
PHYSICAL REVIEW B 89, 045117 (2014)

Heisenberg-Kitaev model on the hyperhoneycomb lattice
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Motivated by recent experiments on β-Li2IrO3, we study the phase diagram of the Heisenberg-Kitaev model
on a three-dimensional lattice of tricoordinated Ir4+, dubbed the hyperhoneycomb lattice. The lattice geometry of
this material, along with Ir4+ ions carrying Jeff = 1/2 moments, suggests that the Heisenberg-Kitaev model may
effectively capture the low-energy spin-physics of the system in the strong-coupling limit. Using a combination of
semiclassical analysis, exact solution, and slave-fermion mean-field theory, we find, in addition to the spin liquid,
four different magnetically ordered phases depending on the parameter regime. All four magnetic phases—the
Néel, the polarized ferromagnet, the skew-stripy, and the skew-zig-zag—have collinear spin ordering. The three-
dimensional Z2 spin liquid, which extends over an extended parameter regime around the exactly solvable Kitaev
point, has a gapless Majorana mode with a deformed Fermi circle (codimensions, dc = 2). We discuss the effect
of the magnetic field and finite temperature on different phases that may be relevant for future experiments.
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I. INTRODUCTION

Recent studies show that 5d transition-metal (Ir, iridium;
Os, osmium) oxides [1–9], with large spin-orbit (SO) coupling,
are promising candidates for realizing a number of previously
unknown electronic phases of matter [10–15], as well as
providing concrete material systems that may harbor some
of the so far theoretically studied novel quantum phases of
electrons [16–18]. To this latter category belongs the now
well-known Kitaev model [17]. Originally proposed on a
honeycomb lattice, the Kitaev model is an exactly solvable
spin- 1

2 Hamiltonian that has a quantum spin-liquid ground
state. Subsequent studies found similar exactly solvable spin
models on several other two- and three-dimensional lattices
[19–24].

In an interesting work by Jackeli et al. [25], it was
pointed out that in the presence of strong SO coupling,
spin Hamiltonians of the kind proposed by Kitaev (quantum
compass models) can be realized in certain 5d transition-
metal oxide Mott insulators with coordination number z = 3.
While the almost simultaneous discovery of two honeycomb
iridium oxide Mott insulators (Na2IrO3 [1] and Li2IrO3 [2])
have led to a thorough investigation of these Hamiltonians
on the honeycomb lattice, there are other tricoordinated
lattices in both two and three spatial dimensions, where
similar physics may become relevant in the context of
materials.

In this work, we study such a three-dimensional Ir-based
Mott insulator where the magnetism may be correctly de-
scribed by a generalized quantum compass Hamiltonian. Our
work is directly motivated by the recent experiments by Takagi
et al. [26] on β-Li2IrO3. In this material, the Ir4+ ions, carrying
Jeff = 1/2 moments, sit on a three-dimensional network that
has been dubbed a hyperhoneycomb lattice (face-centered-
orthorhombic lattice with a four-site unit cell) by Takagi et al.
[26] (Fig. 1). Since each Ir site has three Ir neighbors and
is surrounded by an oxygen octahedron (see below), we find
that a spin- 1

2 quantum compass model captures the low-energy
spin physics of this system in the strong coupling limit (with
localized moments).

This is particularly interesting and our study shows that
on the present lattice the above Hamiltonian allows, apart
from four magnetically ordered phases, a quantum spin-liquid
phase over an extended part of the phase diagram. This
spin liquid is adiabatically connected to the exactly solvable
ground state of the Kitaev model. We use a combination of
semiclassical analysis (Luttinger-Tisza approximation with
zero-point corrections from spin waves), exact solution, and
slave-fermion mean-field theory to find the details of the phase
diagram over the entire parameter regime. We find that all the
magnetic phases, namely, the Néel, the polarized ferromagnet,
the skew-stripy (Fig. 4), and the skew-zig-zag (Fig. 8), have
collinear spin ordering. The last two phases (see below) have
interesting similarities and important differences with their
two-dimensional counterparts obtained on the honeycomb
lattice [25,27]. The spin liquid, on the other hand, is a three-
dimensional Z2 spin liquid, with a gapless Majorana-spinon
mode. The Majorana spinon has gapless line nodes (a Fermi
circle) which is a Fermi surface with codimension, dc = 2. It
is therefore interesting to ask if any of the above phases are
relevant in explaining the magnetic properties of β-Li2IrO3 or
similar compounds.

The rest of the paper is organized as follows. We start, in
Sec. II, by discussing the details of the hyperhoneycomb lattice
and the relevance of the Heisenberg-Kitaev spin Hamiltonian
for β-Li2IrO3. In Sec. III, we discuss the special points in the
phase diagram where the Hamiltonian becomes particularly
tractable. These include the K = 0 point where the Néel
state is the classical ground state. Similarly, for K = 2J

and J = 0, the Hamiltonian becomes exactly solvable. While
the former gives a magnetically ordered ground state, the
latter is a gapless three-dimensional Z2 spin liquid which
is the ground state for the exactly solvable Kitaev model.
Following this, we investigate the general phase diagram of
the Heisenberg-Kitaev model on the hyperhoneycomb lattice
in the classical limit in Sec. IV. We discuss the four different
kinds of magnetic orders in different parameter regimes: the
Néel, the skew-stripy, the skew zig-zag, and the ferromagnet.
Specializing to the skew-stripy phase, we find that although
stripy orders in various directions have the same energy
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FIG. 1. (Color online) The tricoordinated orthorhombic lattice.
The orthorhombic unit cell is outlined in gray. The primitive unit cell
contains four Ir atoms colored yellow and labeled from 1 to 4. The
ten blue sites show the smallest closed loop on this lattice. These sites
are labeled from a to j . All the other Ir atoms are colored gray. The
primitive vectors for the four-site unit cell are given by ai . For the
Kitaev interactions, the red bonds refer to SxSx , the green to SySy ,
and the blue to SzSz interactions, respectively. The orientation of the
global x,y,z coordinates are shown in the bottom right.

classically, the zero-point energy corrections coming from
the spin waves split this accidental degeneracy and favors
the so-called z-skew-stripy phase. We study the spin-wave
spectrum of this phase. Following this, we study the spin-liquid
regime in Sec. V. Since the Heisenberg term is a short-range
four-fermion interaction in terms of the Majorana fermionic
spinons (which form the quasiparticles at the exactly solvable
Kitaev limit), tree-level scaling suggests that it is irrelevant at
the Kitaev fixed point and hence a finite value of J is required
to cause a phase transition out of the spin liquid. We study the
effect of the perturbation as well as the transition using a slave-
fermion mean-field theory. We show how the mean-field theory
connects to the exact solution at the Kitaev point. Our analysis
gives a first-order transition from the spin-liquid to the skew-
stripy phase. Response to finite temperature and magnetic field
are briefly discussed in Sec. VI for both the skew-stripy phase
and the spin-liquid phase. Finally, we summarize our results in
Sec. VII. Details of various calculations are given in different
Appendices.

II. THE LATTICE AND THE HAMILTONIAN

The geometry of the compound suggests that each Ir4+ ion
sits inside an oxygen octahedron. In such an environment,
the cubic crystal field (10Dq ∼ 3 eV) and large atomic SO
coupling (λ ∼ 500 meV) in Ir split the 5d orbitals into lower
Jeff = 3/2 and the upper Jeff = 1/2 atomic orbitals. The five
electrons of Ir4+ completely fills the quadruplet, while leaving
the doublet half filled. Thus, the low-energy magnetism is
expected to be described by the latter orbitals which form a
Jeff = 1/2 pseudospin at each Ir4+ site [28].

The network of Ir4+ ions then form a tricoordinated
network as shown in Fig. 1 (further details are discussed in
Appendix A). This Ir4+ ion network is topologically equivalent
(not shown) to a decorated diamond lattice (where each site of
the diamond lattice is split into two) or a depleted cubic lattice
[19]. The neighboring oxygen octahedra share edges with
Ir-O-Ir and Ir-Ir-Ir angles being 90◦ and 120◦, respectively,
in the ideal structure.

Before moving on, we briefly discuss the symmetries of the
hyperhoneycomb lattice for future use. There are three types
of symmetry operations in the hyperhoneycomb.

(i) Inversion at the bond center of Ir2-Ir3 and Ir1-Ir4 (green
and red bonds in Fig. 1).

(ii) Three orthogonal C2 axes at the bond center of
Ir1-Ir2 and Ir3-Ir4 (blue bonds). These axes are parallel to
the face-center-orthorombic lattice vectors a, b, and c (see
Appendix A for definition of a,b, and c). Ir2-Ir3 and Ir1-Ir4

bonds are interchanged via these C2 axes.
(iii) Glide planes with translation ai/2 interchanges Ir1-Ir2

and Ir3-Ir4.
A strong coupling calculation using a hopping Hamiltonian

with Slater-Koster parameters (similar to Jackeli et al. [25]),
in the presence of Hund’s coupling and onsite Coulomb
repulsion, results in the Heisenberg-Kitaev spin Hamiltonian
to the leading order:

HHK = J
∑
〈ij〉

Si · Sj − K
∑

〈ij〉,α-links

Sα
i Sα

j . (1)

The first term represents the usual Heisenberg interactions
while the last term is the Kitaev exchange. The

∑
〈ij〉,α-links is

a standard notation used in a Kitaev model, which means that
on a lattice with coordination number z = 3, there are three
kinds of spin exchanges. This is depicted for the lattice of our
interest in Fig. 1.

On occasion, we also use the one variable parametrization
in terms of α which has been used in the honeycomb case. The
relation between J,K and α is given by

J = 1 − α, K = 2α. (2)

Further perturbations to HHK on the hyperhoneycomb
lattice may include further neighbor exchanges as well
as Dzyaloshinski-Moriya (DM) interactions. The inversion
center ensures that the DM vector vanishes for red/green (x/y)
bonds (Ir2-Ir3/Ir1-Ir4) for a Jeff = 1/2 pseudospin model. The
C2 axes ensure that the Kitaev term is along c and the DM
vector points along the bonds for blue (z) bonds (Ir1-Ir2 and
Ir3-Ir4), i.e., along a (see Appendix A for definition of a, b,
and c). However, we find that the magnitude of the DM
vector for the nearest neighbors is zero when we consider
the shortest exchange paths that pass through only oxygens
sites between two given Ir-sites connected through a z bond.
Longer exchange paths that involve intermediate Ir4+ ions as
well as oxygens, in principle, can generate a DM term along
the z bond, but they are expected to be weak and hence we
neglect them in the present calculation.

For the rest of this work, we assume that the further neighbor
terms are small and the essential features of the strong coupling
limit (with localized magnetic moments) of the real material
is captured by HHK.

III. THE SPECIAL LIMITS OF THE
HEISENBERG-KITAEV HAMILTONIAN

We start by discussing the special limits of the HHK

[Eq. (1)] that gives us important insight into the phase diagram.
These special points are given. (A) K = 0(α = 0) limit which
is the pure nearest-neighbor Heisenberg antiferromagnet on the
hyperhoneycomb lattice. (B) K = 2J (α = 1/2). When using
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FIG. 2. (Color online) The Néel phase. This is the classical
ground state for K = 0.

a four-sublattice rotation, one can map the Hamiltonian to a
nearest neighbor ferromagnet on the given lattice. Hence, this
point is exactly solvable. (C) J = 0(α = 1), which is the limit
for the pure Kitaev model, which on this lattice is exactly
solvable. Below we discuss these three special points in detail.

A. K = 0: Néel order

This is the limit of the pure nearest-neighbor antiferromag-
netic Heisenberg model. As pointed out above, the present
Ir4+ network is similar topologically to a decorated diamond
lattice where each site of the diamond lattice is split into
two. The nearest-neighbor Heisenberg antiferromagnet on this
network is not frustrated at the classical level. The magnetic
order is shown in Fig. 2. This classical order, in three spatial
dimensions, is expected to be robust to quantum fluctuations.

B. K = 2 J: Skew-stripy order

Similar to the case of honeycomb lattice, we can perform
a site-dependent rotation [27,29], defined by Fig. 3. In the
rotated basis, the parameters J and K map as J → −J and
K → K − 2J [30]. Upon performing this transformation, at
the special point K = 2J we find that the Kitaev term vanishes

FIG. 3. (Color online) The equivalent of the four-sublattice rota-
tion defined by Khaliullin [29] and later by Chaloupka et al. [27] for
the hyperhoneycomb lattice. The spins at the sites denoted by blue
circles are left unrotated, the spins at the sites denoted by red triangles
are rotated by 180◦ about the z axis, the spins at the sites denoted
by yellow hexagons are rotated by 180◦ about the y axis, and the
spins at the sites denoted by green squares are rotated by 180◦ about
the x axis.

FIG. 4. (Color online) The skew-stripy phase with ordering in Sz.
This is the exact solution to the model at the point K = 2J . The
antiferromagnetic chains run along the x-y bonds (shaded in yellow)
which form almost skew lines. The ferromagnetic z bonds form a
stripy order (shaded in red and blue).

exactly and the model describes a fully polarized ferromagnet
in the rotated basis.

The quantum ferromagnet can be exactly solved and this
exact solution, when rerotated back to the original spins, maps
to a three-dimensional collinear magnetic order which we
call the skew-stripy state (shown in Fig. 4). At this point,
the ferromagnet can choose its axis of quantization in any
direction which corresponds to different skew-stripy ordering.
However, as we see later, only three collinear states are
selected by quantum fluctuations away from this point. In
these three states, the spins are aligned along x, y, or z

axes. In Fig. 4, we have drawn the ordering in Sz where
the antiferromagnetically ordered chains run along the x-y
bonds, which are then coupled ferromagnetically with the z

bonds. The x-y bonds form chains that, in three dimensions,
by themselves are “skew” to one another, as shown in Fig. 4
and the ferromagnetic z bonds joining such chains alternate
from having up-spins to down-spins. Hence, we call this the
skew-stripy phase. The x and the y phases similarly have
ferromagnetic x or y bonds coupling skew chains running
along the y-z and x-z bonds, respectively. We would like to re-
emphasize that the word skew indicates that this is essentially
a three-dimensional magnetic order as opposed to a stacked
up two-dimensional spin order. At this special point there is a
continuous “SU(2)” spin rotation symmetry that ensures that
all the three skew-stripy phases described above have the same
energy.

It is, however, worthwhile to note that there is a crucial
difference from the honeycomb case away from this special
point. In the honeycomb lattice a two-dimensional stripy phase
is obtained for the Heisenberg-Kitaev model at the same
parameter value. There, a C3 symmetry of the lattice along
with concomitant rotation of the spins which is a symmetry
of the HHK Hamiltonian on the honeycomb lattice ensures
that the three stripy ordered phases have the same energy
even away from this special point where there is no SU(2)
symmetry. However, on the hyperhoneycomb lattice, there is
only a C2 symmetry between the x and the y bonds, while
the z bonds are not related by any symmetry. So there is no
a priori reason for the Sz ordered skew-stripy phase to have
the same energy as the other two. Indeed, we find that, away
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from this point (K = 2J ), although the classical energies of
the three states remain the same, quantum corrections coming
from the spin-wave fluctuations lift this accidental classical
degeneracy.

C. J = 0: The Kitaev spin liquid

This is the pure Kitaev limit. Mandal et al. [19] showed
that the pure Kitaev model on the deleted cubic lattice which
is topologically similar to the hyperhoneycomb lattice can be
exactly solved using methods originally employed by Kitaev
[17].

The exact solution, as in the honeycomb case, is rendered
by the threefold coordination and consequent presence of
an infinite number of conserved quantities. Using the usual
Majorana fermion decomposition of the spins,

Sα
i = 1

2 ibα
i c, (3)

we find that the Hamiltonian [Eq. (1)] in this limit is given by

HK = i

2

∑
α-links

uα
ij cicj

(
where uα

ij = ibα
i bα

j

)
, (4)

where we have put the overall scale K/4 = 1 (the quarter
comes from the fact that we have spin- 1

2 ). The {bx
i ,b

y

i ,b
z
i ,c}

are the four Majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables uα
ij that commute with each other and

with the Hamiltonian [Eq. (4)]. The Z2 fluxes generated by uα
ij

over the ten-site loop (the blue sites in Fig. 1) are given by [19]

WP =
∏
loop

uα
ij . (5)

Since these fluxes commute with the Hamiltonian, by construc-
tion, they do not have any dynamics and hence the problem
can be solved independently for different flux sectors. This
separation of the Majorana sector and the flux sector, the latter
being good quantum numbers, lies at the heart of the exact
solution of the Kitaev models on different lattices [17].

The problem then reduces to Majorana fermions hopping
in the background of frozen fluxes on the hyperhoneycomb

lattice. Similar issues have been studied by various people on
other lattices. Lieb [31] proved that, on certain bipartite lattices
that contain mirror planes that bisect the lattice links, the lowest
energy is obtained when planar plaquettes containing 2 (mod 4)
sites have zero-flux through them, while plaquettes having
0 (mod 4) sites have π flux through them. Unfortunately,
unlike the two-dimensional honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice [19] because
of the absence of suitable mirror planes. In the absence
of such theorems, Mandal et al. [19] resorted to numerical
diagonalization of the fermion hopping Hamiltonian [Eq. (4)]
over large system sizes for several flux configurations and
found that the zero-flux sector has the lowest energy. Thus
it is expected that the zero-flux sector corresponds to the
ground state in our case as well. We can then specialize to
the zero-flux sector choosing a gauge where uα

ij = +1 (for
particular configurations of 〈ij 〉 as shown in Appendix A) to
get

H0-flux
K = i

2

∑
ij

cicj . (6)

This Hamiltonian can then be diagonalized by Fourier trans-
formation, taking the unit cell as given in Fig. 1 (the lattice
vectors are given in Appendix B). We get

H0-flux
K =

∑
k

�T
−kHk�k, (7)

where �T
k = (c1,k,c2,k,c3,k,c4,k) and

Hk = i

4

⎛
⎜⎜⎜⎝

0 1 0 Ak

−1 0 Bk 0

0 −B∗
k 0 1

−A∗
k 0 −1 0

⎞
⎟⎟⎟⎠ , (8)

where

Ak = e−ik·a1 + e−ik·a2 ; Bk = 1 + e−ik·a3 . (9)

The spectrum is given by

Ek = ± 1

2
√

2
{(2 + |Ak|2 + |Bk|2) ±

√
(2 + |Ak|2 + |Bk|2)2 − 4(1 + |Ak|2|Bk|2 + 2Re[AkB

∗
k])}1/2. (10)

The spectrum for the dispersing Majorana fermion, c,
along the high symmetry lines within the first Brillouin zone
is given in Fig. 5. The lower two bands are occupied while
the zero-energy surface describes the contour of the gapless
excitation. We find a Fermi surface of codimension two, i.e.,
line nodes. From Eq. (10), it is easy to see that this is given by
the zeros of the term 1 + |Ak|2|Bk|2 + 2Re[AkB

∗
k], which can

be rewritten as |1 + AkB
∗
k|2. A straightforward manipulation

of this expression reveals that this can occur only when
kx + ky ≡ 0 (modπ

3 ) and cos (ky − kx) + cos (2kz) = ± 1
2

(with the sign determined by kx + ky). This determines the
exact location of this Fermi surface, which is shown in Fig. 6.

The line nodes occur in the zone boundary as shown. The
presence of these extended gapless modes have important
finite temperature consequences, as we discuss later.

The Majorana-spinon representation enlarges the dimen-
sion of the Hilbert space from two to four. Therefore, the
physical spin-wave function is obtained by projecting the
spinon wave function back to the physical Hilbert space
[17,19],

|�spin〉 = P|�spinon〉, (11)

045117-4



HEISENBERG-KITAEV MODEL ON THE HYPERHONEYCOMB . . . PHYSICAL REVIEW B 89, 045117 (2014)

FIG. 5. (Color online) The spectrum of the dispersing Majorana fermion in the pure Kitaev model on the hyperhoneycomb lattice along
paths of high symmetry in the first Brillouin zone (the first Brillouin zone and the paths are shown in Appendix A).

where the projection operator, P, is given by

P =
∏

i

(
1 + Di

2

)
, (12)

where

Di = bx
i b

y

i b
z
i ci (13)

and in the physical Hilbert space, the spinon wave function
satisfies (

∏
i Di)|�spinon〉 = |�spinon〉 [17]. The gauge invariant

Z2 flux operator in Eq. (5) can be written in terms of the spin
variables as

Wp = 210Sx
b Sx

c Sx
d Sy

e Sz
f Sx

g Sx
hSx

i S
y

j Sz
a, (14)

where the numberings refer to sites as shown in Fig. 1. The
rule for writing the expression of Wp in terms of the spins
is similar to the original Kitaev model [17]—for the site i, if
the bonds participating in the loop are of x and y types (note
they cannot be of the same type by construction), then Wp

contains the third component of the spin, i.e., Sz
i . The flux

operator is constructed by repeating this procedure. There are
four different kinds of ten-loop plaquettes [19].

This ends our discussion on the special limits of the
Heisenberg-Kitaev Hamiltonian. Next, we discuss the general
phase diagram first at the classical limit within Luttinger
Tisza approximation and then in the quantum limit using
slave-fermion mean-field theory.

FIG. 6. (Color online) The green curve indicates the Fermi sur-
face at J = 0. This occurs on the boundary of the first Brillouin zone.
The red curve indicates the Fermi surface at K/J = 8(α = 0.2) as
computed within mean-field theory. The two Fermi surfaces almost
coincide with minute differences. (The Fermi surfaces of neighboring
cells have been appended to aid visualization.)

IV. CLASSICAL PHASE DIAGRAM WITHIN
LUTTINGER-TISZA APPROXIMATION AND

SPIN-WAVE ANALYSIS

Beyond the special points as discussed above, we can study
the general phase diagram of the Hamiltonian in Eq. (1) in the
classical limit within the Luttinger-Tisza approximation [32]
for arbitrary J and K . The phase diagram is shown in Fig. 7.
Four magnetic orders are found: They are the Néel, skew-zig-
zag, skew-stripy, and ferromagnetic orders. It is noteworthy
that all the magnetically ordered phases shown here have their
counterpart in the honeycomb case, though with important
differences, and hence we have used a similar nomenclature.

Although in the rest of this paper we mainly concentrate
on the parameter regime J,K > 0, here we note that it is
sufficient at the classical level, as shown in Fig. 7, to study
the J > 0 region of the phase diagram. The J < 0 part of the
phase diagram is easily obtained using the aforementioned
four-sublattice rotation. The Néel and skew-zig-zag orders
are related by the rotation, as are the ferromagnetic and
stripy orders. The skew-zig-zag order in Fig. 8 is ordered
in the Sz direction. In contrast to the skew-stripy, this has
ferromagnetically aligned chains running in along the x-y
bonds, which are then connected antiferromagnetically along
the z bonds. Similar to the skew-stripy, this is also an inherently
three-dimensional magnetic order.

A. Spin-wave zero-point corrections about the classical solution

As pointed out before, at the classical level the Heisenberg-
Kitaev Hamiltonian has a spurious SU(2) symmetry and
because of this, the different skew-stripy ordered phases have
the same classical energy. However, since this degeneracy is
accidental, quantum fluctuations in the form of zero-point

J 0

J 0 Néel

skew zig zag

skew stripy

FM

2 1 0 1 2 K J

FIG. 7. (Color online) The classical phase diagram within
Luttinger-Tisza approximation for arbitrary J and K . Diagonal dotted
lines indicate the four-sublattice rotation mapping from (J,K) →
(−J,K − 2J ). Black dots indicate the exactly solvable ferromagnetic
point in both the rotated and the unrotated bases. Red dots indicate
the antiferromagnetic Heisenberg point in both the rotated and the
unrotated bases. Four magnetic phases have been found; see main
text for details.
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FIG. 8. (Color online) The skew-zig-zag phase with Sz ordering.
The ferromagnetic chains run along the x-y bonds in a zig-zag fashion
(indicated in blue and red), while the z bonds are ferromagnetic
(indicated in yellow).

corrections coming from the spin waves break the above
degeneracy (see below). We study the quadratic spin-wave
theory using the Holstein-Primakoff bosons.

In Fig. 9, we plot the spin-wave dispersion for different
values of K/J for the z-skew-stripy phase. There is a gapless
Goldstone mode for K = 2J at the zone boundary Y . This is a
consequence of the fact that the four-sublattice rotation, at this
point, maps the system exactly to a ferromagnet. Indeed, the
mode is quadratically dispersing (ω ∼ k2), as is expected for a
ferromagnet. However, we find, similar to the honeycomb case,
this gapless mode is present for all values of K/J in the skew-
stripy regime (K > J > 0). This is due to the spurious SU(2)
symmetry at the classical level which survives even for the
quadratic spin-wave theory. However, this gapless mode is not
protected by symmetry of the general Hamiltonian and higher-
order corrections coming from magnon-magnon interactions
gaps out this mode.

The finite momentum of the zero-energy mode may seem
counterintuitive at first, particularly at the K = 2J point
where the system can be rotated to a ferromagnet with
uniform (q = 0) order. However, we immediately note that
this four-sublattice rotation (Fig. 3) has an eight-site unit cell
and hence has a finite momentum (which is exactly equal to
q = Y ) within the Brillouin zone of our four-site unit cell
(this implies that the general skew-stripy order actually has
q = Y order within our four-site unit cell, or, equivalently,
q = 0 order within an eight-site unit cell). Therefore, if we
were to examine the spin-wave spectrum in the rotated basis,

the gapless quadratic dispersion would shift to the � point of
the Brillouin zone.

We next calculate the zero-point energy coming from the
spin waves for different skew-stripy states. The different
classical skew-stripy states can be parametrized by spherical
angles (θ,φ), where (θ,φ) = (0,0), (π/2,0), and (π/2,π/2) are
the z-, x-, and y-skew-stripy states, respectively. One way of
seeing this is that since the stripy phase is just a ferromagnet
in the rotated basis, the two angles quantify the direction of
quantization of this ferromagnet with θ being the polar angle
(with reference to the z direction) and φ being the azimuthal
angle. We can then obtain the magnitude of the zero-point
corrections for different states (for various values of K/J ) as
a function of (θ,φ). As an example, the resulting ground-state
energy corrections for K = 3J as a function of (θ,φ) is given
in Fig. 10.

The variation in energy correction as a function of (θ,φ)
signifies lifting of the accidental SU(2) symmetry. On the other
hand, discrete symmetries mentioned in Sec. II are manifested
as mirror planes in parameter space (σ100, σ010, σ001, and σ1̄10,
where subscripts indicate normals of the mirror planes). In
particular, the x-skew-stripy phase and the y-skew-stripy phase
are related by the σ1̄10 symmetry, but the z-skew-stripy is
distinct and has a different energy. These three skew-stripy
phases are local minima in the energy landscape, and the
global minimum would be selected as the ground state at zero
temperature. The energy splitting,

� = (Ez-stripy − Ex/y-stripy), (15)

between these local minima as a function of K/J in the
skew-stripy regime is plotted in Fig. 11, with negative energies
indicating a lower energy for the z-stripy phase. We see
that for K/J � 8.2(α � 0.8), the z-stripy phase is selected,
while at K/J = 2(α = 0.5), i.e., the exactly solvable point,
the exact SU(2) symmetry is restored and the two phases
have equal energies (in fact, the quantum energy correction is
identically zero at this point, since the ground state is exactly a
ferromagnet in this limit). As we see in the next section, there
is a phase transition from the stripy phase to a spin-liquid state
at K/J ≈ 7.7(α ≈ 0.79); hence, we may conclude that the
z-skew-stripy phase is selected via quantum-order-by-disorder
(QOD) in the skew-stripy regime. We also performed the
analogous analysis in the Néel regime (J > 0,K < 1): When
K > 0, QOD selects the z-Néel phase (spins are aligned
parallel or antiparallel to the z direction), while for K < 0,
QOD selects the x-(y-)Néel phase.

FIG. 9. (Color online) The spin-wave dispersion for various values of K/J within the skew-stripy phase. We have chosen the ordering in
Sz as an example. K/J = 2(α = 0.5) maps to the pure ferromagnetic model in the rotated basis (see text); K/J = 1.1(α = 0.35) is near the
classical boundary of the Néel and the skew-stripy order; and, K/J = 0.6 is a general point within the skew-stripy phase.
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FIG. 10. (Color online) The zero-point energy corrections from
spin-wave theory for the different skew-stripy states for K = 3J . The
different stripy states can be labeled by (θ,φ) (see text). We find that
the x-, y-, and the z-skew-stripy states have lower energies (but not
same, as this figure may deceptively suggest, due to lack of resolution;
see Fig. 11 for the difference). Due to the three C2, two inversion,
and time-reversal symmetries of our Hamiltonian, energy correction
for other (θ,φ) not explicitly shown is related to the plotted octant by
mirror operations σyz, σxz, and σxy in (θ,φ) space.

We conclude this section by noting that the energy split-
ting between x-/y- and z-skew-stripy phases is quite small
(� ∼ 10−6J ) and hence may be sensitive to higher-order
corrections to the spin-wave spectra. More sophisticated
numerical calculations based on series expansions or exact

FIG. 11. (Color online) The zero-point energy difference be-
tween the Sz-ordered and Sx/Sy-ordered skew-stripy phases as a
function of K/J . Negative values indicating Sz-ordered phase have
lower energy. At the exactly solvable point, K/J = 2(α = 0.5),
SU(2) symmetry is restored and hence the energy difference is zero.
Away from that point, the Sz-ordered phase has lower energy and
hence is selected by this quantum-order-by-disorder mechanism.

diagonalization in the future may be able to verify our present
conclusion. On the other hand, we have demonstrated that
the breaking of the spurious classical SU(2) symmetry, and
specifically the lifting of degeneracy between the x-/y- and
z-skew-phases, can be achieved by considering only the
lowest-order quantum corrections via spin-wave theory.

V. SLAVE-PARTICLE MEAN-FIELD THEORY
FOR THE HEISENBERG-KITAEV MODEL

Away from the J = 0 limit, the Hamiltonian in Eq. (1) is no
longer exactly solvable. In terms of the Majorana fermions the
Heisenberg term is a short-range four-fermion perturbation.
At the exactly solvable point, we find this interaction to be
irrelevant at the the tree level (shown in Appendix C). The
interactions, therefore, do not immediately destabilize the spin
liquid and a finite strength is required for causing a phase
transition. This opens up a parameter regime over which the
spin liquid is stable.

We study this system in the vicinity of spin liquid using
a slave-fermion mean-field theory. As in the honeycomb case
where similar calculations were done by some of the present
authors [30], here we find it easier to work in the rotated basis
(Fig. 3).

To begin, we write the rotated spin operators as products of
fermionic spinons given by [33,34]

S̃
μ

j = 1
2f

†
jα[σμ]αβfjβ. (16)

Along with the single occupancy constraint,

f
†
i↑fi↑ + f

†
i↓fi↓ = 1, (17)

this is a faithful representation of our spin Hilbert space.
Of particular interest is the portion of the phase diagram in

which the Heisenberg interactions are antiferromagnetic and
the Kitaev couplings are ferromagnetic. Once in the rotated
basis, the rotated couplings [30],

J ′ = −J ; K ′ = K − 2J, (18)

both become ferromagnetic for K > 2J . Due to the purely
ferromagnetic couplings, we only consider spinon-hopping
and pairing fields in the triplet channels which are respectively
given by �Eij and �Dij [35]. Accordingly, we introduce auxiliary
fields defined as

Ea
ij = 〈f †

iα[τ a]αβfjβ〉∗, Da
ij = 〈fiα[iτ 2τ a]αβfiβ〉∗, (19)

(a = x,y,z) on each bond. In addition to these, we include a
magnetic decoupling,

mj = 1
2 〈f †

jα[σ z]αβfjβ〉, (20)

which allows us to capture the magnetic ordering, which we
take to be in the z direction. The choice of this direction is
motivated by our semiclassical results in the previous section.

The mean-field spinon Hamiltonian takes the form

HMF =
∑
〈ij〉

− �fi
†Uij

�fj

− 1

8
J ′m(f †

i,α[σ z]αβfi,β + f
†
j,α[σ z]αβfj,β),

�f †
i = [f †

i,↑ fi,↓ f
†
i,↑ −fi,↓], (21)
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and the matrix Uij is given by

Uij =
∑

r

arσ
r
[
Er

ij (τ 0 + τ 3) + Er∗
ij (τ 0 − τ 3)

]

+ arσ
r
(−Dr

ij τ
− + Dr∗

ij τ+)
, (22)

where σ r are Pauli matrices acting on the spin degrees of
freedom, τ r are Pauli matrices acting on the gauge degrees of
freedom, and ar = 1

16 [J ′ + (1 − δr )K ′] with δr = 1 if ij is an
r bond and δr = 0 otherwise [30].

To continue, we choose an ansatz with translational invari-
ance of the mean-field operators, consistent with the form of
the exact solution. Upon doing so, we can perform a Fourier
transformation of our full mean-field Hamiltonian, resulting
in

HMF =
∑

k

�α†
kHk �αk, �αk

† = [ �fk
†
1

�fk
†
2

�fk
†
3

�fk
†
4

]
,

�fk
†
β = [

f
†
kβ↑ f−kβ↓ f

†
kβ↓ −f−kβ↑

]
,

Hk =

⎡
⎢⎢⎢⎢⎣

mP U1 0 Ak

U
†
1 mP Bk 0

0 B
†
k mP U3

A
†
k 0 U

†
3 0

⎤
⎥⎥⎥⎥⎦, (23)

with Ak = U4e
−ik·a1 + U5e

−ik·a2 , Bk = U2 + U6e
−ik·a3 , and

P = 3
8J ′ × diag(−1,−1,1,1). The matrices Uα refer to the

matrices Uij defined on the inequivalent links.
This leaves us with a mean-field theory consisting of 37

complex parameters. We can simplify this considerably by
enforcing the symmetries of the lattice. Before doing so,
we note that the mean-field ground-state solution need not,
in general, obey all of the symmetries of the lattice since
spinons transform only under projective symmetries [33].
However, here we consider the case where the symmetries
are manifest in the spinon Hamiltonian. We also note that
these symmetry operations may only relate the parameters
up to gauge transformations. The presence of the inversion
symmetry allows us to relate the magnitudes of the parameters
on the two z bonds to one another, and the three C2 symmetries
allow us to relate the magnitudes of the parameters on the x and
y bonds. A self-consistent mean-field analysis on this model

FIG. 12. (Color online) (a) The spinon band structure at the exactly solvable point K/J = ∞ (α = 1). (b) The spinon band structure at the
point K/J = 8 (α = 0.8). At this point, magnetic order has not yet stabilized. (c) The spinon band structure at the point K/J = 4.9 (α = 0.71).
At this point, magnetic order is present.
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finds that stable nondimerized solutions exist which obeys the
above conditions.

Further insight into the spin liquid can be obtained from
considering the relation to the exact solution in the J = 0
limit. Choosing the form of the mean-field parameters to be

Dx
ij ,E

z
ij ∈ Imaginary, D

y

ij ∈ Real, (24)

with the remaining components set to zero, we can diagonalize
our mean-field Hamiltonian in terms of Majorana fermions. We
use the basis described by You et al. [36], defining our four
Majorana modes as

ci = 1√
2

(fi↑ + f
†
i↑); bx

i = 1

i
√

2
(fi↓ − f

†
i↓);

(25)

b
y

i = −1√
2

(fi↓ + f
†
i↓); bz

i = 1

i
√

2
(fi↑ − f

†
i↑).

Performing a self-consistent mean-field theory in terms of
these parameters, we find that our minimum-energy nondimer-
ized solution is consistent with the symmetries discussed
above. This can be related to the exact solution as discussed by
Schaffer et al. [30]. In particular, we find that the parameters
have the values Ez = −0.116 03i, Dx = −iDy = 0.383 97i

on z bonds, Dx = −0.124 43i, Ez = −iDy = 0.375 57i on x

bonds, and Dy = 0.124 43, Ez = Dx = 0.375 57i on x bonds.
This anisotropy between the mean-field parameters on the z

bonds compared to the x and y bonds is due to the absence of
a symmetry relating these bond types as discussed previously.

Examining the spinon dispersion in this limit, we find that
we have four dispersing fermion modes which reproduce the
features of the exact solution, in addition to 12 flat bands [see
Fig. 12(a)]. The flat bands are not fully degenerate, due to the
differences between the mean-field parameters on the z and x,y

bonds. The spin liquid is gapless, with a Fermi surface at the
zone boundary similar to the exact solution described above.

As we move away from the J = 0 limit, we keep the
structure of the mean-field parameters as described by Eq. (24),
while allowing the values of these to evolve. We also
reintroduce the magnetization order parameter m, to capture
the competing order to the spin liquid. As we begin to perturb
away from the point J = 0, we find that the spinon bands
which were previously flat gain a dispersion, with an energy
which scales with J , as shown in Fig. 12(b). These bands
remain fully gapped, and although they do not contribute to
the low-energy theory they do cause further neighbor spin
correlations to become nonzero [37]. The location of the Fermi
surface changes slightly as we perturb away from this limit,
but it maintains its structure; it remains a single line node on
the zone boundary as in Fig. 6.

As we increase J , the mean-field theory finds a first-order
phase transition into a phase with nonzero net magnetization
(in the rotated basis). The transition occurs at approximately
K/J ≈ 7.7(α ≈ 0.79) (see Fig. 13). This transition signif-
icantly alters the spinon band structure, resulting in the
formation of a gap as well as a significant change of the general
structure, as shown in Fig. 12(c). As we increase the value of
J , all of the hopping and pairing amplitudes are driven to zero,
and the model becomes fully described by the stripy magnetic
ordering.

FIG. 13. (Color online) The magnitude of the mean-field or-
der parameters, plotted as a function of α, where J = (1 − α)
and K = 2α.

VI. RESPONSE TO MAGNETIC FIELD
AND FINITE TEMPERATURE

In this section, we briefly discuss the finite field and finite
temperature effects in the skew-stripy and the spin-liquid
phases.

A. h �= 0,T �= 0 effect on the skew-stripy phase

When an external magnetic field is applied perpendicular
to the x, y, or z directions (see Fig. 1 and Appendix A for
definition of these directions), the magnetic response of the
skew-stripy phase can be computed analytically at the classical
level. We highlight that the saturation field is only dependent
on the Heisenberg exchange and not on the Kitaev coupling.

To see this, we minimize the classical energy functional
at zero temperature. First, we write our spin configuration as
a sum of a variational component, ψ , and a ferromagnetic
component along our applied field, ψFM,

� =
√

(1 − m̄2) · ψ + m̄ · ψFM. (26)

Similar to the Luttinger-Tisza method, the variational compo-
nent ψ is subject to the constraint that every spin in � must
have the same length. We have also introduced the variational
parameter m̄(|m̄| � 1) as the (dimensionless) magnetization
along our applied field. As a result, the energy functional can
written as

E([�],m̄) = e[ψ] · (1 − m̄2) + e[ψFM] · m̄2 − h · m̄, (27)

where �h = hĥ is the external field and e[ψ](e[ψFM]) are the
energies of the variational (ferromagnetic) components of the
wave function.

In the skew-stripy regime (K > J > 0) and for ĥ perpen-
dicular to x, y, or z, minimizing the energy with respect to ψ

subject to the aforementioned constraint gives ψ = ψskew-stripy

in the x, y, or z direction, respectively. Substituting the energies
per spin of the skew-stripy and ferromagnetic states into the
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energy functional, we obtain

E(m̄) = −J − K

8
(1 − m̄2) + 3J − K

8
m̄2 − hm̄. (28)

Minimizing in respect to m̄ yields the relation m̄ = h/J ,
i.e., magnetization saturates at hsat = J , which is independent
of the Kitaev coupling K . We contrast this with the Néel
regime (J > 0,K/J < 1), where the above analysis will yield
hsat = (3J − K)/2.

Though the above result is purely classical, it is nonetheless
quite interesting since it suggests that the magnetic field
response is controlled by only the Heisenberg parameter, J .
The insensitivity of the saturation field to the Kitaev coupling
K in the skew-stripy regime may provide a useful tool to probe
the value of the ratio K/J for the actual material.

Turning to the finite temperature response, we immediately
note that the mean-field Curie-Weiss temperature is given by
[38]

�CW = 1
4 (K − 3J ). (29)

So, for K > 3J , �CW > 0 as in the honeycomb case. Further,
while both the energy scales, J and K , enter into the expression
for �CW, only the former, as seen before, enters into the
saturation value of the magnetic field.

The low-energy magnetic specific heat, at the quadratic
level, receives major contributions from the quadratically
dispersing spin-wave mode near the Y point (Fig. 9). This leads
to a specific heat that is proportional to T 3/2. This power law is
expected to be cut off at a temperature scale that corresponds
to the gap of the mode (when higher-order magnon-magnon
interactions are taken into account).

B. h �= 0,T �= 0 effect on the spin liquid

In zero magnetic field, the spin-spin correlations at the pure
Kitaev point are strictly nearest neighbor [39]. For finite J ,
the spin-spin correlations are exponentially decaying [37]. On
putting in a magnetic field, we expect this to change to a power
law similar to the honeycomb case [40].

The low-temperature specific heat in the spin-liquid regime
is controlled by the gapless fermions. Since the spinon
band gap vanishes on a one-dimensional manifold, the low-
temperature magnetic specific heat scales as ∼T 2 (shown in
Appendix C).

VII. DISCUSSION AND OUTLOOK

In summary, motivated by recent experiments by Takagi
et al. on β-Li2IrO3 [26], we have studied the possibility of
realizing a Heisenberg-Kitaev spin model on the hyperhon-
eycomb lattice (Fig. 1). We argue that the spin physics of
this material in the strong coupling limit, where Ir4+ ions
carrying localized J = 1/2 moments surrounded by edge-
sharing oxygen octahedra with Ir-O-Ir bond angle being 90◦,
may be essentially captured by a Heisenberg-Kitaev model
in three dimensions. Using a combination of semiclassical
analysis, exact solution and slave-fermion mean-field theory,
we study the phase diagram of this model that allows
interesting magnetically ordered phases as well as an extended

window of a three-dimensional gapless Z2 spin-liquid phase.
In among the magnetically ordered phases, in addition to the
usual Néel and the ferromagnet, we find two other collinear
phases: the skew-stripy and the skew-zig-zag. Focusing on the
antiferromagnetic Heisenberg-Ferromagnetic Kitaev regime
[J,K > 0 in Eq. (1)], we find that the quantum fluctuations
select the z-skew-stripy phase as the energy minimum through
QOD. The spin liquid, on the other hand, has gapless Fermi
circles (Fermi surface with codimensions, dc = 2). This
occurs at the Brillouin zone boundary and has interesting
implications at low temperature. Our slave-fermion mean-field
theory predicts a first-order transition between the spin liquid
and the magnetically ordered skew-stripy phase.

In regards to actual experiments on the material, it would
be interesting to see if any of the above phases are relevant to
describe the physics of actual material β-Li2IrO3. We predict
the general form of the low-temperature specific heat and
also the magnetic field dependence for the susceptibility in
both the skew-stripy and the spin-liquid regimes. Interestingly,
in the classical limit, the magnetic field required to saturate
the system only depends on the magnitude of the Heisenberg
coupling (J ), while the Curie-Weiss temperature contains
both Heisenberg (J ) and Kitaev (K) couplings. This may
indicate that the temperature response and the magnetic field
response, particularly the magnetization saturation, energy
scale may be quite different. These results can be compared
with respect to future experiments. The spin-wave spectra can
similarly be compared to future neutron scattering studies on
this compound. Overall, the possibility of realizing another
family of Mott insulators where the Heisenberg-Kitaev model
is relevant would be exciting, with the possibility of realizing
a three-dimensional quantum spin-liquid phase that this model
allows.

Note added in proof. Recently, an independent and related
work [41] with some overlapping results appeared in the
preprint arXiv.
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APPENDIX A: THE STRUCTURE OF THE IDEAL
HYPERHONEYCOMB LATTICE

Here we elaborate on the lattice structure of the ideal
hyperhoneycomb. The ideal structure has 90◦ Ir-O-Ir bonds,
120◦ Ir-Ir-Ir bonds, and perfect oxygen octahedra around each
Ir4+ ion. All nearest-neighbor Ir-Ir bonds have the same length.
The lattice can be described by a face-centered orthorhombic
lattice with a four-site basis. The primitive face-centered
orthorhombic lattice vectors are given by

a1 = (2,4,0), a2 = (3,3,2), a3 = (−1,1,2). (A1)

This choice of lattice vectors, shown in Fig. 1, ensures that both
Ir and O ions have positions possessing integer coordinates.
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FIG. 14. (Color online) The Brillouin zone. The high-symmetry
paths are: � → Y → T → Z → � → X → A1 → Y , T → X1,
X → A → Z, and � → L. The following are the position of the high-
symmetry points: � = (0,0,0), Y = (0,0,− π

2 ), T = (− π

6 ,− π

6 ,− π

2 ),
Z = (− π

6 ,− π

6 ,0), X = ( 29π

72 ,− 29π

72 ,0), A1 = ( 11π

72 ,− 11π

72 ,− π

2 ), X1 =
(− 19π

72 ,− 5π

72 ,− π

2 ), A = ( 13π

72 ,− 37π

72 ,0), and L = ( π

6 ,− π

3 ,− π

4 ).

For instance, the four Ir ions now have the positions

Ir1 = (0,0,0), Ir2 = (1,1,0),

Ir3 = (1,2,1), Ir4 = (2,3,1), (A2)

and the six oxygens around each Ir are located at ±x̂, ±ŷ, and
±ẑ relative to the Ir position. We also note that the oxygen
ions form a face-centered orthorhombic lattice by themselves
in the ideal hyperhoneycomb.

One can also describe the lattice structure with the enlarged
orthorhombic unit cell as illustrated in Fig. 1. In this case
the lattice vectors are given by a = (6,6,0), |a| = 6

√
2;

b = (−2,2,0), |b| = 2
√

2; and c = (0,0,4), |c| = 4 (in the
same units as those used in the above lattice vectors).

1. The first Brillouin zone

The reciprocal lattice vectors are given by

b1 =
(

π

3
,−2π

3
,
π

2

)
, b2 =

(
−2π

3
,
π

3
,−π

2

)
,

b3 =
(

2π

3
,−π

3
,−π

2

)
. (A3)

The first Brillouin zone as well as the high-symmetry direc-
tions and points are shown in Fig. 14.

APPENDIX B: CHOICE OF THE LINK VARIABLES uα
i j

IN THE ZERO-FLUX SECTOR AND THE ZERO-FLUX
HOPPING HAMILTONIAN

Defining the loop variables in terms of the spins, according
to the discussion following Eq. (14), for the four kinds of
ten-site loops (shown in Fig. 15) we have

WP1 = 210Sx
b Sx

c Sx
d Sy

e Sz
f Sx

g Sx
hSx

i S
y

j Sz
a, (B1)

WP2 = 210Sx
mSx

nSx
o S

y
pSz

dS
x
c Sx

b Sx
a S

y

k Sz
l , (B2)

WP3 = 210Sx
mS

y
nS

y
q S

y
r Sz

hS
x
i S

y

j S
y
a S

y

k Sz
l , (B3)

WP4 = 210S
y
q S

y
r S

y

hSx
g Sz

f S
y
e S

y

d S
y
pSx

o Sz
n, (B4)

FIG. 15. (Color online) The four loops as shown are (1) b-c-d-e-
f-g-h-i-j-a; (2) m-n-o-p-d-c-b-a-k-l; (3) m-n-q-r-h-i-j-a-k-l; (4) q-r-h-
g-f-e-d-p-o-n. Sublattices 1, 2, 3, and 4 are colored green, red, orange,
and yellow, respectively, to aid visualization of the four-site unit cell.

using

σx = −iσ yσ z = −ıbybz, (B5)

σy = −iσ zσ x = −ıbzbx, (B6)

σ z = −iσ xσ y = −ıbxby, (B7)

where Sα = σα/2 and σα(α = 1,2,3) are the Pauli matrices.
For the four loops we then get

WP1 = uz
bcu

y

cdu
z
deu

x
f eu

y

fgu
z
hgu

y

ihu
z
jiu

x
jau

y

ba, (B8)

WP2 = uz
mnu

y
onu

z
opux

pdu
y

cdu
z
bcu

y

bau
z
kau

x
lku

y

lm, (B9)

WP3 = uz
mnu

x
qnu

z
qru

x
rhu

y

ihu
z
jiu

x
jau

z
kau

x
lku

y

lm, (B10)

WP4 = uz
qru

x
rhu

z
hgu

y

fgu
x
f eu

z
deu

x
pdu

z
opuy

onu
x
qn. (B11)

On a loop, therefore, if we choose a gauge where the above
link variables are +1 then we are in the zero-flux sector. This
is shown in Fig. 15, where uα

ij = +1, when going from i to
j we traverse along the arrow. Further, this configuration of
uα

ij has the same unit cell as the lattice and so one can use the
four-site unit cell for diagonalization.

Now in this zero-flux sector, the hopping Hamiltonian is
given by Eq. (6) where, as stated in the main text, ij are given
by the direction of the arrows in Fig. 15. Therefore, we can
write it more explicitly as

H 0−flux
K = ı

2

∑
R

[
c1,R

(
c2,R + c4,R−a1 + c4,R−a2

)
+ c3,R

(
c4,R − c2,R − c2,R+a3

)]
. (B12)

APPENDIX C: THE TREE LEVEL SCALING FOR
SHORT-RANGE FOUR FERMION INTERACTIONS

FOR FERMI SURFACE WITH CODIMENSIONS,
dc = 2 IN THREE SPATIAL DIMENSIONS

In the Kitaev model, we have both dispersing Majorana
fermions, cj as well as ones which have a flat band,
bα

j (α = x,y,z).
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For dispersing fermions in d spatial dimensions, where the
Fermi surface has a codimension of dc(<d), the free action is
[42]

S0,c =
∫

dω

∫
dd−dc l

∫
ddc kck,l (iω − vl · k) ck,l, (C1)

where the “directions” denoted by l lie on the Fermi surface
and hence do not scale while k denotes the direction away
from the Fermi surface [42,43]. For the flat-band fermions, the
schematic form of the action is given by

S0,b =
∫

dω

∫
dd−dc l

∫
ddc kbk,l (iω − ε0) bk,l (C2)

(where we have suppressed the superscript α, which is not
important for the present calculation).

Using the scaling

ω′ = λω, l′ = λ0l, k′ = λk (C3)

(where λ > 1 is the scaling parameter), we get

c′
k′,l′ = λ− dc+2

2 ck,l, (C4)

bα ′
k,l = λ− dc+1

2 bα
k,l. (C5)

The Heisenberg interactions are typically given by

S4 = g

∫ [
3∏

i=1

dωid
d−dc liddc ki

]
bk1,l1,ω1bk2,l2,ω2ck3,l3,ω3

× ck4,l4,ω4 , (C6)

where A4 = −(A1 + A2 + A3)(A = k,l,ω). Using the scaling
at the pure Kitaev point, we find that

[g] = −dc. (C7)

Hence the four-fermion interaction of the Heisenberg type
is irrelevant at the Kitaev point (dc = 2). We just note that
this is more irrelevant than the four-fermion vertex, which
is of cccc type. This latter vertex has a scaling dimension
of 1 − dc.

1. The scaling of the low-temperature specific heat

The low-temperature specific heat receives contribution
from the c fermions. It is given by

C ∼ ∂

∂T

∫
dd−dc l

∫
ddc k

|k|
e|k|/T + 1

∼ T dc . (C8)
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