.9Mo6O17 which
were based on atomic orbitals with a comparatively high
onsite interaction strength of several electron volts. We
suggest that low-energy treatments of this one-dimensional
model should start from two half-filled chains with moderate

onsite interaction rather than quarter-filled ladder models with
high values of onsite interaction strength plus off-diagonal
interactions.

Our model is intended to serve as a starting point for
future studies of the electronic structure and interactions of
Li0.9Mo6O17 be it in a renormalization group Luttinger liquid
or computational many-body sense. On the latter side it would
certainly be interesting to conduct a more thorough inves-
tigation of nonlocal self-energy effects to complement our
(extended) variational cluster approach results. In particular,
the phenomenon of spin-charge separation deserves further
attention. A theoretical understanding of the phase diagram of
the system, i.e., the occurrence of superconducting, insulating,
or charge ordered states as function of pressure and tem-
perature, remains a challenging open question. These studies
could be augmented by an ab initio calculation of interaction
parameters for the Wannier model by appropriate techniques
such as constrained random phase approximation [61,103],
making the approach fully ab initio. At the moment of writing,
this is not feasible due to the computational complexity.
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APPENDIX A: LINEAR RESPONSE TRANSPORT

The structure of the conductivity tensor σαβ of Li0.9Mo6O17

follows from the C2h point symmetry as well as physical
symmetry considerations for the conductivity [107] and can
easily be established by requiring the conductivity tensor
to be (i) symmetric for physical reasons and (ii) invariant
under transformations with the four lattice point symmetry
operations (identity, inversion, mirror symmetry perpendicular
to the a axis and twofold rotation around the a axis)
Sα: σ = SασST

α .

1. Formalism

Following Refs. [108–110], linear response transport coef-
ficients can be expressed in terms of kinetic coefficients

An
νμ = Nspinπ�

∫ ∞

−∞
dω (βω)n

×pFD(ω,μ,β)pFD(−ω, − μ,β)�νμ(ω,ω), (A1)

where Nspin = 2 is due to spin degeneracy, the indices
ν,μ = {a,b,c} denote the real-space coordinate system, and
we neglect vertex corrections. The Fermi-Dirac distribution
pFD(ω,μ,β) = 1

eβ(ω−μ)+1 restricts the interval of integration to
β−1 ∼ kBT around the Fermi energy εF (kB is Boltzmann’s
constant, and T and β denote temperature and inverse

045125-10



EFFECTIVE MODEL FOR THE ELECTRONIC PROPERTIES . . . PHYSICAL REVIEW B 89, 045125 (2014)

temperature, respectively). The transport distribution

�νμ(ω1,ω2) = 1

V

1

N1.BZ

∑
k∈1.BZ

Tr

× [vν(k)A(ω1,k)vμ(k)A(ω2,k)] (A2)

(V = abc is the unit-cell volume) is given in terms of the
velocities

vαβ
ν (k) = − �

m
〈�α(k)| ∇ν |�β(k)〉 (A3)

and the spectral function

Aαβ(ω,k) = − 1

π
Im

[
GR

αβ(ω,k)
]

, (A4)

which both are matrices in orbital indices α,β = {A,A′,B,B′},
which the trace Tr runs over.

We use velocities vαβ
ν (k) [Eq. (A3)] in the Peierls approx-

imation (neglecting the gradient of the Wannier orbital itself
leading to a diagonal representation)

vαβ
ν (k) = 1

�

(
〈ωα(k)| ∂Ĥ(k)

∂kν

|ωβ(k)〉

−α(rα − rβ) 〈ωα(k)| Ĥ(k) |ωβ(k)〉
)

≈ 1

�

∂Eα(k)

∂kν

δαβ, (A5)

where the second term in the first expression takes intra-unit-
cell processes into account [109] and rα is the position of
Wannier orbital α inside the unit cell. This term is neglected
in the following because the intra-unit-cell hopping elements
are negligibly small. The conductivity tensor is

σνμ = βe2A0
νμ, (A6)

with e denoting the electron charge.

2. Details on the evaluation of the anisotropic conductivity

In this appendix, we outline the numerical procedure used
for the evaluation of the conductivity tensor (A6). These equa-
tions contain four additional, auxiliary numerical parameters
in which we converge our results: (i) The spectral function
Aαβ(ω,k) [Eq. (A4)] of the Wannier Hamiltonian is available
exactly through the noninteracting retarded single-particle
Green’s function GR

αβ(ω) = 〈ωα(k)| 1
ω+iγ− ˆH(k)

|ωβ(k)〉. The
broadening γ of the spectral function is chosen phenomeno-
logically as described in the main part of the text. For numerical
reasons, γ has to be chosen in accordance with (ii) the number
of k points N1.BZ in the first BZ for the sum in Eq. (A2).
We obtain converged conductivities for N

1/3
1.BZ ∈ [1,67] to

within a relative error of 10−3 using an equidistant grid in
the irreducible BZ. We use γ = {0.1,0.075,0.05,0.025} and
rescale all conductivities with γ . As a function of γ , the
resistivities in the a and b directions are constant at ρa ≈
(1.8 ± 0.05)γ and ρb ≈ (430 ± 10)γ , while the resistivity in
the c direction shows an upward trend. For our values of γ

we find ρc ≈ {190,300,480,650}γ . Since the last data point at
γ = 0.025 is already difficult to converge in N1.BZ, we estimate
ρc ≈ (600 ± 150)γ .

(iii) The velocities vαβ
ν (k) [Eq. (A3)] are obtained by sym-

metric first-order numeric gradient approximations vαβ
ν (k) ≈

δαβ

�

Eα (k+ δ
2 eν )−Eα (k− δ

2 eν )
δ

(eν denotes the unit vector in real-space
dimension ν). The parameter of the finite-difference scheme
for the velocities used is δ = 10−6 after finding only negligible
changes in a range of δ ∈ [10−8,10−3]. (iv) For reasons of
numerical stability, we evaluate Eq. (A6) at a low, but finite
temperature of T = 4.2 K, keeping in mind that v

ij
ν (k) and

A(ω,k) have been evaluated for zero temperature. We find
the results to be independent of this choice in a range of
T ∈ [1,50] K. In this calculation, at fixed γ, the temperature
dependence enters through the Fermi-Dirac distribution only
and a small scattering is taken into account through the
broadening γ in the spectral function. We checked the numeric
procedure on the reduced model where analytic results are
known (see main text).

APPENDIX B: NONLOCAL INTERACTIONS:
EXTENDED VCA

Here, we outline the VCA theory as implemented to obtain
the results of the main text including the extensions needed in
eVCA to treat nonlocal Coulomb interactions [65]. The single-
particle part of the full Hamiltonian is readily decomposed into
a cluster and an intercluster part

Ĥcl
Wannier = MRmRl |ωm〉 〈ωl| ,

Ĥinter
Wannier =

∑
δR

e−ik·δRMRmR′l |ωm〉 〈ωl| ,

where indices m and l run over the LC orbitals in the cluster C
at superlattice [94] position R.

When off-diagonal interaction terms are nonzero, an addi-
tional mean field treatment is needed for those two-particle
terms which extend over the cluster boundary [65]. This leads
to a modified interaction part of the Hamiltonian

Ĥint =
∑
C

(
Ĥcl

int + Ĥcl
mf(ϕ)

)
,

Ĥcl
int =

LC∑
m=1

Um n̂m↑n̂m↓ +
∑

m < l ∈ C
σσ ′

Vml n̂mσ n̂lσ ′ ,

Ĥcl
mf(ϕ) =

∑
ml

Ṽml

(∑
σ

(n̂mσ ϕl + n̂lσ ϕm) − ϕlϕm

)
,

with onsite interaction strength Um, intracluster off-diagonal
interactions Vml , as well as Ṽml = ∑

R V0mRl the interaction
elements in the mean field Hamiltonian. The mean fields ϕ

(taken as spin independent ϕm = ∑
σ 〈n̂mσ 〉 and restricted by

lattice symmetry) need to be determined self-consistently.
This allows us to write the (interacting) cluster Hamiltonian

in the VCA as

Ĥcl(�,ϕ) = Ĥcl
Wannier(�) + Ĥcl

int + Ĥcl
mf(ϕ),

where we introduced the VCA variational parameters
[67,93] �.
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FIG. 9. (Color online) Comparison of VCA cluster sizes for a moderate onsite interaction strength of U = 0.5 eV. Top row: VCA data for
using four-orbital clusters. Bottom row: VCA data for using eight-orbital clusters. For legends, arrangement of the subplots, and color coding,
see Fig. 8.

To study the impact of nonlocal Coulomb interactions, we
extend Eq. (4) by

Ĥint,nl = Ĥint +
∑
R<R′

∑
α < β

σσ ′

VRαR′β n̂Rασ n̂R′βσ ′ ,

which also effects the double-counting terms in Eq. (5)

M
+DC,nl
0α0α = M+DC

0α0α −
∑
Rγ

V0αRγ 〈nRγ 〉Wannier,

where the sum over (R,γ ) runs over all bonds connected to
orbital (0,α). The mean fields ϕ [65] which arise due to off-
diagonal interaction terms are fixed by the eVCA condition on
the generalized grand potential [111]

∇�,ϕ
(�,ϕ)
!= 0.

In order to check the influence of nearest-neighbor density-
density interactions VRαR′β , we did several eVCA calculations
with different values within reasonable limits, i.e., below a
value of ≈U

2 . Our calculations show, however, that these
interactions VRαR′β lead only to minor differences compared
to results without them. We did not find the system to be
susceptible to any charge ordering. For that reason, and
also because the precise value of the parameters VRαR′β

is complicated to estimate, all results presented here are
calculated with onsite interaction Uα = U only [112]. Given
the band-filling factors and the good agreement with ARPES
experiments, we argue that onsite interactions are sufficient
to describe the spectral properties of this system within our
approximation.

APPENDIX C: VCA CLUSTER SIZE EXTRAPOLATION

Here, we discuss the approximation introduced by choosing
eight-orbital clusters for the VCA procedure. Eight-orbital
clusters enable nonlocal self-energy effects along the chain
direction in the most basic fashion. The VCA on small cluster
sizes is inherently biased towards the insulating state [94]. In
Fig. 9, we show the behavior of the results when going from
one-unit-cell clusters LC = 4 to two-unit-cell clusters in the b

direction LC = 8. For the same interaction strength, the LC = 4
calculation clearly shows a pronounced Mott gap in the A-type
orbitals while it is still absent in the LC = 8 calculation. All
other basic features are comparable. For numerical reasons,
we can not go to larger cluster sizes. Nevertheless, we expect
the results of the LC = 8 calculation to be still heavily biased
towards the insulating state. One can regard the critical value
U ≈ 0.7 eV for which the gap opens at LC = 8 as a lower
bound to the true critical interaction.
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