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Physical bounds on absorption and scattering for cloaked sensors
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We derive and discuss general physical bounds on the electromagnetic scattering and absorption of passive
structures. Our theory, based on passivity and power conservation, quantifies the minimum and maximum
allowed scattering for an object that absorbs a given level of power. We show that there is a fundamental tradeoff
between absorption and overall scattering suppression for each scattering harmonic, providing a tool to quantify
the performance of furtive sensors, regardless of the applied principle for scattering suppression. We illustrate
these fundamental limitations with examples of light scattering from absorbing plasmonic nanoparticles and
loaded dipole antennas, envisioning applications to the design of cloaked sensors and absorbers with maximized
absorption efficiency.
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I. INTRODUCTION

In the past decade, the successful design and implemen-
tation of metamaterials with exotic electromagnetic proper-
ties has opened several new venues for manipulating the
propagation of light and its interaction with matter [1]. In
particular, the possibility of inducing invisibility with passive
metamaterial coatings, the “cloaking effect”, has been the
subject of intense research [2–19]. Several experimentally
verified approaches for all-angle electromagnetic cloaking
of three-dimensional objects have been proposed, including
(i) the transformation method [5–8], which uses a cloak with
functionally graded material properties to reroute the power
flow around the object, simultaneously bringing its scattering
to zero and insulating the cloaked region from the outside
world and (ii) the scattering cancellation technique [9–19], in
which a metamaterial coating with isotropic and homogeneous
constitutive parameters [9–16] or a thin metasurface with
tailored surface impedance [17–19] is used to reduce the
scattering over a given bandwidth. In many cases, the study of
the cloaking performance has been restricted to ideal situations
involving lossless materials. However, the problem of material
losses is a central issue, especially in practical realizations, in
which the absolute cloaking reduction may be significantly
affected by absorption losses [3,20].

A related problem that has recently attracted significant
attention is the one of “seeing without being seen” [21,22].
In many applications like noninvasive sensing and commu-
nications, being able to “open our eyes” behind a cloak and
extract information about the outside world while remaining
undetectable is of primary importance. This possibility has
been demonstrated with the scattering cancellation technique
and the transformation approach in the case of small sensors
or power receivers [23–28], providing exciting venues in a
variety of application fields like near-field scanning optical
microscopy [29–31], invisible electromagnetic sensors and
photodetectors [32], and low-observable receiving antennas
[33]. Yet, the idea of being invisible while absorbing power
appears counterintuitive, since common sense and the optical
theorem agree on the fact that it is not possible to absorb energy
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without creating a shadow, i.e. any extinction is associated
with nonzero forward scattering [34,35]. As a consequence, a
passive cloaked object becomes necessarily detectable as soon
as it starts to absorb a portion of the impinging energy.

A better understanding of the fundamental limitations
associated with cloaking absorptive objects is not only crucial
to transition from ideal cloaking methods to practical appli-
cations, but also for understanding the physical boundaries to
be considered when building concealed sensors. In this paper,
we discuss general limitations on scattering and absorption
from passive objects stemming from passivity and power
conservation. In Sec. II, we highlight and quantify the
fundamental tradeoff between absorption and cloaking and
provide an analytical tool to understand the behavior of cloaked
sensors and low-interfering power receivers. In Sec. III, we
illustrate the generality of our theory by considering practical
examples, including optical scattering from lossy nanospheres,
core-shell nanoparticles, and loaded dipole antennas.

II. THEORETICAL FORMULATION

Consider the general situation in which electromagnetic
waves are scattered off from a passive object. For simplicity of
notation, in the following, we assume spherical symmetry, but
our theory can also be extended to arbitrarily shaped objects.
The scattering problem may be approached using the Mie
expansion in spherical harmonics. The scattered field for plane
wave incidence �Einc = x̂E0e

ik0z is expressed as a superposition
of spherical harmonics [34]

�Escat = E0

(+∞∑
n=1

cT M
n ∇ × ∇ × (rψ1

n

)

+ iωμ0

+∞∑
n=1

cT E
n ∇ × (rψ1

n

))
, (1)

where μ0 is the free-space permeability, ψm
n are scalar

spherical harmonics, solutions of the Helmholtz equation in
the spherical coordinate system (r,θ,ϕ), and m = 1 due to
symmetry, under an e−iωt time convention. The total scattering
cross-section σscat can be expressed as a function of the Mie
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scattering coefficients cT E
n and cT M

n as [34,35]

σscat = 2π

k2
0

+∞∑
n=1

(2n + 1)
[∣∣cT M

n

∣∣2 + ∣∣cT E
n

∣∣2], (2)

where the scattering coefficients may be found for a general
core-shell geometry in Ref. [36]. The total amount of power
extracted from the incident field is represented by the total
extinction cross-section σext, which may be calculated as
[34,35]

σext = −2π

k2
0

+∞∑
n=1

(2n + 1)Re
[
cT M
n + cT E

n

]
. (3)

In addition, the absorption σabs, extinction, and scattering
cross-sections are related by energy conservation

σabs = σext − σscat. (4)

We will now prove that, as a consequence of passivity (σabs �
0), the complex-valued scattering coefficients cT E

n and cT M
n are

restricted to a portion of the complex plane, namely the closed
disk of center −1/2 and radius 1/2. This will be evident after
performing the variable change

cT E/T M
n = − 1

2 + 1
2ηT E/T M

n . (5)

The expressions in Eqs. (2)–(4) for the cross-sections
become

σscat =
+∞∑
n=1

(σscat)n

= π

2k2
0

+∞∑
n=1

(2n + 1)
[∣∣ηT M

n − 1
∣∣2 + ∣∣ηT E

n − 1
∣∣2], (6)

σext =
+∞∑
n=1

(σext)n

= π

k2
0

+∞∑
n=1

(2n + 1)
[
1 − ReηT M

n + 1 − ReηT E
n

]
, (7)

σabs =
+∞∑
n=1

(σabs)n

= π

2k2
0

+∞∑
n=1

(2n + 1)
(
1 − ∣∣ηT E

n

∣∣2 + 1 − ∣∣ηT M
n

∣∣2), (8)

where we have introduced the partial scattering cross-sections
associated with each harmonic, (σscat)n, (σabs)n, and (σext)n.
Inspecting Eq. (6), it is evident that a perfectly cloaked object
(σscat = 0) requires η

T E/T M
n = 1, which implies σabs = 0 in

Eq. (8). In addition, if the scatterer is lossless (σabs = 0), then
necessarily |ηT E/T M

n | = 1 ∀n. If losses are present, passivity
and the orthogonality of spherical harmonics require that
(σabs)n � 0, which translates into |ηT E/T M

n | � 1. This proves
that, for passive objects, the frequency-dependent complex
coefficients η

T E/T M
n are restricted in the complex plane to the

closed unity disk, or equivalently, the coefficients c
T E/T M
n are

restricted to the closed disk of center −1/2 and radius 1/2.

FIG. 1. (Color online) Partial scattering cross-sections for pas-
sive objects, represented inside the unity disk in the η complex plane.
The filled contours represent the levels of (σscat)n, while the black
contour lines represent (σabs)n. Both are expressed in normalized
units of (2n + 1)π/2k2

0 .

A special case of interest is the one of maximized absorption
for the nth harmonic. Equation (8) suggests that (σabs)n is
maximized for η

T E/T M
n = 0. Under this condition, we find the

relationship between partial cross-sections

(σabs)n = (σscat)n = (σext)n
2

= (2n + 1)
π

k2
0

. (9)

In other words, in the case of maximized absorption
for the nth harmonic, the partial absorption and scattering
cross-sections are necessarily equal, and they depend only
on frequency and on the order n, a condition known in the
antenna community as conjugate matched resonance [37–41].

The above discussion demonstrates that the scattering and
absorption cross-sections of any passive object are bounded
and fundamentally related. To further illustrate this concept,
we plot in Fig. 1 the partial absorption and scattering
cross-sections of an arbitrary passive object as a function
of η

T E/T M
n in the closed unity disk of the complex plane.

The scattering cross-section is shown in the filled contour
plot, while absorption is represented with black contour
lines. Both partial cross-sections are expressed in normalized
units of (2n + 1)π/2k2

0 , so that the plot remains valid for
any order n. This figure is a powerful tool, as it includes
all the available information on absorption, scattering, and
extinction for each harmonic. As expected, extreme values
of the scattering cross-section are obtained on the unity
circle, for η = ±1, for which the absorption is zero. This
demonstrates the importance of minimizing losses when
maximal (strong scattering resonance) or minimal (cloaking)
scattering is desired. Cloaked sensors lie on the real axis in the
range Reη ∈ [0,1], in which the ratio between absorption and
scattering is maximized for a given absorption level, as it can
be inferred from the figure.

We define now the absorption efficiency for the nth
harmonic as the ratio (σabs)n/(σscat)n. Combining Eqs. (8) and
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FIG. 2. (Color online) Scattering bound for absorptive, passive
objects, valid for any scattering harmonic order n. Only the blue
shaded region on this plane is admissible, yielding an ultimate limit
on the minimum scattering required for a given level of absorption.

(6), this quantity may be generally written as

(
σabs

σscat

)T E/T M

n

= 1 − ∣∣ηT E/T M
n

∣∣2∣∣ηT E/T M
n − 1

∣∣2 . (10)

For electrically small objects dominated by dipolar scat-
tering, a case of particular interest in the case of cloaked
sensors [21–28], this quantity for n = 1 coincides with the
total absorption efficiency σabs/σscat. In principle, this quantity
can be made as large as possible, but because of passivity,
|ηT E/T M

n | � 1, and the absorption efficiency is fundamentally
bounded by the total amount of absorption, as we show
in Fig. 2, in which we calculate (σabs)n/(σscat)

T E/T M
n and

(σabs)
T E/T M
n for every admissible value of η

T E/T M
n , essentially

drawing the image of the unity disk of Fig. 1 into the
(σabs)n/(σscat)

T E/T M
n versus (σabs)

T E/T M
n /(2n + 1)λ2

0 plane,
corresponding to the blue hachured region in Fig. 2. This area
is interestingly limited by a fundamental physical bound (solid
black line) for the absorption efficiency of each harmonic as
a function of the absorption level. This is consistent with our
recent findings for inelastic quantum scattering, derived in the
context of designing cloaked sensors for matter waves [42].

Equation (10) ensures that the boundary of the admissible
region (black solid line) is obtained for real values −1 �
η

T E/T M
n � 1. If absorption is maximized for any harmonic,

the efficiency is 1, consistent with Eq. (9), and the normalized
absorption is 1/(8π ), consistent with the most right point
on the black line in Fig. 2. From this point, it is possible
to either decrease or increase the absorption efficiency and
bring it to any arbitrarily large level of interest, but only at
the cost of sacrificing part of the absorption. For sufficiently
low absorption, it is possible to significantly suppress the
scattering, as quantified in Fig. 2. This physical bound
described here is of primary importance for the design of
passive cloaked sensors, as it highlights the ultimate limits
of performance for each scattering harmonic and how close
to the optimal scattering reduction we are for a given level of
partial absorption coefficient.

III. EXAMPLES AND DISCUSSION

In this section, we apply the theory developed in Sec. II
to concrete scattering examples. Our goal is to underline the
generality of our theory, discuss its implications, and show
how it may be viewed as an essential tool to understand and
optimize invisible absorbers and sensors.

A. Optical scattering from lossy nanospheres

As a first example, we consider the scattering from
nonmagnetic nanospheres in the presence of material losses.
We show that this simple passive system complies with our
general bounds, and we use our formalism to study and better
explain the general relation between scattering and absorption
in this example. This scattering problem is solved in detail in
the Appendix. A central question of interest is whether or not
this passive system can reach the ultimate bounds derived in
Fig. 2, and under what conditions. In order to approach this
question analytically, we first assume that the nanosphere is
electrically small, of size x = k0a � 1, a being the sphere
radius. Under this assumption, the scattering coefficients cT M

n

obtained from Eq. (A8) reduce to the quasistatic expression

cT M
n = −

[
1 + i

4n (2n + 1) 
 (n + 1/2)2

π (n + 1) x2n+1

(εn + n + 1)

ε − 1

]−1

.

(11)

According to the previous section, in order to lie on the
boundary of the allowed region for the nth TM harmonic,
and therefore achieve the most interesting scattering prop-
erties for the given level of absorption, one needs to have
Im(ηT M

n ) = Im(2cT M
n + 1) = 0. Using Eq. (11), we find that

this condition is met whenever the permittivity ε = ε′ + iε′′
of the nanosphere satisfies

ε′
± = −1 ±

√
1 + 4n(1 + n − nε′′2)

2n
. (12)

Assuming that we are able to tailor the sphere permittivity
at will, for a fixed level of losses ε′′ > 0, it is possible to reach
the fundamental bound for two distinct values of ε′ as long as

0 � ε′′ < 1 + 1

2n
. (13)

In the particular case of small losses ε′′ � 1, the plus sign
solution in Eq. (12) simplifies into

ε′
+ = ε′

transparency = 1 − nε′′2

2n + 1
+ o(ε′′3). (14)

In the limit ε′′ → 0+, this solution simply converges to the
transparency condition that minimizes the scattering from
the sphere, i.e. ε ≈ 1 + O(ε′′2). When small losses are pre-
sent, the condition in Eq. (14) ensures that we hit the bound on
the upper portion of the curve, maximizing the absorption
efficiency for the given level of absorption. It is worth
mentioning that this condition is in general not identical to
the solution that minimizes the scattering for the chosen level
of ε′′, as it differs from it by a quantity proportional to o(ε′′2).

045122-3



ROMAIN FLEURY, JASON SORIC, AND ANDREA ALÙ PHYSICAL REVIEW B 89, 045122 (2014)

Conversely, in the same low-loss limit, the minus sign
solution of Eq. (12) simplifies into

ε′
− = ε′

resonance = −n + 1

n
+ nε′′2

2n + 1
+ o(ε′′3). (15)

In the lossless limit, this solution converges to the condition
that maximizes the scattering cross-section of the sphere, as
it coincides with the plasmonic resonance ε′ = −(n + 1)/n

[43], and in the presence of small losses, the condition in
Eq. (15) allows again hitting the bound. Also, in this case, this
condition differs from the condition to maximize absorption
for the given level of ε′′ by a second-order term in ε′′. The
two conditions derived above represent the required values of
ε′, for a given level of ε′′, to reach the solid black boundary
in Fig. 2. Note that it is obviously always possible to find a
suitable value of ε′ that maximizes the absorption or minimizes
the scattering for the chosen value of ε′′, but only in the limit
ε′′ → 0+, these solutions lie on the bound of Fig. 2, according
to Eqs. (14)–(15).

The above quasistatic analysis is important to unveil the
complexity of the scattering problem in relation to our physical
bounds in the general dynamic case. To validate our findings,
we have numerically calculated absorption and scattering in
the fully dynamic case for a nanoparticle of small electrical
size x = 0.2, for different values of permittivity. In Fig. 3,
we show the evolution of these quantities in the absorption
efficiency versus absorption plane, comparing the obtained
results to the T M1 physical bound represented by the black
solid line. Let us first focus on the solid lines, which represent
the contours obtained when sweeping ε′ over all real values,

FIG. 3. (Color online) Scattering and absorption for a dielectric
nanosphere of permittivity ε′ + iε′′ and electric size x = 0.2, for
different scenarios. The black solid lines represent the T M1 bound.
The other solid lines represent contours obtained when sweeping ε′

over all real values, for ε′′ = 0.05 (below critical, blue line), ε′′ =
1.5 (critical, red line), and ε′′ = 3 (beyond critical, green line). The
circular markers represent the dual contours obtained by sweeping ε′′

over all positive values, for a given value of ε′ = −2.4 (blue markers),
ε′ = 1 (red markers), and ε′ = 0.84 (green markers).

while keeping ε′′ constant. The blue solid line is obtained
for a relatively low value of material losses, ε′′ = 0.05. This
value of ε′′ is significantly smaller than the critical value 3/2,
obtained by evaluating Eq. (13) for n = 1, a value beyond
which the bound cannot be reached. Therefore, we expect the
contour to hit the fundamental bound at two distinct points,
under the resonance and the transparency conditions. Because
we are in the low-loss limit, the resonance point corresponds
to maximum absorption for the given value of ε′′, and the
transparency point corresponds to the maximum absorption
efficiency. Indeed, the solid blue line starts in the bottom
left corner for large negative values of ε′ and, as ε′ grows
and gets closer to −2, σabs increases until it reaches the
maximum, obtained for ε′ = −2.1 in good agreement with
the quasistatic prediction in Eq. (15). This maximum lies
on the physical bound (solid black line), consistent with the
predictions of our quasistatic model. As we keep increasing ε′,
σabs monotonically decreases, but yet the absorption efficiency
σabs/σ scat reaches a maximum on the upper portion of the
bound. The associated scattering minimum is indeed obtained
for ε′ � 1, consistent with Eq. (14).

When the losses are equal to the critical value in Eq. (13),
we obtain the red solid line in Fig. 3. Consistent with Eq. (12),
in this case, the solutions ε′

± are now degenerate; therefore,
we expect the curve to be tangential to the bound, reaching
it at the value ε′ = 1/2 = (ε′

+ + ε′
−)/2. Because the lossless

limit assumption is no longer valid in this case, we should not
expect the maxima of absorption or absorption efficiency to
occur on the bound. Indeed, these predictions are all verified
in the dynamic evolution of the red contour, for which the
absorption and absorption efficiency maxima occur inside the
allowed region, away from the bound. By choosing ε′′ to be
larger than this critical value, as in the case of the solid green
line (ε′′ = 3), we do not hit the physical bound for any value
of ε′.

In Fig. 3, we also plot dual contours, represented by circular
markers, which correspond to the case in which ε′ is fixed
and ε′′ is varied over all positive numbers. The blue markers
correspond to ε′ = −2.4, the red markers to ε′ = 1, and the
green ones to ε′ = 0.84. We notice that some of these contours
appear to hit the bound, while others stay away from it. To
understand this behavior, we invert the condition in Eq. (12)
to express the condition to intersect the bound for constant ε′
contours and find the unique solution

ε′′ = 1
2

√
9 − (2ε′ + 1)2. (16)

Such a solution exists only for −2 � ε′ � 1, i.e. for
values of ε′ between the lossless resonance and transparency
conditions. This is indeed verified in Fig. 3, for which the
ε′ = −2.4 (blue) contour never crosses the bound, while the
ε′ = 0.84 does. The ε′ = 1 contour is a limiting case, which
does cross the bound only at infinity in the top left corner
of the figure, for which ε′′ = 0+, consistent with Eq. (16).
Interestingly, the ε′ = 1 contour asymptotically converges to
the bound for small values of ε′′, but gets away from the bound
for sufficiently large values of ε′′, converging asymptotically
towards the bottom left corner of the figure. In fact, all
the constant-ε′ contours appear to tend to the same oblique
asymptote when losses are sufficiently high. The constant ε′′
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contours also tend to the same asymptote when the real part
of permittivity is largely positive or negative. This is easily
understood by rewriting Eq. (10) for the T M1 harmonic as

σabs

σscat
= 8π

3
∣∣ηT M

1 − 1
∣∣2
(

σabs

λ2
0

)
. (17)

Due to the fact that ηT M
1 is bounded and well-behaved, for

ε → ∞ (positive, negative or imaginary), its value asymptoti-
cally converges to a constant, and Eq. (17) maps into a straight
line on the plane of Fig. 3. In the quasistatic limit, Eq. (17) can
be explicitly written as

σabs

σscat
(ε,ε′) = 3π

2x6

ε′′2 + (2 + ε′)2

ε′′2 + (ε′ − 1)2

(
σabs

λ2
0

)
(ε,ε′), (18)

which explicitly shows that, in the limit ε′′ → +∞ or ε′ →
±∞, we always get the same linear relationship between
σabs/σscat and σabs/λ

2
0:

σabs

σscat

/(
σabs

λ2
0

)
→ 3π

2x6
, [ε′′ → +∞ or ε′ → ±∞].

(19)

As a result, on the logarithmic scale of Fig. 3, all the
contours converge in these limits to the asymptote

log
σabs

σscat
= log

3π

2
− 6 log x + log

σabs

λ2
0

, (20)

for which the slope is independent of the electrical size of the
nanosphere, and the intercept on the vertical axis shifts up for
smaller objects. In the following, we refer to this asymptote as
the perfect electric conductor (PEC) limit, for obvious reasons.

In the opposite limit of zero material losses, the constant
ε′ contours also converge to straight lines in Fig. 3, to which
we refer as lossless asymptotes. Their position depend on the
particular value of ε′, but they are all parallel to the PEC
asymptote. This is explained using Eq. (18) for ε′′ → 0. We
obtain

σabs

σscat

/(
σabs

λ2
0

)
→ 3π

2x6

(
2 + ε′

ε′ − 1

)2

, [ε′′ → 0], (21)

so that the expression for the lossless asymptotes is given by

log
σabs

σscat
= log

3π

2
− 6 log x + log

(
2 + ε′

ε′ − 1

)2

+ log
σabs

λ2
0

,

(22)

indeed describing lines parallel to the PEC asymptote and
shifted by an amount that depends on ε′. From Eq. (22), we
recognize that the lossless asymptotes are shifted up with
respect to the PEC asymptote when ε′ > (ε′

+ + ε′
−)/2 and

down in the opposite case. Note that the value (ε′
+ + ε′

−)/2
equals 0.5 for the T M1 harmonic, and it is independent of
ε′′, cf. Eq. (12). It is exactly the average of the resonance and
transparency solutions, regardless of ε′′. It turns out therefore
that the PEC asymptote separates the transparency region
[defined by ε′ > (ε′

+ + ε′
−)/2] from the resonance region

[ε′ < (ε′
+ + ε′

−)/2]. When the electrical size of the sphere
varies, the PEC asymptote is accordingly shifted, dragging
with it the lossless asymptotes, and therefore, all contour lines.

FIG. 4. (Color online) Similar to Fig. 3, scattering and absorption
for a nanoparticle of electric size k0a = 0.2, varying its permittivity
ε′ + iε′′. The dashed contours are obtained varying ε′′, keeping ε′

constant at the indicated value. The solid contours are plotted varying
ε′, keeping ε′′ constant at the indicated value (in black). The black
solid line represents the T M1 fundamental bound. Scattering and
absorption for an arbitrary value of complex permittivity are obtained
at the intersections of curves with same color.

All these findings allow us to fully describe the dynamics of
the curves in Fig. 2 for arbitrary values of ε′ or ε′′.

Figure 4 shows a more complete diagram for the same
size sphere, considering many different values of ε′ and ε′′,
while focusing on low values of ε′′ for which the bound
can be reached. Similar to the previous plot, the solid lines
are ε′′-constant lines, sweeping ε′ from negative to positive
values. The dashed contour lines are instead ε′-constant lines,
sweeping ε′′ through positive values. The contours essentially
form a curvilinear reference system mapping an arbitrary
value of complex permittivity into the corresponding level
of absorption and absorption efficiency, and they are found to
span the entire admissible region of Fig. 4, implying that, given
the opportunity to arbitrarily vary ε′ and ε′′ at the frequency of
interest, we may realize any allowed level of absorption and
absorption efficiency with just a single, dielectric nanoparticle.
Each contour line in the figure, for a given value of ε′ and ε′′ as
indicated in the plot, is formed by segments of different color,
and the solid and dashed curves intersect only when they have
the same color.

In Fig. 5, we plot the same contours as in Fig. 4, but for
a bigger electrical size (x = 0.5), confirming the expected
downward shift of the PEC asymptote consistent with Eq. (20),
which carries along all the other contours. These figures
synthetically confirm that the above considerations, including
the asymptotic behavior, hold in the general dynamic case.
Comparison with the physical bound unveils the complexity of
the relation between scattering and absorption of a nanosphere,
outlining the role of material losses, size, and permittivity. As
a corollary of our findings, it is in principle not necessary
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FIG. 5. (Color online) Same as Fig. 4 but for a larger electrical
size, k0a = 0.5. As predicted by the theory, the PEC asymptote is
shifted down.

to use a cloak to obtain a high level of absorption efficiency,
provided that we can arbitrarily vary ε, as any point on the solid
black line is accessible. It would be indeed sufficient to have
ε′ � 1 to enable the maximum possible absorption efficiency
for a given (sufficiently low) level of ε′′, at the transparency
condition in Eq. (14). Obviously, in a realistic scenario, we
do not have the arbitrary control on the complex permittivity
at the frequency of interest, and therefore a suitably designed
cover may tailor scattering and absorption with more degrees
of freedom, as we discuss next.

B. Furtive optical sensors and absorbers made
of core-shell nanoparticles

The addition of a cloak is useful to change the dynamics
of the scatterer response in the previous plots, when, as it is
usually the case, we do not have the flexibility of changing
the permittivity, the material losses, or the size at will. In
Fig. 6, we consider a core-shell geometry, as in the plasmonic
cloaking technique [9], in which a lossless shell with radius
ac and permittivity εc = 0.105 covers a core of radius a

with permittivity ε = ε′ + iε′′, varied over all admissible
values. The electrical size of the object is k0ac = 0.2, for
a fixed filling ratio γ = a/ac = 0.9. The shell permittivity
was chosen to reduce the scattering of a PEC sphere of the
same size, using the scattering cancellation method [9]. As
visible in the figure, the effect of such a cloak design is
indeed to shift up the PEC oblique asymptote, dragging all the
contour lines with it. Consistent with Eq. (20) and the nature
of the proposed cloak, the effect is equivalent to reducing
the effective size of the object in the PEC limit and, as a
noticeable consequence, the resonance region (below the PEC
asymptote) now includes a significant portion of the physical
bound for which the absorption efficiency is very large. In
other words, the cloak opens the interesting possibility to
achieve plasmonic resonances in the upper portion of the plot,

FIG. 6. (Color online) Same as Fig. 4, for a core-shell nanoparti-
cle of electrical size k0ac = 0.2, with εc = 0.105 and a = 0.9ac.

above the point of maximal allowed absorption, for which the
absorption efficiency is large and the scattering is suppressed.
These resonant conditions are similar to the ones originally
envisioned in Ref. [21], for which absorption and scattering
cross-sections reach a local maximum at the same frequency,
but with large ratios between the two. Plasmonic resonances
with high absorption efficiency cannot be supported by a
bare nanoparticle with similar size, as seen in Fig. 4. The
only solution to get a high level of absorption with a bare
particle is to exploit the transparency condition, characterized
by a scattering dip and nonresonant (flat) absorption cross-
section, consistent with some of the concepts discussed in Ref.
[41]. A first evident advantage of using a suitably designed
cloak is then to open the high-efficiency region to plasmonic
resonances, enabling resonant sensors with low visibility.

Obviously, the presence of the cloak can also provide more
flexibility to choose the values of ε′ for the resonance and
transparency conditions. In the example of Fig. 6, these values
are both negative: εresonance = −0.7 and εtransparency = −22.4,
which may be derived by studying the core-shell structure in
the quasistatic limit, generalizing the analysis in the previous
section. For a core-shell nanoparticle, the conditions to lie on
the bound become

ε′
± = f (εc,γ ) ±√729ε2

cγ
6 − ε′′2g(εc,γ )

g(εc,γ )
(23)

with

f (εc,γ ) = −4ε3
c (1 + γ 3 − 2γ 6) − 4εc(−2 + γ 3 + γ 6)

− ε2
c (4 + γ 3 + 4γ 6) (24)

and

g(εc,γ ) = 2[2 + εc + 2(εc − 1)γ 3](εc − 1 + γ 3 + 2εcγ
3).

(25)
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As expected, Eq. (23) collapses to the bare nanosphere case
Eq. (12) when we consider γ = 1. The condition to reach

the bound now depends on εc and γ : 729ε2
cγ

6 − ε′′2g(εc,γ ) >

0. In the low-loss limit, the two solutions simplify into

ε′
± = ±27ε2

cγ
3 + εc

[−4
(− 2 + εc + ε2

c

)− (4 + εc + 4ε2
c

)
γ 3 + 4(−1 + εc)(1 + 2εc)γ 6

]
2[2 + εc + 2(−1 + εc)γ 3](−1 + εc + γ 3 + 2εcγ 3)

+ O(ε′′2). (26)

This condition, evaluated for εc = 0.105 and γ = a/ac = 0.9, indeed provides ε′
− = −0.72 and ε′

+ = −21.7, in good
agreement with the values numerically obtained in Fig. 6. In addition, one can easily verify, following the same steps as in
the previous section, that in the quasistatic and low-loss limits, the solution ε′

− coincides with the plasmonic resonance condition
of a core-shell particle, and ε′

+ with the cloaking condition [36].
To understand why the PEC asymptote is shifted up in the presence of a plasmonic cloak, we write the equivalent of

Eq. (18) for a core-shell structure. In the limit ε′′ → +∞, we obtain that the asymptote is a straight line of the form
log(σabs/σscat) = a log(σabs/λ

2
0) + b. The slope a = 1, as before, and the intercept of the vertical axis, which determines the

PEC asymptote, is given by

b = log
π [4(9 + x6)(−1 + γ 3)2 + (9 + 4x6)(εc + 2εcγ

3)2 + 4εc(−9 + 2x6)(−1 − γ 3 + 2γ 6)]

6x6(−1 + εc + γ 3 + 2εcγ 3)2
. (27)

When the cloak is designed to cancel the scattering of a PEC
sphere of same outer radius as the core-shell nanoparticle, i.e.
under the condition [9]

γ = 3

√
1 − εc

1 + 2εc

, (28)

we indeed obtain b → +∞, which elegantly confirms the
behavior of the cloaked sensor. This proves that one can
arbitrarily shift upwards the PEC asymptote in the plot by
designing a cloak that cancels the scattering of a PEC sphere
of same outer radius as the considered particle. This is an
important design rule for resonant cloaked sensors, as it
enables peculiar plasmonic resonances in the high-absorption
efficiency region. In Fig. 6, for which γ = 0.9, we are very
close to the ideal value γ = 3

√
179/242 ≈ 0.904 predicted by

Eq. (28), enabling a significant upward shift of the asymptote.
Obviously, the fundamental bounds derived in the previous
section are still respected by cloaked particles, and the main
effect of adding a cloak consists in providing more flexibility
in tailoring the dynamic relation between absorption and
scattering.

In Fig. 7, we explore another cloak design, i.e. coating the
core with an ε-near-zero (ENZ) shell εc = 0.01. From Eq. (26),
we see that the effect of an ENZ cloak is to bring closer the
resonance and transparency conditions, yielding ε′

+ − ε′
− →

0 when εc → 0, consistent with the Fano-like scattering
signatures obtained with ENZ cloaks in Ref. [44]. This is also
verified in the dynamic case, as seen in the figure, in which
resonance and transparency points are brought very close
to each other, ε′

+ = −0.096 and ε′
− = −0.11. Such designs

may be of interest to enhance nonlinear effects for switching
applications, exploiting the strong on/off dependency of the
scattering cross-section and absorption efficiency, extending
the concepts proposed in Ref. [45] to the case of absorbers
and sensors with tunable efficiency. Again, the physical
bound discussed here is crucial to understand the limitations,
complexity, and potential of these nanoswitching devices.

As a realistic scattering example, we consider the optical
scattering from a silicon nanoparticle with radius a = 20 nm

and compare it to the one obtained when the same sphere is
surrounded by a plasmonic cloak made of silver. Material
dispersion is taken from experimental data [46–47]. The
scattering and absorption cross-sections of the bare sphere
are reported in Fig. 8(a) for incident wavelengths between
200 and 800 nm, and the contour obtained when sweeping
frequency is shown in blue in Fig. 8(c) and compared to the
T M1 bound. As evident from these plots, the bare silicon
nanosphere starts absorbing significantly only in the ultraviolet
(UV) range, due to increased electronic absorption processes
at these energies. The absorption efficiency is close to unity
throughout the optical range, making the nanosphere a rather
inefficient absorber. In Fig. 8(b), we consider the scattering
spectrum of the same nanoparticle embedded in an 11-nm
silver shell and compared it to the bound in Fig. 8(c) (red
line). As evident from the figure, the cloak completely modifies

FIG. 7. (Color online) Same as Fig. 6 but with a different cloak
permittivity εc = 0.01.
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FIG. 8. (Color online) (a) Scattering and absorption spectrum
for a realistic 40-nm silicon particle at optical frequencies.
(b) Scattering and absorption spectrum for the same particle cloaked
by an 11-nm plasmonic cloak made of silver. (c) Comparison of
the scattering spectrum with the bound for the bare and cloaked
case.

the scattering properties of the structure, enabling it to access
high-absorption efficiency values (>50) in the visible range,
and at the same time reaching the bound. These findings
show that it is possible to largely manipulate and optimize
the absorption and absorption efficiency of a nanosphere
in the frequency range of interest by properly coating it,
within the fundamental bounds derived in the previous
section.

FIG. 9. (Color online) Similar to Figs. 3–4, but for a loaded
dipole antenna, varying its load impedance RL − iXL. The dashed
contours are plotted varying RL, for constant XL at the indicated
value. The solid contours are plotted varying XL, for constant RL

at the indicated value (in black). The solid black line represents the
fundamental limit for the first scattering harmonic.

C. Tunable antennas with optimal absorption efficiency

As a final example to highlight the breadth of our find-
ings, envision now a conventional radio-frequency sensor,
consisting of an electrically small dipole antenna loaded by
an impedance ZL = RL − iXL, as considered in Ref. [41].
The associated scattering problem may be analytically solved,
as shown in the Appendix, assuming without loss of generality
that the antenna is aligned in the direction of polarization of
the impinging field, by modeling the antenna as a dipole with
polarizability [41]

α−1 = −3ωXin

l2

Xin + XL − iRL

4Xin + XL − iRL

+ i
k3

0

6πε0
, (29)

where Xin is the input reactance of the dipole antenna of
half length l. Also, in this case, we choose a subwavelength
geometry so that the scattering is dominated by the dipolar
contribution. The antenna length is 2l ≈ λ0/3 = 3 cm, with
a diameter of 600 μm, and we operate it at 3 GHz. By
varying the load resistance and reactance, it is possible to
tune the dipolar scattering and absorption of the object at
will, similar to the previous plots for dielectric nanospheres,
and span the whole admissible region in Fig. 9, in which
we calculate the T M1 absorption efficiency and absorption
cross-sections for this loaded dipole, for different values of
ZL = RL − iXL. In these calculations, we take the value of
input reactance Xin = −253.9 �, calculated for our geometry
using the formula in Eq. (A13), and we restrict ourselves to
RL � 0 to ensure passivity. The solid contours are generated
by keeping RL constant and sweeping XL from negative
(capacitive) to positive (inductive) values. The dashed lines
are generated by keeping XL constant and sweeping the load
resistance through positive values. By intersecting these two
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sets of contour lines, it is possible to extract from the figure the
absorption and absorption efficiency for any complex value of
load impedance. Also, here, only contour lines with the same
color intersect.

The figure shows similar features as in the previous
examples, despite the completely different nature of the
scatterer. The load resistance of the dipole antenna plays a
role analogous to the imaginary part of the permittivity of the
nanosphere, while the load inductance plays the role of the real
part of permittivity, and similar considerations may be drawn
as in the previous subsections.

We can explain the dynamics of the contours of Fig. 9 by
studying the system in the quasistatic limit. Repeating the steps
detailed above in the case of the nanosphere, we find the two
possible solutions to reach the physical bound

X±
L = − 1

2

(
5Xin ±

√
−4R2

L + 9X2
in

)
. (30)

Equation (30) shows that the bound may only be reached
for sufficiently low values of the load resistance, i.e. satisfying

0 � RL � 3
2 |Xin|. (31)

In the limit of a low-load resistance RL � 3|Xin|/2, the
first condition simplifies into

X+
L = −4Xin + R2

L

3Xin
+ O

(
R3

L

)
, (32)

and the second into

X+
L = −Xin − R2

L

3Xin
+ O

(
R3

L

)
. (33)

As in the previous examples, it is easy to check that the
condition in Eq. (32) coincides with a scattering minimum
in the low-resistance limit, consistent with the findings in
Ref. [41]. This is the transparency condition for a small loaded
dipole. Conversely, Eq. (33) coincides with the condition to
maximize the absorption for the given value of RL in the
low-resistance limit. This is the antenna resonance condition,
analogous to the plasmonic resonance of the previous sections,
for which the absorbed power is maximized. Also, in this case,
there is a threshold, defined by Eq. (31), for the material losses
RL beyond which we cannot reach the physical bound.

As seen in Fig. 9, our quasistatic considerations are fully
supported by the dynamic calculations: for fixed (small) load
resistance (solid lines), the absorption cross-section is indeed
maximized around the resonant condition XL = −Xin, while
the absorption efficiency is maximized around the trans-
parency condition XL = −4Xin, consistent with Eqs. (32)–
(33) and with the findings in Ref. [41]. The absolute maximum
absorption is achieved under the conjugate matched condition
ZL = Z∗

in [37], which provides unitary absorption efficiency.
Similar to the case of nanoparticles, the contours of constant
XL all converge to the same asymptote when RL → +∞ or
XL → ±∞. Indeed, in both cases, we obtain the following
equation for the asymptote

log
σabs

σscat
= log

(
2π

3
+ 216π3X2

in

η2
0k

4
0 l

4

)
+ log

σabs

λ2
0

, (34)

where k0 and η0 are, respectively, the wave number and
characteristic impedance in free space, which represents the

open-circuit asymptote, the analog of the PEC asymptote in
the nanosphere case. Also, here, this asymptote shifts up for
shorter antennas. As evident in Fig. 9, we also obtain a family
of lossless asymptotes for constant XL in the limit RL → 0.
These asymptotes are all parallel to the open-circuit asymptote
with expression

log
σabs

σscat
= log

(
2π

3
+ 216π3X2

in(Xin + XL)2

η2
0k

4
0 l

4(4Xin + XL)2

)
+ log

σabs

λ2
0

(35)

and an upward shift when XL/Xin < (X+
L + X−

L )/2, and a
downward shift when XL/Xin > (X+

L + X−
L )/2, with (X+

L +
X−

L )/2 = −5/2 in the quasistatic limit. The open-circuit
asymptote separates the transparency and resonance regions,
as discussed for the nanosphere scenario. This example
demonstrates the generality of our analysis and of the derived
physical bounds.

Like in the case of nanoparticles, the addition of a cloak may
be used to effectively reduce the size of the antenna, shifting up
all contours, consistent with the geometry originally proposed
in Ref. [21]. These results clarify the potential of the cloaked
sensor concept and the reach it may have in manipulating
scattering and absorption within the bounds derived here. The
cloak may allow achieving large absorption efficiencies in the
resonant region, enabling the response discussed in Ref. [21],
for which scattering and absorption both reach a local
maximum at the design frequency, with a large ratio between
the two. In this case, the antenna may not be easily detectable
when out of resonance (since it almost does not scatter), and
it scatters the minimum for the chosen level of absorption,
resulting in the best-case scenario for passive cloaked sensors.
Our findings may enable the design of optimized cloaks for
tunable receiving antennas with high-absorption efficiency and
optimal minimum-scattering antennas. We will discuss these
issues in further details in an upcoming study.

IV. CONCLUSIONS

In this paper, we presented and discussed fundamental
bounds on scattering and absorption of passive objects. These
limitations, derived from passivity and power conservation,
successfully quantify the minimum and maximum scattering
for a given level of absorption, providing an important tool
to qualitatively and quantitatively understand the limitations
associated with cloaking absorptive objects. We applied our
theory to a variety of examples, including optical scattering
from dielectric nanospheres and core-shell nanoparticles, and
microwave scattering from a loaded dipole antenna. We have
explained the role of the cloak in cloaked sensor designs,
showing that one can enable peculiar resonances for which
both scattering and absorption reach a local maximum, but with
a large ratio between them. The derived physical limitations
provide a seminal basis in a wide range of situations. Our
analysis may be readily applied to bigger objects for which
several harmonics contribute to the scattering, as each of them
follows the bounds described in this paper, a concept that may
be used to realize furtive superabsorbers [48]. Comparison
with the bound presented here is a relevant figure of merit
for any practical design of furtive sensors and absorbers. We
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believe that these fundamental bounds can be used to formulate
a set of design rules to engineer optimal low-scattering sensors
and absorbers in the optical regime, as well as minimum-
scattering antennas at radio frequencies.
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APPENDIX

In this Appendix, we solve analytically the general prob-
lem of scattering of electromagnetic waves by a core-shell
geometry loaded by a dipole of polarizability α placed at the
center of a spherical coordinate system (r,θ,ϕ) centered with
the core-shell, and oriented along x̂. It is surrounded by the
permittivity profile:

ε(r) =
⎧⎨
⎩

ε if 0 � r < a

εc if a � r < ac

ε0 if ac � r < +∞
. (A1)

This general geometry includes all the possible scenarios
analyzed in this paper.

A plane wave �Einc = x̂E0e
ik0z is incident upon the system,

and we assume an e−iωt time dependence. The total field, the
sum of the scattered and incident field, may be expanded into
spherical waves and decomposed into transverse electric (TE)
and transverse magnetic (TM) fields, respectively, associated
with the radial magnetic and electric vector potentials [34,49]{

Ar = E0
cos ϕ

ω

∑+∞
n=1 in 2n+1

n(n+1)βrρT M
n (βr)P 1

n (cos θ )

Fr = E0
sin ϕ

ωη

∑+∞
n=1 in 2n+1

n(n+1)βrρT E
n (βr)P 1

n (cos θ )
, (A2)

where P m
n are Legendre polynomials and η = η(r) =√

μ0/ε(r) is the characteristic impedance of the medium,
noted η0, ηc, and η in the outside medium, the cloak, and
the inside domain, respectively. The wave number β = β(r) =
ω

√
μ0ε(r) will be noted k0, kc, and k in the outside medium, the

cloak, and the inside domain, respectively. The radial functions
ρ

T E/T M
n (βr) in Eq. (A2) are solutions of the radial equation,

obtained by solving the spherical Helmholtz equation. Taking
into account the excitation field, these functions can be sought,
for TE waves, in the form

ρT E
n (r) =

⎧⎪⎨
⎪⎩

aT E
n jn(kr) if 0 � r < a

dT E
n jn(kcr) + eT E

n yn(kcr) if a � r < ac

jn(k0r) + cT E
n h(1)

n (k0r) if ac � r < +∞
,

(A3)

where jn and yn are spherical Bessel functions of the first and
second kind, and h(1)

n is the spherical Hankel function of the
first kind. The TE radial functions in Eq. (A3) are unaffected
by the presence of the dipole, since dipolar radiation can be de-
scribed as a T M1 wave [36]. Therefore, the TM radial functions
differ from the expression in Eq. (A3) by the addition of the
field radiated by the dipole, yielding the form

ρT M
n (r)

=

⎧⎪⎨
⎪⎩

aT M
n jn(kr) + δ1nb

T M
1 h

(1)
1 (kr) if 0 � r < a

dT M
n jn(kcr) + eT M

n yn(kcr) if a � r < ac

jn(k0r) + cT M
n h(1)

n (k0r) if ac � r < +∞
,

(A4)

where δnm is Kronecker’s delta function and bT M
1 depicts the

strength of the radiation from the dipole antenna. The induced
dipole moment at the center is linked with the local field by
the polarizability α giving, after some calculations:

p = α| �Eloc| = αE0a
T M
1 . (A5)

On the other hand, the coefficient bT M
1 may be related to

the strength p of the dipole, by expressing the usual dipolar
radiation as a Mie series, i.e [36].

bT M
1 = i

k3

6πεE0
p. (A6)

The coefficient bT M
1 is now expressed as a function of aT M

1
combining Eqs. (A5) and (A6), then the result is inserted into
Eq. (A4). Using Eqs. (A2),(A3), and (A4), the tangential fields
can be calculated. Enforcing the boundary conditions at r = a

and r = ac yields two linear systems,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 1
η

[
jn(ka) + iδ1nα

k3

6πε0
h(1)

n (ka)
]

jn(kca)
ηc

yn(kca)
ηc

0

− 1
ka

[
Ĵ ′

n(ka) + iδ1nα
k3

6πε0
Ĥ (1)′

n (ka)
] Ĵ ′

n(kca)
kca

Ŷ ′
n(kca)
kca

0

0 jn(kcac)
ηc

yn(kcac)
ηc

− h
(1)
n (k0ac)

η0

0 Ĵ ′
n(kcac)
kcac

Ŷ ′
n(kcac)
kcac

− Ĥ
(1)′
n (k0ac)
k0ac

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜⎜⎝

aT M
n

dT M
n

eT M
n

cT M
n

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

0
0

jn(k0ac)
η0

Ĵ ′
n(k0ac)
k0ac

⎤
⎥⎥⎥⎦ (A7)

for TM coefficients and⎡
⎢⎢⎢⎢⎢⎣

−ηjn(ka) ηcjn(kca) ηcyn(kca) 0

− Ĵ ′
n(ka)
ka

Ĵ ′
n(kca)
kca

Ŷ ′
n(kca)
kca

0

0 ηcjn(kcac) ηcyn(kcac) −η0h
(1)
n (k0ac)

0 Ĵ ′
n(kcac)
kcac

Ŷ ′
n(kcac)
kcac

− Ĥ
(1)′
n (k0ac)
k0ac

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

aT E
n

dT E
n

eT E
n

cT E
n

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

0
0

η0jn(k0ac)
Ĵ ′

n(k0ac)
k0ac

⎤
⎥⎥⎥⎦ (A8)
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for TE coefficients. We have used the following notation:

F̂ ′
n(βr) = ∂

∂(βr)
[βrf (βr)] . (A9)

By solving the linear systems in Eqs. (A7) and (A8), the
exact solution for the total field is obtained. The desired cross-
sections can then be calculated using Eqs. (2)–(4).

Finally, we give the form of α for a loaded dipole antenna.
For the fundamental physical bound to be respected, an
accurate, power-consistent expression of polarizability must
be used. We assume the general form

α−1 = α−1
S + iα−1

2 . (A10)

If the scatterer is lossless, the inverse static polarizability
α−1

S is real, and α−1
2 is the radiation correction, taking care

of power conservation. By plugging Eq. (A10) into Eq.
(A7), assuming α−1

S ∈ R and imposing the lossless condition
σscat = σext, we obtain mathematically the necessary condition,
imposed by power conservation

α−1
2 = − k3

6πε
. (A11)

The static polarizability α−1
S is well-known for dipole

antennas and is expressed in the general case as [41]

α−1
S = −3ωXin

l2

Xin + iZL

4Xin + iZL

, (A12)

where ZL = RL − iXL is the complex impedance loading
the antenna and Xin is the negative imaginary part of the
input impedance of the antenna, Zin = Rin − iXin, which
can be approximated for small Hertzian dipoles with the
following function of the antenna half-length l and diameter d

(Ref. [37]):

Xin = −120
ln
(

2l
d

)− 1

tan(kl)
. (A13)

The results presented in this Appendix cover all situations
presented in this paper, taking εc = ε = 1 for uncloaked
antennas, α = 0 for core-shell nanoparticles, and α = 0, ε = 1
for uncloaked spherical nanoparticles. The case of cloaked
antennas is also included by the present calculation.
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