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Plasmon losses in core-level photoemission spectra studied by the quantum Landau formula
including full multiple scattering
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We study the angular and energy dependence of surface and bulk plasmon losses accompanying deep core
excitations in simple metals. Here full multiple scatterings of photoelectrons are taken into account before
and after the plasmon losses within the quantum Landau formula, which can describe overall features of the
photoemission bands. For example, multiple plasmon loss features can be calculated by use of the formula. Two
simple metals, Al and Na, are studied here. The depth profiles of the plasmon losses are strongly influenced by
the elastic scatterings. The model assuming single elastic scatterings overestimates the losses from deep emitters
due to the forward focusing effects, whereas the model accounting for full multiple scatterings gives a much
rapidly decaying function of the depth due to the defocusing effects and rich structures due to the photoelectron
diffraction. The single elastic scattering approximation gives a poor result both for the depth profiles and for the
loss spectra. The present multiple scattering calculations successfully explain the azimuthal dependence of the
loss spectra, which reflect the local geometry around the emitters.
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I. INTRODUCTION

X-ray photoelectron spectroscopy (XPS) is now widely
used for studying physical properties of materials. Plasmon
satellites are observed in higher binding energy region
than the main peaks in XPS spectra of simple metals and
some semiconductors, notably Na, Al, Mg, and Si, Ge.
The plasmon excitation mechanism has been in the focus
of the photoemission studies since their early days of the
photoemission study. The energy loss by the plasmon ex-
citation can occur due to sudden creation of the core-hole
potential (intrinsic process) or inelastic scattering during
the transport of photoelectrons toward the solid surface
(extrinsic process). These two excitation processes cannot be
distinguished in principle: They can interfere with each other,
which is discussed from theoretical sides1–5 and experimental
sides.6,7

For the practical calculations, semiclassical approaches
are often employed, where the photoelectron propagations
inside the solids are described by a classical trajectory.8–11

Sophisticated many-body one-step quantum theories have
been developed on the basis of many-body scattering theory
by use of projection operator techniques.4,5 On the other hand
first principle formal photoemission theories based on Keldysh
Green’s functions were at first proposed by Caroli et al.12 and
further refined by Almbladh.13 A practical method has been
developed to calculate x-ray photoelectron diffraction (XPD)
spectra based on the Keldysh Green’s function approach.14,15

Great advantages of this theoretical framework are feasibility
of radiation field effects16–18 and relativistic effects.19 In this
study, however, we discuss the plasmon losses within the
nonrelativistic theory. Both the many-body scattering theory
and the Keldysh Green’s function theory provide us with very
similar formulas: We apply the latter approach to the present
work.

Starting from a first principle many-body theory, Hedin
et al. have derived a quantum Landau formula, which describes
overall features in core-level photoemission spectra including
plasmon satellite peaks and asymmetry of main peaks due to
x-ray singularity.5 We should note that the quantum Landau
formula works well in the high-energy region. Ohori et al.
have investigated the applicability of the quantum Landau
formula for the plasmon losses without elastic scatterings.20

Their results show that the Quantum Landau formula gives
results quite similar to those without use of the high-energy
approximation in the photoelectron kinetic energy range
from 60 to 1000 eV. Uwatoko et al. have measured and
calculated single plasmon loss spectra associated with Al
2p photoemission on the basis of Hedin’s formalism,6 which
shows rather good results as far as we include the interference.
In Hedin’s approach, elastic scatterings inside the solids are
completely neglected. It has been reported, however, that
plasmon peaks are strongly influenced by the photoelectron
diffraction,21 and it is thus important to consider the elastic
scatterings to analyze the experimental results in detail. A
new quantum Landau formula has been derived by Fujikawa
et al., where the elastic scatterings before and after the loss
are fully taken into account.22 This formula is a powerful tool
to study the plasmon losses including higher order satellites.
So far Kazama et al. have applied that theoretical approach
to the plasmon losses associated with Al 2s photoemission.
The single scattering model gives rise to unexpected large loss
intensities from deep emitters and the overestimated strong
bulk plasmon loss intensity.23

In this paper we study plasmon satellite peaks in XPS
spectra based on the new quantum Landau formula taking
full multiple scatterings into account. In Sec. II we discuss the
theoretical framework to obtain the quantum Landau formula,
and then in Sec. III we show some calculated results taking full
multiple scatterings into account. These results are compared
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with those without elastic scatterings or with only single
scatterings to study the photoelectron diffraction effects on
plasmon loss features.

II. THEORY

In this section we discuss the basic formulas used in the
present theoretical analyses.

A. No-loss and single-loss intensities

The intensity measuring photoelectrons with momentum p
and kinetic energy εp = p2/2 at the main XPS band (no loss
band) excited by x-ray photons with the energy ω is described
in terms of the damped photoelectron wave function f −

p under
the influence of the optical potential for the excitation from
the core level c,4,14

I ( p; ω)0 = 2π |〈f −
p |�|φc〉S0|2δ(E0 + ω − E∗

0 − εp), (1)

where φc is the core wave function localized on the site
A. Ground state energies with and without a core hole are
represented by E∗

0 and E0, and � is the electron-photon
interaction operator. The intrinsic no-loss amplitude S0 should
be close to 1. The amplitude 〈f −

p |�|φc〉 can be calculated by
using full multiple-scattering formula as used in photoelectron
diffraction calculations.24–27

The single-loss XPS intensity, whose loss energy is ωm, is
written as14

I ( p; ω)1 = 2π
∑
m

|〈f −
p |�|φc〉Sm

+〈f −
p |vmg(εp + ωm)�|φc〉S0|2

× δ(E0 + ω − E∗
0 − ωm − εp). (2)

vm is the fluctuation potential associated with the excitation
0∗ → m∗, which is responsible for the intrinsic and the
extrinsic excitations, and g(εp + ωm) is the causal Green’s
function. The first and second terms in | · · · |2 describe the
intrinsic and extrinsic loss processes. Intrinsic amplitudes S0,
Sn(n > 0) are defined by

S0 = 〈0∗|b|0〉, (3)

Sn = 〈n∗|b|0〉, (4)

where b is the annihilation operator associated with the core
state φc. A well-known Hamiltonian is introduced to obtain
more information for the practical calculations:28

H = Hv + εcb
†b + Vcbb†. (5)

In Eq. (5) Hv is the full many-electron Hamiltonian for valence
electrons, Vc is an interaction between the core-hole and
valence electrons, and εc is a core electron energy. A hole
state |n∗

v〉 satisfies

H ∗|n∗
v〉 = E∗

n|n∗
v〉, (6)

where H ∗ = Hv + Vc. The ground state of the no hole
Hamiltonian Hv + εc is |0〉 = |0v〉|c〉. The intrinsic amplitudes
are simplified by using this approximate Hamiltonian and

conventional perturbation theory as

S0 = exp(−a/2),

Sn = − 〈c|vn|c〉
ωn

exp(−a/2), ωn = E∗
n − E∗

0 .
(7)

The fluctuation potential associated with the excitation 0∗
v →

n∗
v is defined by use of the bare Coulomb potential v(r − r′)

vn(r) =
∫

d r ′v(r − r ′)〈n∗
v|ψ†(r ′)ψ(r ′)|0∗

v〉. (8)

The renormalization factor a is given by

a =
∑
n>0

|〈c|vn|c〉|2
ω2

n

. (9)

We apply the site T -matrix expansion for f −
p and g(εp + ωm)

to calculate the extrinsic loss term in Eq. (2):22

〈f −
p |vmg(εp + ωm)�|φc〉

= 〈
φ0

p

∣∣
⎛
⎝1 +

∑
α

tαg0 +
∑
α �=α′

tα′g0tαg0 + · · ·
⎞
⎠ vm

×
⎛
⎝g′

A +
∑

β

g′
0t

′
βg′

A + · · ·
⎞
⎠ �|φc〉. (10)

Here an abbreviation g′
A = gA(εp + ωm) is used. The damping

plane wave φ0
p has the complex momentum pz = p̃ and the

real parallel components p‖ = (px,py), r‖ = (x,y):

φ0
p = exp(i p‖ · r‖) exp(ip̃z). (11)

The fluctuation potential vm defined by Eq. (8) can be specified
by a wave vector q = (qx,qy,0) with the aid of translational
symmetry parallel to the surface:

vm(r) = exp(iq · r‖)Vm(z), r = (r‖,z). (12)

We assume that the solid occupies the region z � 0. Then the
z component of p should be written by use of the imaginary
part of the optical potential �:

p̃ =
√

p2
z − 2i�. (13)

The lowest order extrinsic loss amplitude

τ (0)
ex ( p) = 〈

φ0
p

∣∣vmg′
A�|φc〉 (14)

neglects whole elastic scatterings from surrounding atoms
before and after the loss. The propagator g′

A(r,r ′) in the
amplitude τ (0)

ex is given in angular momentum representation,

g′
A(r,r ′) = −2ip′∑

L

hl(p
′r>)YL(r̂)RA

l (p′r<)Y ∗
L(r̂ ′) exp

(
iδA

l

)
,

(15)

where p′(‖ p) is the momentum of the photoelectrons before
the loss and RA

l is the regular radial solution for the spherically
symmetric potential vA at the x-ray absorbing atom A. As the
core function φc is strongly localized on the atomic site A,
it can be safely assumed that the condition r > r ′ is always
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satisfied. It is convenient to use the integral representation

−2ip′hl(p
′r)YL(r̂) = i−l

π2

∫
dkYL(k̂)

exp(ik · r)

p′2 − k2 + 2i�
, (16)

and thus

τ (0)
ex =

∑
L

i−l

π2

∫
YL(k̂)

p′2 − k2 + 2i�

〈
φ0

p

∣∣vm|eik·(r−RA)〉dkM ′
LLc

,

(17)

where M ′
LLc

is an atomic excitation matrix element with the
energy of εp + ωm,

M ′
LLc

( p) = exp
(
iδA

l

)
ρ(l)cG(Lc10|L). (18)

The Gaunt integral G(Lc10|L) is responsible for the dipole
excitation selection rule, ρ(l)c is the radial dipole matrix
element between the core function and lth partial photoelectron
wave. Now we evaluate the amplitude 〈φ0

p|vm|eik·(r−RA)〉 with
the aid of formula (12) for vm:22

τ 0
ex( p) =

∑
L

i−l

π2
(2π )1/2e−ip̃∗zA

∫
dkz

YL(k̂
′
)

κ2 − k2
z + 2i�

×
∫ ∞

−∞
Vm(z)ei(kz−p̃∗)(z−zA)dzM ′

LLc
,

k′ = ( p‖ − q,kz),

κ =
√

p′2 − ( p‖ − q)2 =
√

p2 + 2ωm − ( p‖ − q)2.

(19)

The main contribution to the integral over kz in Eq. (19) comes
from the very small region near kz ∼ κ because of the factor
(κ2 − k2

z + 2i�)−1. The spherical harmonics YL(k̂
′
) changes

very slowly with kz and YL(k̂
′
) can be replaced by YL( Q̂′),

where

Q′ = ( p‖ − q,κ). (20)

Then the integral over kz is calculated as∫
dkz

exp[ikz(z − zA)]

k2
z − κ2 + 2i�

= πi

κ̃
eiκ|z−zA|, κ̃ =

√
κ2 + 2i�.

(21)

Substituting Eq. (21) into Eq. (19), we obtain the extrinsic loss
amplitude:

τ (0)
ex ( p) ≈ −gm

ex(A; p) exp(−ip̃∗zA)

√
2

π

∑
L

i−lYL( Q̂′)M ′
LLc

.

(22)

The extrinsic loss amplitude gm
ex in the above formula is

given in terms of the fluctuation potential Vm:

gm
ex(A; p) = i

κ̃

[ ∫ zA

−∞
dzVm(z)e−i(κ̃+p̃∗)(z−zA)

+
∫ ∞

zA

dzVm(z)ei(κ̃−p̃∗)(z−zA)

]
,

κ̃ =
√

κ2 + 2i�.

(23)
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FIG. 1. Calculated |gm
ex| for (a) surface and (b) bulk plasmon

losses excited from Na 1s core level for different photoelectron
kinetic energies from 100 to 3000 eV. Take-off angle is 90◦ (normal
emission).

In the same way, a practical formula, which includes single-
elastic scatterings before the loss, is obtained as follows:22

τ (1)
ex ( p) =

∑
β

〈
φ0

p

∣∣vmg′
0t

′
βg′

A�|φc〉

= −
∑

β

gm
ex(β; p)e−i(p̃∗zβ+ p‖·Rβ‖)

×
√

2

π

∑
LL′

i−l′YL′( Q̂′)tβl′ (p
′)GL′L(p′ Rβ)M ′

LLc
.

(24)

In the high-energy case, we expect that the site dependence
of gm

ex(β; p) can be neglected. Figures 1(a) and 1(b) show
the depth dependence of the magnitude of the extrinsic
loss amplitude |gm

ex(β; p)| for the different photon energies
from 100 to 3000 eV excited from Na. The surface (a) and
bulk (b) plasmon losses are separately considered, where the
hydrodynamic fluctuation potential by Inglesfield is used.1

Both of them show slowly varying functions of the depth of
the emitter. Then gm

ex(β; p) can be replaced with gm
ex(A; p) in

Eq. (24). Furthermore except for nearly parallel photoemission
to the surface plane, we can safely put Q̂

′ ≈ p̂ in the high-
energy region. The renormalization of the multiple scattering
series before the loss is thus written with the aid of these two
approximations:

τ (0)
ex ( p) + τ (1)

ex ( p) + · · ·
= −gm

ex(A; p)
∑

β

e−i(p̃∗zβ+ p‖·Rβ‖)

×
√

2

π

∑
LL′β

i−l′YL′( p̂)[(1 − X)−1]βA

L′LM ′
LLc

= −gm
ex(A; p)〈f −

p′ |�|φc〉, (25)
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where X has been used in XPD and XANES analyses and (1 −
X)−1 describes the renormalized full multiple scatterings.24

The loss amplitude gm
ex defined by Eq. (23) can be rewritten

in an alternative form in terms of the damping propagator g0

defined by g0(ε) = (ε − Te + i�)−1:

gm
ex(A; p) = −(2π )3/2

∫
d rφ0∗

p (r)vm(r)g0(r − RA; p′).

(26)

We have so far taken the full multiple scatterings into
account before the loss. Elastic scatterings after the loss can
be fully taken into account in the same way:

τex( p) ≈ (2π )3/2〈f −
p′ |�|φc〉

∫
d rf −∗

p (r)vm(r)g0(r − RA; p′).

(27)

In the high-energy photoemission, 〈f −
p′ |�|φc〉 can be safely re-

placed with 〈f −
p |�|φc〉, which yields an approximate extrinsic

loss amplitude [the second term in | · · · |2 in Eq. (2)]:22

〈f −
p |vmg(εp + ωm)�|φc〉 ≈ τ ex

m ( p)〈f −
p |�|φc〉,

τ ex
m ( p) = (2π )3/2

∫
d rf −∗

p (r)vm(r)g0(r − RA; p′).
(28)

B. Quantum Landau formula

The overall photoemission profile is now written
as the exponential form with the aid of the approximations
discussed in the previous subsection, which recovers the lowest
sum (up to the single losses) I ( p)0 + I ( p)1, and satisfies the
normalization condition:

I ( p; ω)∞c = |〈f −
p |�|φc〉|2

∫ ∞

−∞
dt exp[i(ω + E0 − E∗

0 − εp)t]

× exp

[ ∫ ∞

0
dε

α(ε)

ε
(e−iεt − 1)

]
. (29)

The function α(ε) is a spectral function called “asymmetric
function,” which fully includes intrinsic and extrinsic losses
defined by

α(ε)

ε
=

∑
m

|τm|2δ(ε − ωm), τm( p) = τ ex
m ( p) + Sm/S0.

(30)

This exponential form Eq. (29) is known as the Landau
formula, which was derived on the basis of classical transport
theory.28 A very similar quantum derivation is developed
by Hedin et al.5,29 where time-reversed LEED function is

used instead of the renormalized damping photoelectron wave
function f −

p . Here the “time-reversed LEED function” is the
damping plane wave only in the normal to the surface. It
freely propagates without damping parallel to the surface.
The generalization to f −

p as shown in Eq. (28) is crucial to
discuss the photoelectron diffraction effect and quantum depth
distribution function (DDF).24

Both τ ex
m and Sm/S0 can be written in terms of the fluctuation

potential vm. An explicit form of τm is thus written from
Eqs. (7) and (30):

τm( p) =
∫

fA(r)vm(r)d r, (31)

fA(r) = − |φc(r)|2
ε

+ (2π )3/2f −∗
p (r)g0(r − RA; p′), (32)

where ε = ω + E0 − E∗
0 − εp is the excitation energy mea-

sured from the core threshold. The first term of fA describes the
intrinsic losses, whereas the second one describes the extrinsic
losses. Assuming that vm is real, we obtain an alternative
expression for α(ε)/ε:

α(ε)

ε
=

∫
d rd r ′f ∗

A(r ′)fA(r)
∑
m

vm(r ′)vm(r)δ(ω − ωm)

= − 1

π

∫
d rd r ′f ∗

A(r ′)fA(r)ImW (r,r ′; ε), (33)

where W (ε) is the screened Coulomb propagator.5,14,16 The
spectral features of the loss spectra are primarily determined
by α(ε)/ε, which can be divided into three parts: the intrinsic,
the extrinsic, and the interference parts.

For practical calculations, we use further approximations
for the core electron distribution and the photoelectron wave
function in Eq. (32):

|φc(r)|2 ≈ δ(r − RA),

f −
p ≈ φ0

p(r) = 1

(2π )3/2
exp(i p‖ · r‖) exp(ip̃z).

(34)

The second approximation in Eq. (34) neglects the elastic
scatterings for the loss function α(ε), but the elastic scatterings
are still taken into account in the calculation of the amplitude
〈f −

p |�|φc〉. The z component of the damping wave momentum
p̃ is complex to explain the decay in photoelectron propagation
along the z direction inside the solid, whereas the parallel
component p‖ is real. Explicit formulas for these three
parts in α(ε)/ε can be obtained with the aid of the above
approximations. The superfix “int” refers to the intrinsic loss,
and so on:

αint(ε)

ε
= − 1

π
Im

{∫
d rd r ′[f int

A (r ′)
]∗

f int
A (r)W (r,r ′; ε)

}
= − 1

π |ε|2 ImW (zA,zA; ε), (35)

αext(ε)

ε
= − 1

π
Im

{∫
d rd r ′[f ext

A (r ′)
]∗

f ext
A (r)W (r,r ′; ε)

}

= − 1

π |κ̃|2 Im

[∫ ∞

−∞
dzdz′eip̃(z′−zA)e−ip̃∗(z−zA)eiκ̃|z−zA|e−iκ̃∗|z′−zA|W (z,z′; ε)

]
, (36)
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αinf(ε)

ε
= − 1

π
Im

(∫ ∞

−∞
d rd r ′{[f int

A (r ′)
]∗

f ext
A (r) + [

f ext
A (r ′)

]∗
f int

A (r)
}
W (r,r ′; ε)

)

= − 1

π
Im

[
i

ε∗κ̃

∫ ∞

−∞
dze−ip̃∗(z−zA)eiκ̃|z−zA|W (z,zA; ε) − i

εκ̃∗

∫ ∞

−∞
dz′eip̃(z′−zA)e−iκ̃∗|z′−zA|W (zA,z′; ε)

]
. (37)

Bechstedt’s screened Coulomb potential W is used to calculate α(ε)/ε in the present work:30

W (z,z′; ε) = 2π

Q
[θ (z)θ (z′){e−Q|z−z′ | + (1 − t1)e−Q(z+z′)} + t1{θ (z)θ (−z′)a(−z′)e−Qz + θ (−z)θ (z′)a(−z)e−Qz′ }

+ θ (−z)θ (−z′){a(|z − z′|) + a(−z − z′) − t1a(−z)a(−z′)}], (38)

where t1 = 2/{1 + a(0)}, and a(z) ≡ a(Q,z,ω) is related to
the bulk dielectric function ε0(q,ω), which is approximated by
use of a single-plasmon pole formula:

a(Q,z,ω) = Q

π

∫
dqz

eiqzz

|q|2ε0(|q|,ω)
, Q =

√
q2

x + q2
y .

(39)

The screened Coulomb potential W has information on both
surface and bulk plasmons.

Now we discuss only the single-plasmon (first) loss peak.
From Eq. (29), we obtain the explicit expression for the single-
loss spectra in terms of α(ε):

I 1( p,ω) = 2π |〈f −
p |�|φc〉|2 α(ε)

ε
exp

[
−

∫ ∞

0
dω

α(ω)

ω

]
.

(40)

The present quantum Landau formula provides us with the
double plasmon loss features in the second order terms of
power series expansion of the Landau formula (29) in terms
of α(ε)/ε.

III. RESULTS AND DISCUSSION

Here we mainly consider the cases when the photoelectron
detection direction p and the x-ray polarization e are nearly
parallel. As described above, the quantum Landau formula is
derived within the high-energy approximation and is basically
not adequate in low kinetic energy region. Ohori et al. have
studied the applicability of this formula.20 They have shown
that the quantum Landau formula can be safely used even in the
intermediate energy region (say, several hundred eV) except
for the case where p and e are nearly normal. Computational
cost of the multiple-scattering calculation can be a bottleneck
in this study. The calculations of (1 − X)−1 require much
time. The maximum orbital angular momentum lmax from each
atomic site increases with p. Here we study only intermediate
energy region, say, εp = 100–200 eV.

A. Al 2s photoemission

Here we investigate single plasmon losses associated
with Al 2s photoemission. The parameters used in the present
calculations are given in Table I.

First we study the depth dependence of the loss spectral
function β:

β(ε) ≡ α(ε)/ε. (41)

As demonstrated in Eq. (40) this function directly describes
the plasmon loss features, whereas |〈f −

p |�|φc〉|2 describes
the XPD effects on the loss spectra. Figure 2 shows the
spectral function β(ε) calculated for the photoemission from
a (001) surface detected at polar angles of θ = 0◦ (normal
emission) and θ = 60◦: The normal emission from various
atomic layers are shown in the left column, and those for
off-normal emission (θ = 60◦) are shown in the right. For
both cases peaks around 17 eV and 13 eV correspond to the
bulk and the surface plasmon losses. The photon energy of
the incident x-ray is fixed at 320 eV. The spectral function
β(ε) describes only the loss processes which should not be
influenced by the x-ray polarization. The depth dependence
of the photoelectron emitters zA is important for β(ε) as can
be seen from Eqs. (35)–(38). “Total” means “(intrinsic) +
(extrinsic) + (interference).” We should note that the intrinsic
loss factor β int(ε) does not depend on the photoemission
direction as can be seen from Eq. (35): the intrinsic loss factor
β int(ε) is the same for the two detection modes at the same
|zA|. In contrast the complex momenta inside the solids p̃

and κ̃ depend on the photoelectron momentum p, and thus
the extrinsic and the interference terms βext(ε) and β int(ε) are
dependent on the detection angle. The loss profiles of β(ε)
for the near surface layer (zA = −1.43 Å) show only peaks
due to surface plasmon excitation. For the deeper emitters, the
peak intensity corresponding to bulk plasmon excitation gets
stronger. We also observe the more prominent contribution
from the extrinsic processes than that from the intrinsic
losses. In the off-normal emission (θ = 60◦) the extrinsic loss
intensity grows much faster than the normal emission with zA.
The total loss intensities β(ε) in the off-normal emission from

TABLE I. Parameters for Al metal

Binding energy of 2s level 118 eV
Lattice structure fcc
Lattice constant 4.05 Å
Plasmon energy 15.8 eV
Density parameter (rs) 2.07
Work function 4.20 eV
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FIG. 2. Calculated loss spectral function β(ε) for plasmon losses associated with Al 2s photoemission detected in the different directions
with polar angles of θ = 0◦ and 60◦. Photon energy is fixed at 320 eV. The depth of the photoelectron emitter |zA| is changed from 1.43 Å to
17.6 Å.

the deep emitters are thus stronger than those in the normal
emission, which results in faster decay of the contribution
from deeper sites due to the exponential part of Eq. (40). This
effect also enhances the surface sensitivity of the plasmon
losses in the off-normal emission, in addition to the long
propagation distance from the emitters to the surface in the
factor | < f −

p |�|φc > |2.
Next we study depth profiles of the single-plasmon loss

spectra. An incident x-ray is linearly polarized with tilt
angle 10◦ away from the surface normal, and the photon
energy is fixed at 320 eV: The schematic view of the setup
is shown in Fig. 3. We have calculated the loss spectra
using Eq. (40). The integrated surface + bulk plasmon loss
intensities are shown for various depths of the photoelectron
emitter zA, which are shown in Fig. 4 as a function of
zA. We have used three types of approximations for the
photoemission intensity |〈f −

p |�|φc〉|2 to study the elastic

scattering effects (a) without elastic scattering [see Eq. (22)],
(b) with single scatterings [see Eq. (24)], and (c) with full
multiple scatterings [see Eq. (25)]. An aluminum cylinder

10°(001)

e

FIG. 3. The schematic view of the calculation setup. Incident
x-ray is linearly polarized, whose electric vector tilts 10◦ from the
surface normal.
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FIG. 4. Depth profiles of integrated surface and bulk single
plasmon losses excited from the Al 2s level. The results are shown for
those calculated without elastic scattering (a), with single scatterings
(b), and with full multiple scatterings (c). The incident photon energy
is 320 eV. The geometrical setup is shown in Fig. 3, and the cluster
used here is shown in Fig. 5.

model including 48 atoms (seven layers, see Fig. 5) is used
for the calculations. In the single-scattering approximation,
the contribution of the photoemission from deep atomic sites
is emphasized because of the forward focusing effect: The
ejected electrons are strongly scattered from nearby atoms
in the forward direction. The full multiple scatterings cause

Top view Side view

x

y

z

x

x

y

FIG. 5. Aluminum (001) cylinder model with seven layers having
48 atoms.
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FIG. 6. Bulk and surface plasmon losses excited from Al 2s

detected at normal emission calculated without elastic scattering (a),
with single scatterings (b), and with full multiple scatterings (c). The
incident photon energy is 320 eV. The spectra are normalized so that
the peak intensities of bulk plasmon peaks are unity.

rapid decay with |zA| as shown in Fig. 4(c) in comparison
with the result in Figs. 4(a) and 4(b). This behavior can be
explained by the defocusing effect: It has been suggested on
the basis of multiple-scattering calculations that if several
atoms are linearly arranged along the emission direction,
the destructive interference actually reduces the intensity.31,32

This reduction is called the defocusing effect and has also
been observed in experimental spectra.33 Shinotsuka et al.
have extensively studied the depth distribution function (DDF)
using quantum mechanical multiple-scattering calculations
and have demonstrated that the inclusion of full multiple
scattering is necessary for the proper evaluation of DDF.24

The oscillations in the loss intensity observed in Fig. 4(b) and
4(c) can be due to the photoelectron diffraction effects.34

The Al 2s single-plasmon loss spectra, which can be
compared with experimental loss spectra, are obtained by
summing up the loss spectra from all the emitters shown
in Fig. 4. Single-plasmon loss spectra calculated without
elastic scattering, with single scatterings, and with full multiple
scatterings are shown in Figs. 6(a), 6(b), and 6(c), respectively.
The three spectra have been normalized so that the peak
intensities of bulk plasmon peaks are to be unity. The single
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Top view

FIG. 7. Aluminum (001) cylinder model with five layers having
71 atoms used for the calculations in Figs. 8–13.

scattering approximation shown in Fig. 6(b) gives rise to a
strong bulk plasmon loss peak, because the forward focusing
effect enhances the photoemission from deep emitters as
observed in Fig. 4(b). In contrast as demonstrated in Fig. 6(c)
the surface plasmon losses are enhanced in comparison with
the result in Fig. 6(b), because the plasmon loss intensity
rapidly decays with |zA| as shown in Fig. 4(c). The plasmon
loss spectra from deep emitters give quite strong bulk plasmon
loss peaks as shown in Fig. 2 (see the left column for the
normal emission). The deeper emitters than 10 Å have only a
small contribution to the loss spectra, and the loss spectra in
Figs. 6(a) and 6(c) are thus quite similar.

We have also calculated the loss spectra for the incident x-
rays with the lower photon energy 220 eV. The detection mode
is the same as that for the case with ω = 320 eV (see Fig. 3).
In this case we have used an Al cylinder model with five layers
shown in Fig. 7: The model size along z direction is shorter
than that used for the previous calculations at ω = 320 eV
because the electron mean free path becomes shorter. The mean
free path is 7.4 Å for εp = 202 eV, whereas 5.1 Å for εp =
102 eV, values obtained by use of Hedin-Lundqvist potential.
On the other hand, the size along the xy direction is increased;
however, because the forward focusing effect becomes weaker
for the lower energy, photoelectrons are more likely to be
scattered with large scattering angle. The depth profiles of
single-plasmon loss spectra without elastic scattering and with
full multiple scatterings are shown in Figs. 8(a) and 8(b), and
the single-plasmon loss spectra summed over all possible zA

are given in Figs. 9(a) and 9(b). Comparing those depth profiles
with those excited by higher energy photons (320 eV) shown
in Fig. 4, we find rapid decay with |zA| for the lower energy
(220 eV) because of the shorter mean free path for the latter.
Without elastic scatterings the depth dependence is similar to
each other: They show structureless smooth decay with |zA|.
The full multiple scatterings have a strong influence on the
depth profiles in Fig. 8(b), whereas the summed plasmon loss
spectra shown in Fig. 9(b) are not influenced by the multiple
scatterings so much. The pronounced structures in Fig. 8(b)
are due to the photoelectron diffraction effects.

Now we study the azimuthal intensity scan of the single
plasmon loss peak of photoelectrons excited from Al 2s by
x-rays with the photon energy 220 eV. Osterwalder et al.
studied the azimuthal scan of Al 2s no-loss and loss peaks
using Mg Kα radiation, and they found that the loss peaks
clearly reflect the local symmetry around an x-ray-absorbing
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FIG. 8. Depth profiles of integrated surface and bulk single
plasmon losses excited from Al 2s level for the incident photon energy
220 eV for the model shown in Fig. 3. The results are shown for
those calculated without elastic scattering (a) and with full multiple
scatterings (b).

atom just like the 2s main peak.21 So far no one has suc-
ceeded in explaining that interesting angular behavior because
elastic scatterings inside the solid have been completely
neglected in Hedin’s theory.5 There the photoelectron state
is described by the time-reversed LEED function | p̃〉, which
does not mean the full time-reversed LEED function including
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FIG. 9. Aluminum 2s plasmon losses at normal emission calcu-
lated without elastic scattering (a) and with full multiple scatterings
(b). The incident photon energy is 220 eV. The spectra are normalized
so that the peak intensity of the bulk plasmon peak is to be unity.
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FIG. 10. Calculated azimuthal scan of the single bulk plasmon
loss intensity associated with Al 2s core level from a (001) single
crystal surface. The incident photon energy is 220 eV and loss energy
is 15.8 eV; the polar detection angle is fixed at be θ = 45◦. Full
multiple scatterings are here taken into account.

elastic scatterings from surrounding atoms in their paper;
p̃ is the same as the damping plane wave φ0

p shown in
Eq. (34).

Figure 10 shows the calculated φ scan of the single bulk
plasmon loss intensity from the Al(001) surface at a constant
polar angle θ = 45◦ with respect to the surface normal.
Photon energy is fixed at 220 eV, and the linear polarization
vector e is always set to be parallel to the photoelectron
momentum p. As the bulk plasmon loss energy is 15.8 eV,
thus the photoelectron kinetic energy is 86 eV. Only the “total”
spectrum is shown here. In the calculations of the loss intensity,
the full-multiple scatterings are taken into account using
the five-layer cylinder model. The calculated result clearly
shows the fourfold symmetry. The strong peaks at 0◦ and 90◦
correspond to the directions to nearby atoms from the emitters.
Figure 11 shows the φ scans of the three terms, the intrinsic,
extrinsic, and interference terms, and the total loss (the sum of
them). The intrinsic and the interference terms nearly cancel
out each other, and the total loss is almost the same as the
extrinsic term. As can be seen from the figure, the φ scan of the
extrinsic loss is different from the intrinsic and the interference.
The photoemission intensity |〈f −

p |�|φc〉|2 is common for all
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FIG. 11. Calculated azimuthal scans from a (001) for single
plasmon loss associated with Al 2s core level from a Al single crystal
surface model as shown in Fig. 10, but the total and three compo-
nents, the intrinsic, extrinsic, and interference terms, are separately
shown.

three terms, which is shown in Fig. 12. In the figure the XPD
intensity ejected from each layer is shown. Of course, the
XPD intensity from the first layer is dominant, which shows
two prominent peaks at near 30◦ and 60◦. In contrast, that from
the second layer is much weaker in average than that from the
first layer. We, however, observe the two sharp strong peaks at
0◦ and 90◦. The XPD from the third layer also gives the three
weak peaks at 0◦ and 90◦, and also at 45◦. These characteristic
features are well explained from the atomic arrangement in the
near surface region, and also the forward focusing scatterings.
Summing up those φ scans from all layers, we obtain the total
φ scan of the bulk plasmon loss, which gives rise to the two
prominent peaks at 0◦and 90◦, and rather weak peaks near
30◦, 45◦, and 60◦. In Fig. 2 the losses from deeper layers are
enhanced, whereas the elastic scatterings from surrounding
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FIG. 12. The azimuthal scans of the loss spectra used in Figs. 10
and 11 are separately shown for each layer in Fig. 12. Full multiple
scatterings are taken into account.
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TABLE II. Parameters for Na metal

Binding energy of 2s level 63.3 eV
Lattice structure bcc
Lattice constant 4.23 Å
Plasmon energy 5.9 eV
Density parameter (rs) 3.92
Work function 2.36 eV

atoms are enhanced from shallow layers as usually observed
in XPD spectra, in particular as expected for near normal
emission.

Note that in the present calculations β(ε) does not show
φ dependence, because now we replace the photoelectron
wave function f −

p in fA [see Eq. (32)] by the damping plane
wave φ0

p, which completely neglects the elastic scatterings
from surrounding atoms. If we calculate f −

p taking elastic
scatterings, the extrinsic part of fA is dependent on the
azimuthal angle φ and thus βext and β inf depend on φ, though
β int is still constant. Then not only the photoelectron diffraction
part |〈f −

p |�|φc〉|2 but also the spectral function β(ε) reflects
the geometrical structure of the sample.

B. Na 2s photoemission

Here we show calculated results for single plasmon losses
associated with Na 2s photoemission. Incident x-ray photon
energy is fixed at 200 eV, and the geometrical setup is the
same as that in Fig. 3. The parameters used in the present
calculations are given in Table II.

Figure 13 shows the depth profiles of the single-loss
spectra calculated without elastic scattering (a) and with full
multiple scatterings (b). Sodium cylinder model including 45
atoms (10 layers[ see Fig. 14) is used for the calculation of
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FIG. 13. Depth profiles of integrated single plasmon loss XPS
intensities from Na 2s level calculated without elastic scattering (a)
and with full multiple scatterings (b). The incident photon energy is
200 eV. The setup is shown in Fig 14.

Top view Side view

z

x

x

y

FIG. 14. Sodium (001) cylinder model including 45 atoms.

elastic scatterings. The inclusion of elastic scatterings causes
the quite different depth profile from that without elastic
scattering: Photoemissions from the third to seventh layers
are emphasized in the latter. Figure 15 shows sodium 2s

single plasmon loss spectra obtained by summing up the
contributions from emitters. The two plasmon loss spectra
shown in Figs. 15(a) and 15(b) are normalized so that the
peak intensities of the bulk plasmon peaks are unity. In the
“total” spectrum with full multiple scatterings, the relative
peak intensity of (surface plasmon)/(bulk plasmon) is slightly
smaller than that without elastic scattering, and their spectral
features are quite similar although the depth profiles are
quite different. Comparing the depth profiles in Fig. 13
and the loss spectra in Fig. 15 with those corresponding
results for Al metal, we find quite similar characteristic
features.
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FIG. 15. Sodium 2s single plasmon loss spectra summed over
all possible zA calculated without elastic scattering (a) and with full
multiple scatterings (b). The incident photon energy is 200 eV, and
the calculation setup is given in Fig. 14.
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IV. CONCLUDING REMARKS

In this paper we have studied plasmon losses associated
with core-level photoemissions. Overall spectral features of
x-ray photoelectron spectra can be described by the quantum
Landau formula. One of the great advantages is that the
quantum Landau formula allows us to calculate the multiple
plasmon loss features: The calculations of the convolution β(ε)
like β ∗ β ∗ · · · are only necessary. Within the semiclassical
approximation multiple loss features are discussed in detail in
Ref. 27. Our approach allows us to calculate the loss features
in purely quantum theory.

With the aid of the approximations given in Eq. (23), we
have succeeded in calculating single-plasmon loss spectra
taking elastic scatterings into account. We thus can study the
photoelectron diffraction effects before and after the losses in
the plasmon loss peaks. We also have found that the elastic
scatterings can considerably change the relative intensities of
bulk and surface plasmon peaks, their peak shapes, which
depend on composite elements and on energy. One of the
important factors, the loss function β(ε) describes the spectral
features of the plasmon loss spectra, which depends on the
depth of the emitter. The loss spectra from the near surface and
that from the deep emitters (|zA| � 10Å) are quite different
from each other. On the other hand, the depth profiles are
mainly determined by the XPD factor |〈f −

p |�|φc〉|2. In the
single elastic scattering approximation, the deeper emitters
have much influence because of the forward focusing effects,
whereas only the shallow emitters have dominant effects on
the loss spectra because of the defocusing effects as discussed
by Shinotsuka et al.24

Computational studies on the azimuthal scan of the loss
peak explain well the observed angular dependence similar to
that for the main photoemission band on the basis of the XPD

factor, although the loss function β(ε) has its own angular
dependence.

There are still some problems that need to be solved,
however. One of them is to include elastic scattering effects in
the calculation of the spectral function β(ε). So far we have
calculated the spectral function using the damping plane wave
instead of the full photoelectron wave function. Scattering
effects can be basically included in the spectral function by
the site T -matrix expansion of the photoelectron wave function
just like we see in Sec. II.

Another major problem to overcome is rather technical:
computational cost. For the multiple scattering calculations,
we have to calculate the renormalized multiple scattering
matrix (1 − X)−1, which depends on εp: For large εp, the
dimension of the matrix is quite large. We should thus restrict
this to up to the soft x-ray region. If the single elastic scattering
approximation were good to describe the loss features, we
could overcome the problem. The present results, however,
demonstrate the importance of the full multiple scattering
calculations.

In this paper we have focused on the cases when the
photoelectron momentum and the x-ray polarization vector
are nearly parallel, where the quantum Landau formula can
be safely used even in the low-energy region.20 To study
the behaviors when the photoelectron momentum p is nearly
normal to the polarization vector e, we need to consider a
more accurate theoretical formula without use of the quantum
Landau formula.
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