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We present the expression for the quasiparticle vertex function �ω(KF ,PF ) (proportional to the Landau
interaction function) in a 2D Fermi liquid (FL) near an instability towards antiferromagnetism. This function
is relevant in many ways in the context of metallic quantum criticality. Previous studies have found that near
a quantum critical point, the system enters into a regime in which the fermionic self-energy is large near hot
spots on the Fermi surface [points on the Fermi surface connected by the antiferromagnetic ordering vector
qπ = (π,π )] and has much stronger dependence on frequency than on momentum. We show that in this regime,
which we termed a critical FL, the conventional random-phase-approximation- (RPA) type approach breaks
down, and to properly calculate the vertex function one has to sum up an infinite series of terms which were
explicitly excluded in the conventional treatment. Besides, we show that, to properly describe the spin component
of �ω(KF ,PF ) even in an ordinary FL, one has to add Aslamazov-Larkin (AL) terms to the RPA vertex. We show
that the total �ω(KF ,PF ) is larger in a critical FL than in an ordinary FL, roughly by an extra power of magnetic
correlation length ξ , which diverges at the quantum critical point. However, the enhancement of �ω(KF ,PF ) is
highly nonuniform: It holds only when, for one of the two momentum variables, the distance from a hot spot
along the Fermi surface is much larger than for the other one. This fact renders our case different from quantum
criticality at small momentum, where the enhancement of �ω(KF ,PF ) was found to be homogeneous. We show
that the charge and spin components of the total vertex function satisfy the universal relations following from the
Ward identities related to the conservation of the particle number and the total spin. We show that in a critical
FL, the Ward identity involves �ω(KF ,PF ) taken between particles on the FS. We find that the charge and spin
components of �ω(KF ,PF ) are identical to leading order in the magnetic correlation length. We use our results
for �ω(KF ,PF ) and for the quasiparticle residue to derive the Landau parameters F l=0

c = F l=0
s , the density of

states, and the uniform (q = 0) charge and spin susceptibilities χl=0
c = χl=0

s . We show that the density of states
NF diverges as log ξ ; however, F l=0

c,s also diverge as log ξ , such that the total χ (l=0)
c,s ∝ NF /(1 + F l=0

c ) remain
finite at ξ = ∞. We show that at weak coupling these susceptibilities are parametrically smaller than for free
fermions.

DOI: 10.1103/PhysRevB.89.045108 PACS number(s): 71.10.Ay, 71.10.Hf

I. INTRODUCTION

Fermi liquid (FL) theory is arguably the most successful
low-energy theory of interacting fermions. It states that, as long
as the system can be adiabatically transformed from free to
interacting fermions, its low-energy properties are determined
by fermionic quasiparticles, which are qualitatively similar
to free fermions.1–4 Fundamental characteristics of fermionic
quasiparticles, such as the Fermi velocity v∗

F , the effective mass
m∗ = pF /v∗

F , the residue 1/Z, and the velocities of collective
two-particle excitations, like zero-sound waves or spin waves,
are expressed via the fully renormalized, antisymmetrized
four-fermion interaction �αβ,γ δ(K,P ; K + Q,P − Q), taken
in the limit of small momentum and frequency transfer
Q = (q,ω) (we use the short-hand notation K = (k,ωk); the
spin indices follow the order of K).

In Galilean-invariant systems, the effective mass of quasi-
particles and the thermodynamic properties, like specific heat
and magnetic susceptibility, are determined by the interaction
between fermions K and P right on the Fermi surface (FS)
[K = KF = (kF ,0) and P = PF = (pF ,0)] and are expressed
in terms of �ω

αβ,γ δ(KF ,PF ; KF ,PF ) ≡ �ω
αβ,γ δ(KF ,PF ), which

is the limit q = 0 and ωq → 0 of �αβ,γ δ(K,P ; K + Q,P −

Q). This function is proportional to the quasiparticle inter-
action function introduced phenomenologically by Landau.1

Its counter-part �
q

αβ,γ δ(KF ,P ), defined by setting ωq = 0 first
and then taking q → 0, determines the quasiparticle scattering
properties. The quasiparticle residue 1/Zk is not determined
by the properties right on the FS but nevertheless is expressed
via an integral involving �ω

αβ,αβ(KF ,P ), in which one of the
two momenta is on the FS and the other is generally away from
the FS (Ref. 2).

In lattice systems, the thermodynamic properties of
fermions are not determined by �ω taken right on the FS,
but Ward identities, associated with the conservation of the
total number of fermions2,5 and total spin,6 still allow one to
express the fermionic residue 1/Z, the effective mass m∗, and
the effective magnetic g factor via integrals involving spin and
charge components of �ω

α,β,γ δ(KF ,P ) (Ref. 7).
The subject of this paper is the analysis of the form of

the fully renormalized �ω(KF ,P ) in a FL near a quantum-
critical point (QCP). We specifically consider a qπ = (π,π )
commensurate spin-density-wave (SDW) QCP in a 2D metal
with a FS like that of the high-Tc cuprates (Fig. 1). Previous
works8–10 have demonstrated that, unless certain certain vertex
renormalizations are strong,11 the system near a SDW QCP
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FIG. 1. The Fermi surface with hot spots (labeled as h.s.).
Conjugate pairs of hot spots are connected by Q = (π,π ), and θ

is the angle between Fermi velocities at kF,hs and kF,hs + Q. From
Ref. 8.

enters into a regime in which the fermionic self-energy �(k,ω)
develops a much stronger dependence on frequency than
on k − kF and Zk = 1 + ∂�(kF ,ω)/∂ω gets large in “hot
regions,” where shifting kF by qπ does not take a fermion far
away from the FS.8–10 We will be calling this regime a critical
FL (CFL), following the notation in Ref. 12. Because the
self-energy predominantly depends on frequency, the effective
mass approximately scales as Z, and we will see that the
renormalization of Z comes from fermions in the vicinity
of the FS and involves �ω

αβ,γ δ(KF ,PF ). We emphasize that
our calculation of the Z factor refers to the renormalization
induced by antiferromagnetic spin fluctuations. This renor-
malization is usually on top of renormalizations generated at
higher energies. The latter are thought to be included in the
Hamiltonian we use as our starting point.

The “common sense” approach to construct a microscopic
theory near a SDW-type QCP is to replace the original four-
fermion interaction by the effective interaction mediated by
soft collective bosonic fluctuations in the spin channel13 (the
spin-fermion model). This replacement can only be justified in
the random phase approximation (RPA) (see Sec. III below),
but the outcome is physically plausible and we adopt the spin-
fermion model as the microscopic low-energy model for a
CFL. The model describes fermions with the FS as shown in
Fig. 1 and with spin-spin interaction,

Hspin-spin =
∑

q

Vαβ,γ δ(q)
∑
k,k′

c
†
k,αc

†
k′,βck′−q,γ ck+q,δ, (1.1)

where

Vαβ,γ δ(q) = V (q)�σαδ �σβγ (1.2)

and the summation over spin indices is assumed. The interac-
tion potential V (q) is peaked at q = qπ and near the peak can
be approximated by

V (q) = g/[(q − qπ )2 + ξ−2], (1.3)

where ξ is the spin correlation length and g is the effective
spin-fermion coupling. The low-energy model is valid when
interactions do not take the fermions far away from the FS.
This requires g to be smaller than the fermionic bandwidth,
which for the FS in Fig. 1 is comparable to the Fermi energy
EF . We assume that the relation g < EF holds. We will keep ξ

large but finite and consider the system’s behavior at energies
below ωsf ∼ (vF ξ−1)2/g, where the system is still in the FL
regime. At higher frequencies, which we do not consider here,
the system crosses over into a quantum-critical regime, where
it displays a non-FL behavior with �(k,ω) ∝ ωa with a = 1/2
at the tree level (Refs. 8, 9, and 14). It is worth repeating that the
“bare” quantities vF EF ,g are those of quasiparticles already
renormalized by processes (e.g., the Kondo effect) occurring
at higher energies and not considered here.

For an ordinary FL with short-range interaction U (q), the
condition that the interaction is weaker than EF implies that
the weak-coupling approximation is valid. In that situation,
the leading term in the vertex function �ω

αβ,γ δ(KF ,PF ) is
just the antisymmetrized interaction U (0)δαγ δβδ − U (kF −
pF )δαδδβγ . It seems natural, at first glance, to apply the same
strategy near a QCP, i.e., identify �ω

αβ,γ δ(KF ,PF ) in a CFL
with the effective interaction Vαβ,γ δ(KF − PF ), i.e., identify

�ω
αβ,γ δ(KF ,PF ) = V (kF − pF )�σαδ �σβγ

= V (KF − PF )
(

3
2δαγ δβδ − 1

2 �σαγ �σβδ

)
, (1.4)

where V (KF − PF ) ≡ V (kF − pF ) is given by (1.3). Addi-
tional antisymmetrization of Vαβ,γ δ(KF − PF ) is not required
here because the effective spin-mediated interaction is already
obtained from an antisymmetrized original four-fermion inter-
action (see Sec. III).

The argument for the identification of �ω
αβ,γ δ(KF ,PF )

with Vαβ,γ δ(KF − PF ) in a CFL is seemingly quite general
(and applicable also to the case g ∼ EF ) because within
the conventional FL strategy �ω

αβ,γ δ(KF ,PF ) includes all
renormalizations from fermions away from the FS, and
Vαβ,γ δ(KF − PF ) is also assumed to include all relevant
renormalizations from outside the FS. However, if we identify
�ω

αβ,γ δ(KF ,PF ) with Vαβ,γ δ(KF − PF ) and use the Ward
identity between the charge component of �ω

α,β,α,β (KF ,PF )
and the quasiparticle Zk factor [Eq. (2.7) below], we find a
huge discrepancy between Zk along the FS, computed this way,
and Zk computed using the direct perturbative expansion in
powers of g. Namely, for a fermion at a hot spot, Zk computed
in the perturbative expansion8,9 scales as g/(vF ξ−1) (modulo
logarithmical corrections8,9,15,16), while Zk computed using
the FL formula with V (KF − PF ) scales as (g/(vF ξ−1))1/2.

There is an even stronger discrepancy with the spin Ward
identity,6 which relates the quasiparticle Zk with the spin com-
ponent of �ω

α,β,α,β (KF ,PF ). Namely, if we use −(1/2)V (KF −
PF )�σαγ �σβδ for the spin component of �ω

α,β,α,β (KF ,P ), as in
Eq. (1.4), we find that the quasiparticle Zk becomes smaller
than 1, which is obviously incorrect (we recall that we define
Zk as the prefactor of the ω term in the quasiparticle Green’s
function).

As will be shown here, the resolution of the above
problem requires two amendments to the standard microscopic
derivation of Fermi liquid theory.2 The first originates from
the fact that the effective interaction Eq. (1.3) develops a
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dynamical character when the QCP is approached. Physically,
the dominating dynamical properties are generated by the
Landau damping of spin fluctuations [see Eq. (3.8)].

Once the interaction becomes dynamic, the standard argu-
ment, showing that quasiparticle contributions do not enter
the vertex function �ω

αβ,γ δ(KF ,PF ), does not hold any more.
Instead, it is necessary to sum up a ladder series of “forbidden”
diagrams involving an irreducible dynamical vertex V eff

and the quasiparticle-quasihole propagator. The quasiparticle-
induced contributions to �ω lead to an enhancement of �ω

over V eff , and the enhancement becomes singular at the SDW
QCP.

The second amendment is the judicial choice of the
irreducible vertex V eff . A plausible guideline is the con-
cept of “conserving approximation” proposed by Baym and
Kadanoff.17 It amounts to deriving the irreducible vertex by
functionally differentiating the self-energy with respect to the
single-particle Green’s function. If we take the self-energy
in one loop approximation (see Fig. 9) and differentiate it,
we then obtain, observing that the spin fluctuation propagator
(the wavy line) is composed of an RPA bubble series, that the
irreducible vertex V eff is given by the sum of two different con-
tributions: a single spin-fluctuation propagator and a certain
combination of two spin fluctuation propagators, traditionally
called Azlamazov-Larkin (AL) terms [see Fig. 11(b)]. We will
show below that the AL terms play a decisive role for the
spin part of �ω, in fact flipping the sign and renormalizing the
magnitude, such that the critical contributions to �ω diverge
equally strong in the charge and spin channels.

Both amendments have been earlier included in the analysis
of a FL near a nematic instability,12,18 where one encounters a
CFL driven by nematic fluctuations concentrated near q = 0.
In that case the RPA result for �ω was found to be (i) corrected
by AL terms18 and (ii) renormalized12 by the divergent factor
of Zk .

The renormalizations due to AL terms also play substan-
tial role near a metal-insulator transition in 2D disordered
systems.19

In this paper, we analyze the role of both amendments
for �ω

αβ,γ δ(K,P ) near a SDW transition with qπ = (π,π ).
We show that �ω(K,P ) again differs substantially from the
spin-fermion interaction V (K − P ). We first demonstrate that
AL corrections to the spin part of �ω

αβ,γ δ in Eq. (1.4) have
to be included even in the weak-coupling regime, when the
quasiparticle Zk is close to 1. We show that the AL contribution
to �ω

αβ,γ δ(K,P ) for K and P near the Fermi surface is precisely
2V (K − P )�σαγ �σβδ . Adding the AL contributions to the Vαβ,γ δ

in (1.4), we obtain the irreducible vertex V eff , which represents
the new “bare” vertex function,

V eff(K,P ) = 3
2V (K − P )(δαγ δβδ + �σαγ �σβδ), (1.5)

where V (K − P ) is given by Eq. (1.3) for K and P on the
FS [i.e., K = KF = (kF ,0) and P = PF = (pF ,0)] and by
Eq. (3.8) for K and P slightly away from the FS. We show
that V eff(K,P ) satisfies the charge and spin Ward identities in
the weak-coupling regime, as it should.

We then identify the series of additional contributions
to �ω(KF − PF ), which are small in an ordinary FL at
weak coupling but become O(1) in a CFL. Employing the

spin structure of the vertex �ω
αβ,γ δ(K,P ) = �c(K,P )δαγ δβ,δ +

�s(K,P )�σαγ �σβ,δ , we obtain and solve two integral equations
for �a(K,P ), a = c,s, in the charge and spin sectors. These
equations are simplified for K ≈ KF and P ≈ PF and may
be solved by a suitable ansatz once we introduce f a

k,p =
�a(KF ,PF )/V eff

a (KF − PF ), where scalar variables k and
p are deviations along the FS from the corresponding hot
spots and V eff

a (KF − PF ) = (3/2)V (kF − pF ) are the spin
and charge components of V eff

αβ,γ δ(KF − PF ) in (1.5), defined
analogously to �a . We show that f c

k,p = f s
k,p = fk,p, i.e.,

the δαγ δβδ + �σαγ �σβδ structure of the vertex survives. We
compare the quasiparticle residue 1/Zk obtained in (i) the
direct diagrammatic calculation and (ii) using spin and charge
Ward identities with the total �ω

αβ,γ δ(K,P ) and show that they
agree with each other, as they should. In other words, the
total vertex function �ω

αβ,γ δ(K,P ), which we obtain, satisfies
spin and charge Ward identities. We again emphasize that the
contributions to �ω discussed here and in the following come
in addition to the usual contribution originating from the bare
interaction renormalized by the incoherent part of the Green’s
function. The former contributions are generated by the critical
fluctuations and are found to dominate near the QCP.

Our results are similar, but not identical, to the ones in
the nematic case.12 The key difference is that in our SDW
case the function f a

k,p is not a constant, like it was near a
nematic transition, but rather depends strongly on the positions
of the FS momenta k and p relative to the corresponding hot
spots. Specifically, if k and p are comparable, fk,p = O(1),
i.e., �ω(KF ,PF ), is roughly the same as the spin-fermion
interaction V eff(KF − PF ). If, however, one deviation is
parametrically larger than the other, fk,p becomes large and,
roughly, acquires an extra factor of Z, like in the case of a
nematic QCP. The physical consequence of this momentum-
sensitive enhancement of fk,p is the ultimate connection
between the FL description of fermions in the hot and cold
regions on the FS. Namely, Zk for a fermion in a hot region,
where the FL becomes critical near the QCP, is determined
by �ω(KF ,PF ), in which the characteristic momenta pF are
located at the boundary to a cold region, where Zp remains
O(1) even at the QCP. This connection between hot and cold
fermions is not easily seen in perturbation theory where Zk for
a hot fermion is determined solely by fermions in hot regions,
at least at one-loop order.

We also analyze the interplay between the contributions
to fk,p from processes with even and odd numbers of spin-
fermion scattering events. For the processes with an odd
number of scatterings, kF and pF differ by approximately
qπ , and for an even number of scattering events, kF and pF

are close to each other. A similar separation into vertices with
small and large kF − pF has been performed in Ref. 14 in
the context of the calculation of the conductivity near a QCP.
In our case, the corresponding contributions to fk,p are f π

k,p

and f 0
k,p. The full fk,p is the sum of the two: fk,p = f +

k,p =
f π

k,p + f 0
k,p. We compute f π

k,p and f 0
k,p separately and find that

their difference, f −
k,p = f π

k,p − f 0
k,p, is also a highly nontrivial

function of k and p. Our results for f +
k,p = fk,p and f −

k,p are
summarized in Figs. 18 and 20.

We use the result for fk,p to determine the density of
states (DOS), the Landau function, and the uniform spin and

045108-3
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charge susceptibilities. We show that the DOS NF diverges
as log ξ upon the approach to the SDW QCP. We introduce
the Landau function F (KF ,PF ) by straightforward extension
of the formula relating F (KF ,PF ) and �ω(KF ,PF ) in the
isotropic case. Because the quasiparticle Zk depends on the
position on the FS, the Landau function F (KF ,PF ) depends
separately on k and p rather than on their difference. In
this situation, one cannot use FL formulas relating partial
components of F (KF ,PF ) to charge and spin susceptibilities
and has to obtain the susceptibilities by explicitly summing
up bubble diagrams with self-energy and vertex corrections.
We demonstrate how to do this and pay special attention
to the difference between contributions coming from the
infinitesimal vicinity of the FS and from states at small but
still finite distances from the FS. We show that the charge
and spin susceptibilities (χc and χs , respectively) are identical
and for both higher-loop terms form a geometrical series, like
in an isotropic FL. We argue that, in this situation, one can
effectively describe χc,s by using a FL-like formula in which
〈Fc(KF ,PF )〉, averaged over both momenta, plays the role of
the l = 0 Landau interaction component.

The paper is organized as follows. In the next section
we briefly review basic facts about FL theory, viewed from
a microscopic perspective, introduce the fully renormalized,
anti-symmetrized vertex function, and present the relation
between �ω and Zk . In Sec. III we derive the vertex function
between low-energy fermions near a SDW QCP but before the
system enters the CFL regime. We first present, in Sec. III A,
a conventional, RPA-type, “common-sense” derivation of �ω.
We show that the “common-sense” �ω(K,P ) coincides with
the effective dynamical four-fermion interaction V (K − P )
mediated by soft collective excitations in the spin channel. In
Sec. III B we argue that the RPA analysis is incomplete near a
magnetic transition, even in the ordinary FL regime. We show
that AL terms are as important as RPA-type terms and the
�ω, which satisfies both spin and charge Ward identities in the
ordinary FL regime, is not given by the direct spin-mediated
interaction V (K − P ) but by the modified, effective interac-
tion between near-critical fermions, V eff

αβ,γ δ(K − P ), which is
the sum of the direct spin-fluctuation exchange and AL terms.
In Sec. IV we argue that Landau damping can be neglected
only if one is interested in the behavior of interacting electrons
above a certain frequency ωL but must be kept if one is
interested in properties of fermions at the smallest frequencies.
We discuss the Landau-damping-induced crossover between
the ordinary (noncritical) FL and the CFL, evaluate Zk in a
direct loop expansion, and show that there is a discrepancy
between Zk obtained this way and Zk obtained using the FL
formula, if the effective interaction V eff

αβ;γ δ(KF − P ) is used
for �ω

αβ;γ δ(KF ,P ). Sections V–VII are the central sections
of the paper. In Sec. V we argue that �ω

αβ,γ δ(K,P ) in a CFL
must differ from V eff

αβ,γ δ(K − P ) and identify the diagrammatic
series for the fully renormalized �ω

αβ,γ δ(K,P ) for K ≈ KF and
P ≈ PF , in which V eff

αβ,γ δ(K − P ) is the first term. We show
that the expression for Zk , obtained using the Ward identities
with this fully renormalized �ω, coincides with Zk obtained in
a direct loop expansion. In Sec. VI we present our solution of
the integral equation for fk,p = �ω(KF ,PF )/V eff(KF − PF )
and discuss the momentum-selective enhancement of fk,p and

the interconnection between hot and cold regions on the FS.
We also discuss in this section the interplay between f π

k,p

and f 0
k,p. In Sec. VII we present the full expression for

the vertex function and discuss the quasiparticle interaction
function (the Landau function), the density of states, and the
uniform spin and charge susceptibilities. Section VIII presents
our conclusions.

II. FERMI LIQUID: BASIC FORMULAS

Fermi liquid theory was first developed as a phenomenolog-
ical theory for isotropic fermionic systems, obeying Galilean
invariance and the conservation laws for total charge and
spin, on the postulate that interactions do not change the
relation between the fermionic density and the volume of the
FS. Subsequently, the FL theory was applied to conduction
electrons in a metal,20 on which we naturally focus here,
and was also reformulated in the microscopic (diagrammatic)
language, using the notion of the fully renormalized, antisym-
metrized vertex function �αβ;γ δ(K,P,Q), taken in the limit of
small momentum transfer q and small frequency transfer ωq

[we will continue to use 3D notation Q = (q,ωq), etc.]. The
universal relation between fermionic density and the volume
of the FS has been shown diagrammatically, in order-by-order
perturbative calculations, and is commonly known as the
Luttinger theorem [2].

We will work with Matsubara fermionic Green’s functions
in the limit when the temperature T → 0. We split the fermio-
nic Green’s function into quasiparticle and incoherent parts as

G(k,ω) = Gqp + Ginc. (2.1)

The quasiparticle part of the Green’s function has the form

Gqp = 1

Zk

[iω − v∗
F,k(k − kF )]−1

, (2.2)

where Zk is the inverse quasiparticle residue and v∗
F,k =

kF /m∗
k , with m∗

k/m = Zk , is the renormalized Fermi velocity.
We omitted the quasiparticle damping, considering that Gqp

will only be used sufficiently close to the Fermi surface. In
isotropic systems, Z and v∗

F are constants; in lattice systems
both generally depend on the location of kF along the FS. Ginc

accounts for the incoherent part of the fermionic propagator. In
the following we will make use of the fact that near a QCP the
relevant fermionic states are located close to the Fermi surface
and are described by the quasiparticle part of the Green’s
function. The effects of the incoherent part are assumed to
be included in the effective interaction to be described later.

The vertex function �αβ,γ δ(K,P ) is the fully renormal-
ized and antisymmetrized interaction between quasiparticles.
Graphically, �αβ,γ δ(K,P,Q) is the combination of the two
terms shown in Fig. 2. The second one is obtained from the first
one by interchanging the two outgoing fermions and changing
the overall sign as required by the Pauli principle.

Of particular interest for the FL theory is the limit of Q =
(q,ωq) when q is strictly zero and ωq tends to zero, known as
the “ω-limit,”

�ω
αβ,γ δ(K,P,q) = lim ωq→0�αβ,γ δ(k,0; p,0|k,ωq ; p, − ωq)

= �ω
αβ,γ δ(K,P ).
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FIG. 2. Diagrammatic representation of the vertex function �α,β,γ,δ(K,P,Q). The shaded vertices are fully renormalized four-fermion
interactions.

According to FL theory, the function �ω
αβ,γ δ(KF ,PF ), taken

between particles at the FS [KF = (kF ,0)], is proportional to
the quasiparticle interaction function (the Landau function)
Fαβ,γ δ(KF ,PF ). For isotropic, Galilean-invariant systems,
Zk = Z and m∗

k = m∗ are independent of the location of
kF on the FS, and the relation between �ω

αβ,γ δ(KF ,PF ) and
Fαβ,γ δ(KF ,PF ) is2

Fαβ,γ δ(KF ,PF ) = 2NF Z−2�ω
αβ,γ δ(KF ,PF ), (2.3)

where NF ∝ m∗ is the fully renormalized DOS per spin
at the Fermi level. Although Eq. (2.3) looks like a simple
proportionality, it is actually a highly nonlinear integral
relation as m∗ is expressed via a particular partial component
of Fαβ,γ δ and Z is expressed via an integral over �ω

αβ,γ δ(KF ,P )
[see Eq. (2.7) below]. Still, as long as Z and m∗/m are some
constants, the functional form of Fαβ,γ δ(KF ,PF ) is the same as
that of �ω

αβ,γ δ(KF ,PF ). The other limit (termed the “q limit”)
ωq = 0 and q → 0 defines �

q

αβ,γ δ(K,P ). The latter is related
to the quantum mechanical quasiparticle scattering amplitude.
Partial components of �q and �ω are simply related.2 For
nonisotropic systems, the definition of the Landau function
is more nuanced as in general there is no straightforward
relation between its partial amplitudes and observables. For
practical purposes, it is convenient to introduce Fαβ,γ δ(KF ,PF )
via a relation similar to (2.3) but with NF Z−2 replaced by
NF /(ZkZp), where now NF ∝ 〈m∗

k〉 is the total DOS (m∗
k is the

momentum-dependent effective mass, and 〈...〉 is the average
over the FS). We will return to this issue in Sec. VII.

That the Landau function is expressed via �ω (as opposed
to, e.g., �q) has a clear physical meaning. We will see in the
next section that in ordinary FL theory �ω(KF ,PF ) includes all
possible renormalizations of the interactions between fermions
at the FS, which come from virtual processes with intermediate
fermions away from the FS. The processes in which all
intermediate fermions in the immediate vicinity of the FS are
explicitly excluded from �ω(KF ,PF ) [but these are present
in �(KF ,PF ,Q) at an arbitrary ratio of ωq and vF q and,
in particular, in �q(KF ,PF )]. In other words, �ω(KF ,PF )
represents the fully irreducible interaction between fermions
at the FS. Similarly, in Landau FL theory, the Landau function
F has the meaning of the effective interaction between
quasiparticles on the FS, which absorbs all contributions from
virtual fermion excitations outside of the FS. Obviously, F and
�ω(KF ,PF ) have to be expressed via each other. The remaining
renormalizations, coming from fermions in the immediate
vicinity of the FS, are all captured within FL theory, which
relates the observables with the partial components of F .

For SU(2) spin-invariant systems, the vertex
�ω

α,β,γ δ(KF ,PF ) and the Landau function Fα,β,γ δ(KF ,PF ) can

be decoupled into spin and charge components as

�ω
α,β,γ δ(KF ,PF ) = �c(KF ,PF )δαγ δβ,δ + �s(KF ,PF )σαγ σβ,δ,

Fαβ,γ δ(KF ,PF ) = Fc(KF ,PF )δαγ δβ,δ + Fs(KF ,PF )σαγ σβ,δ.

(2.4)

In isotropic systems �c(KF ,PF ) (Fc(KF ,PF )) and �s(KF ,PF )
(Fs(KF ,PF )) depend on the angle between KF and PF . Partial
components of Fc determine, e.g., the effective mass m∗,
the specific heat, and the velocities of zero-sound collective
modes, and partial components of Fs determine the spin
susceptibility and the properties of spin-wave excitations. In
nonisotropic systems, the relations are a bit more involved,
and to obtain m∗ one generally needs to extend the Landau
function to the case when one of the momenta is away from
the FS.2,21

In this paper we will be especially interested in the
relation between �ω

αβ,γ δ(K,P ) and the inverse quasiparticle
residue Zk = ∂G−1(k,ω)/∂(iωm)|ω=0 for k on the FS. The
quasiparticle Zk is not determined within the Landau FL (even
in the isotropic case), as it generally does not come from
fermions in the immediate vicinity of the FS. Still, there
exist two exact relations between Zk and charge and spin
components of �ω(KF ,P ). These relations follow from the
Ward identities associated with the conservation laws for the
total number of particles (in other words, the charge) and the
total spin. These relations do not require Galilean invariance
and hold even when Z = Zk depends on the position of kF

along the FS.
The Ward identity associated with the particle

number conservation identifies −∂G−1
αγ (k,ωk)/∂δμ =

δαγ ∂G−1(k,ωk)/∂(iωk), where δμ is a small time-dependent
and spatially homogeneous variation of the chemical potential,
with the triple charge vertex �c

αγ (�,K) = �c(�,K)δαγ ,
where K = (k,ωk) and � is set to be infinitesimally small,2,5

∂G−1(k,ω)

∂(iω)
= �c(�,K)|�→0. (2.5)

The triple vertex �c(�,K) is in turn expressed in terms
of the fully renormalized charge component of �ω as shown
diagrammatically in Fig. 3. In analytical form

�c(�,K)δαγ

= δαγ +
∑
β,δ

∫
δβδ�

ω
αβ,γ δ(K,P ){G2(P )}ω d3P

(2π )3

= δαγ

(
1 + 2

∫
�c(K,P ){G2(P )}ω d3P

(2π )3

)
, (2.6)
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FIG. 3. The diagrammatic representation of the triple vertex �c,s(�,K) (K = (k,ωk)) involved in the Ward identities. For the charge Ward
identity (associated with the conservation of the total number of fermions, i.e., the total charge), the bare vertex (the unshaded triangle) is δα,γ ,
where α and γ are spin components of incoming and outgoing fermion. For the spin Ward identity (associated with the conservation of the
total spin), the bare vertex is σ z

α,γ .

where d3P = d2pdωp. For K=KF ,∂G−1(k,ω)/∂(iω)|ω=0 =
Zk , and we have

Zk = �c(�,KF )

= 1 + 2
∫

�c(KF ,P ){G2(P )}ω d3P

(2π )3
. (2.7)

Similarly, the Ward identity associated with the conserva-
tion of the total spin identifies −∂G−1

αγ (k,ω)/∂δ(μz
H )|ω=0 =

σ z
αγ ∂G−1(k,ω)/∂(iω)|ω=0 with a triple charge vertex

�s
αγ (�,K) = �s(�,K)σ z

αγ , where now δ(μz
H ) = δ(μBHz) is

the Zeeman energy shift induced by a small infinitely slowly
time-dependent and spatially homogeneous variation of a
magnetic field Hz, which for definiteness we direct along the
z axis. Then the same partial derivative ∂G−1(,ω)/∂(iω) is6

∂G−1(k,ω)

∂(iω)
|ω=0 = �s(�,K)

∣∣∣∣
�→0

. (2.8)

The triple vertex �s(�,K) is expressed in terms of the fully
renormalized spin component of �ω

�s(�,K)σ z
αγ

= σ z
αγ +

∑
βδ

∫
σ z

βδ�
ω
αβ,γ δ(K,P ){G2(P )}ω d3P

(2π )3

= σ z
αγ

(
1 + 2

∫
�s(K,P ){G2(P )}ω d3P

(2π )3

)
. (2.9)

For K = KF , this reduces to

Zk = 1 + 2
∫

�s(KF ,P ){G2(P )}ω d3P

(2π )3
. (2.10)

The fact that the left-hand side of (2.7) and (2.10) are identical
implies that the spin and charge components of the fully
renormalized �ω

αβ,γ δ = �cδαγ δβδ + �sσαγ σβδ are related by
∫

�c(KF ,P ){G2(P )}ω d3P

(2π )3

=
∫

�s(KF ,P ){G2(P )}ω d3P

(2π )3
. (2.11)

To the best of our knowledge, this relation has not been explic-
itly presented in the literature, although Eqs. (2.7) and (2.10)
have been presented in Refs. 2, 5, and 6, respectively.

In a generic FL the integration over P in (2.11) is not
confined to the FS, and this is the reason why the fermionic Z

factor is considered as an input for Landau FL theory rather
than an integral part of it. (This is presumably also the reason
why the relation (2.11) has not been discussed in the past.) Like
we said in the Introduction, we will see that typical P − PF in
Eq. (2.7) get progressively smaller as the system approaches
a QCP, and in a CFL regime near a QCP the integrals for Zk

in (2.7) and (2.10) are predominantly determined by P ≈ PF ,
for which G2(P )ω can be approximated by the quasiparticle
part G2

qp(P )
ω

. In this limit, Zk becomes an integral part of
FL theory, and Eq. (2.11) establishes the fundamental relation
between charge and spin components of the vertex function
�ω between the particles on the FS.

The quasiparticle residue and the vertex function �ω can
both be computed in direct perturbation theory, and we
will perform such calculations near a SDW QCP. Equa-
tions (2.7), (2.10), and (2.11) must be satisfied at any order of
perturbation theory and can be viewed as “consistency checks”
for perturbative calculations.

III. QUASIPARTICLE VERTEX FUNCTION IN AN
ORDINARY FERMI LIQUID

In this section we present the derivation of the quasiparticle
vertex function �ω

α,β,γ δ(KF ,PF ) using the rules applicable to
an ordinary FL. This “conventional” vertex function will serve
as a bare quasiparticle function in our subsequent analysis of
the vertex function in a CFL.

Consider a system of fermions with some short-range
(screened Coulomb) interaction U (q). To first order in U (q),
the vertex function is simply the antisymmetrized interaction
(see Fig. 4)

�ω
αβ,γ δ(K,P ) = U (0)δαγ δβδ − U (|k − p|)δαδδβγ . (3.1)

We use the same overall sign convention as in Ref. 12.

Γ(1)(k,p) = 

k k

p p

-

k p

p k

αβ,γδ

α

β

γ

δ

α

β γ

δ

Γ(1)(k,p) = 

k k

p p

-

k p

p k

Γ(1)(k,p) = 

k k

p p

-

k p

p k

α

β

γ

δ

α

β γ

δ

FIG. 4. The vertex function �ω to first order in the interaction.
The dashed line is the interaction potential U (q) (q = 0 in the first
term and q = |k − p| in the second).
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Γ(2)(k,p) = 

k k

p p

+
k k

p p

k p

p k

-
k p

p k

-
p k

k p

- 2x

αβ,γδ

α

β

α

β

α

β

α

β

α

β

γ

δ

γ

δ

γ

δ

γ

δ

γ

δ

Γ(2)(k,p) = 

k k

p p

+
k k

p p

k p

p k

-
k p

p k

-
p k

k p

- 2x

Γ(2)(k,p) = 

k k

p p

+
k k

p p

k p

p k

-
k p

p k

-
p k

k p

- 2x

αβ,γδ

α

β

α

β

α

β

α

β

α

β

γ

δ

γ

δ

γ

δ

γ

δ

γ

δ

FIG. 5. The diagrams that contribute to �ω to second order in the
interaction.

The first-order result can be reexpressed in terms of spin
and charge components as

�ω
αβ,γ δ(K,P ) =

[
U (0) − U (|k − p|)

2

]
δαγ δβδ

− U (|k − p|)
2

�σαγ �σβδ. (3.2)

The generic rule how to compute �ω
αβ,γ δ(K,P ) beyond first

order is that one has to sum all diagrams except the ones
which contain a particle-hole bubble with zero momentum
transfer and vanishingly small but finite frequency transfer.
The diagrams that contribute to �ω to second order in
the interaction are shown in Fig. 5, and an example of
a “forbidden” second-order diagram is shown in Fig. 6.
The argument why the “forbidden” diagrams should not be
included is that the corresponding bubble contains∫

dldωlGqp(l,ωl)Gqp(l,ωl + ωq). (3.3)

The integral over Matsubara frequency ωl has to be done
first because that integration extends over infinite range.
Integrating, we find that it vanishes because the poles in the
two propagators are located in the same half-plane of complex
frequency.

A. Vertex function in RPA

Returning to terms of second order in U (Fig. 5) we see
that they contain separately particle-hole and particle-particle
polarization bubbles. At next (third) order the two get mixed,
and there is no controllable way to proceed. A commonly used

k p

k p

+     …

l

l

α

β

δ1 δ

1

k p

k p

+     …

l

l

α

β

δ1 δ

1

FIG. 6. An example of a “forbidden” diagram for �ω. This
diagram has an internal particle-hole bubble with zero momentum
transfer and vanishes for a static interaction (see the text).

Γ(3)(k,p) = 

k k

p p

k p

p k

-

p k

k p

- 2x

p k

k p

-
αβ,γδ

α

β

γ

δ

α

β γ

δ α

β γ

δ α

β γ

δ

Γ(3)(k,p) = 

k k

p p

k p

p k

-

p k

k p

- 2x

p k

k p

-Γ(3)(k,p) = 

k k

p p

k p

p k

-

p k

k p

- 2x

p k

k p

-
αβ,γδ

α

β

γ

δ

α

β γ

δ α

β γ

δ α

β γ

δ

FIG. 7. RPA-type diagrams for �ω to third order in the interaction.

approximation for a system near a SDW instability is to entirely
neglect the renormalization in the particle-particle channel, be-
cause by itself such a renormalization does not lead to magnetic
order, approximate the interaction by a constant U , and sum the
RPA-type series of diagrams which contain particle-hole polar-
ization bubbles �(|q|) = ∫

dldωlGqp(l,ωl)Gqp(l + q,ωl) at
q = kF − pF . The corresponding diagrams, shown in Fig. 7
to third order in U , form a ladder series and can be summed
explicitly. The result is the familiar RPA-type expression,13

�
ω,RPA
αβ,γ δ (KF ,PF ) = U

1 − U�(kF − pF )
δαγ δβδ

− U

1 − U 2�2(kF − pF )
δαδδβγ

= U

2[1 − U�(kF − pF )]
�σαδ �σβγ

− U

2[1 + U�(kF − pF )]
δαδδβγ . (3.4)

Using the last line, one may split �
ω,RPA
αβ,γ δ (KF ,PF ) into terms

containing σ matrices and δ functions,

(
�ω

αβ,γ δ

)
spin = U

2[1 − U�(kF − pF )]
�σαδ �σβγ ,

(
�ω

αβ,γ δ

)
charge = − U

2[1 + U�(kF − pF )]
δαδδβγ .

Note, however, that this splitting is not the same as in Eq. (2.4)
because the combinations of spin indices in the δδ and σσ

terms differ from those in (2.4). We will return to the same
notations as in (2.4) later in this section.

A Stoner-type magnetic instability occurs when U > 0 and
U�(k − p) = 1 for a particular k − p (later assumed to be
qπ ), which (for constant U ) is determined by the structure
of the fermionic dispersion. Once (�ω

αβ,γ δ)spin gets enhanced,
it is natural to neglect the charge component of the vertex
and approximate the full antisymmetrized vertex by its spin
component, i.e., set

�
ω,RPA
αβ,γ δ (KF ,PF ) = U

2[1 − U�(kF − pF )]
�σαδ �σβ,γ . (3.5)

This �
ω,RPA
αβ,γ δ (KF ,PF ) can be considered an effective interaction

between fermions at the FS, mediated by collective magnetic
excitations. To make this more transparent, one can expand
near qπ = (π,π ) and extend Eq. (3.5) to fermions not
necessarily on the FS (i.e., to nonzero frequencies ωk and ωp).
At a finite frequency, the particle-hole polarization operator
contains a dynamical term which describes Landau damping
of a collective boson by interaction with the particle-hole
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FIG. 8. Graphical representation of the quasiparticle vertex func-
tion �

ω,RPA
αβ,γ δ (KF ,PF ) in the RPA scheme. Note that the combination

of spin indices in the two σ matrices is the same as in the
“antisymmetrized” component of the vertex.

continuum. Keeping this term, we find

1 − U�(K − P ) ∝ ξ−2 + |k − p − qπ |2 + γ |ωk − ωp|,
(3.6)

where γ is the Landau damping coefficient and ξ is the
magnetic correlation length, which diverges at the SDW
transition. Substituting into (3.5), we obtain

�
ω,RPA
αβ,γ δ (K,P ) = V (K − P )�σαδ �σβ,γ , (3.7)

where

V (K − P ) = g

ξ−2 + |k − p − qπ |2 + γ |ωk − ωp| (3.8)

can be viewed as the effective four-fermion dynamical inter-
action mediated by spin fluctuations. The effective coupling g

in (3.8) is of order U/a2, where a is the interatomic spacing.
The damping coefficient γ also scales with g: γ ∼ g/v2

F ,
because the damping comes from the U� term.

We present this �
ω,RPA
αβ,γ δ (K,P ) graphically in Fig. 8. Note

that the combination of spin indices in the two σ matrices
in (3.7) is the same as in the “antisymmetrized” component of
the vertex.

Reexpressing �σαδ �σβγ via δ and σ matrices involving
combinations (αγ ) and (βδ), as in (2.4), we find

�σαδ �σβγ = −δαδδβγ + 2δαγ δβδ = 3
2δαγ δβδ − 1

2 �σαγ �σβδ

(3.9)

and, hence,

�
ω,RPA
αβ,γ δ (K,P ) = V (K − P )

(
3
2δαγ δβδ − 1

2 �σαγ �σβδ

)
. (3.10)

Placing K and P on the FS, we obtain [K = KF = (kF ,0),
P = PF = (pF ,0)]

�
ω,RPA
αβ,γ δ (KF ,PF ) = g

ξ−2 + |kF − pF − qπ |2

×
(

3

2
δαγ δβδ − 1

2
�σαγ �σβδ

)
. (3.11)

B. The role of AL diagrams

At first glance, Eq. (3.11) is a natural choice for the
quasiparticle vertex function in a situation when scattering
by spin fluctuations is much more relevant than scattering
by charge fluctuations. Upon closer expection, however, we
see that this interaction does not satisfy the condition set
by Ward identities. Indeed, according to (3.10), the spin
and charge components of �ω have the same dependence
on K − P through V (K − P ), but the overall factors differ

in sign and magnitude. The Ward identity (2.11), on the
other hand, requires that the two must have the same
prefactors, if they both scale as V (K − P ). Clearly then,
the expression for �ω in (3.11) is incomplete and one has to
include further contributions for �ω which do not fit into the
RPA scheme.

On physical grounds, it is natural to use the RPA-type
spin-mediated interaction as a building block for constructing
further contributions to �ω, i.e., express all non-RPA contri-
butions to �ω in terms of RPA-renormalized, spin-mediated
interaction �ω,RPA rather than the bare interaction U . In
this nomenclature, the RPA interaction is the “first-order”
term (one wavy line) and all other terms contain more than
one interaction line. At first glance, including higher-order
terms cannot resolve the issue posed by Ward identities, as
higher-order terms contain higher powers of g, while Ward
identities are valid for any coupling and, hence, must hold
independently at each order in g. However, we show below
that in some higher-order terms, extra powers of g come in the
combination g/γ , where γ is the rate of Landau damping of
collective excitations. The latter is by itself of order g, i.e., the
ratio g/γ is of order 1. Because of this, certain higher-order
terms are actually of the same order in g as �ω,RPA.

We follow the same strategy as before and do not include
terms containing particle-hole bubbles with strictly zero
momentum and vanishing frequency. We also do not include
terms which contain particle-hole bubbles with transferred 4-
momentum K − P , as such terms are already incorporated into
the RPA scheme. The four remaining second-order diagrams
are shown in Fig. 10. The first diagram [Fig. 10(a)] is of order
g2 without γ in the denominator, and is not a competitor to the
first-order in g term. The second diagram [Fig. 10(b)] contains
�ω,RPA(K − P ) multiplied by the product of two Green’s
functions and one interaction line. Such a term represents a
correction to one of the two triple vertices in the effective
interaction. It does contain additional g in the combination
g/γ , and, moreover, the internal integration yields log ξ .8,9 At
the same time, the summation over internal spin indices in this
diagram shows that the spin structure of the interaction term
given by Fig. 10(b) is the same �σαδ �σβγ as in (3.7), i.e., this
term just renormalizes the overall coupling g. The presence
of such a term is not unexpected because, as we said, there is
no physical small parameter which would distinguish the RPA
series. Still, the fact that the diagram in Fig. 10(b) preserves
the spin structure of �ω,RPA implies that this particular vertex
renormalization is irrelevant to the issue of Ward identities.
In a more formal way, this vertex renormalization can be
made small by extending the theory to N  1 fermionic
flavors.8,9,16

The last two diagrams [Figs. 10(c) and 10(d)] serve our
purpose in the sense that, on one hand, an additional g appears
in the combination g/γ [see Eq. (3.16) below], and, on the
other hand, the spin structure of the effective interaction given
by any of these diagrams does not match that of �ω,RPA.
Specifically, the diagram in Fig. 10(c) yields a spin structure
in the form∑

s,t

(�σαs �σtδ)(�σsγ �σβt ) = 4δαδδβγ + δαγ δβδ

= 2�σαγ �σβδ + 3δαγ δβδ (3.12)
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and Fig. 10(d) yields a spin structure of the form

∑
s,t

(�σαs �σβt )(�σsγ �σtδ) = 5δαγ δβδ − 4δαδδβγ

= −2�σαγ �σβδ + 3δαγ δβδ. (3.13)

The diagrams in Figs. 10(c) and 10(d) have the same structure
as the diagrams considered by Azlamazov and Larkin (AL)
in the theory of the superconducting fluctuation contribution
to the conductivity above Tc in layered superconductors,22,23

and by analogy we call these two diagrams for �ω the AL
terms. As mentioned in the Introduction, these AL terms
are generated naturally within the conserving approximation
scheme of Baym and Kadanoff,17 i.e., they are expected to help
conserve particle number and spin, and this is indeed what we
find. The internal part of each of the two AL diagrams contains
the combination of two interactions V 2(Q) and two Green
functions, which for Fig. 10(c) are G(K + Q)G(P + Q) and
for Fig. 10(d) are G(K + Q)G(P − Q). For external momenta
on the Fermi surface, ωp−q = −ωq . We assume and then verify
that typical q⊥ transverse to the FS are small and linearize
the dispersion εp−q around pF as εp−q ≈ −vF,pq⊥. In this
approximation, we have G(P − Q) = −G(P + Q), i.e., the
internal parts of the diagrams in Figs. 10(c) and 10(d) differ
by a minus sign. Multiplying Eq. (3.13) by (−1) and adding
to (3.12), we find that the spin structure of the effective
interaction from Figs. 10(c) and 10(d) is

4�σαγ �σβδ. (3.14)

This is also a spin-spin interaction, but it contains a different
combination of spin indices compared to that in the RPA
interaction in Eq. (3.1).

Let us now compute the internal part of this diagram.
Because we assumed that typical q⊥ are small (i.e., much
smaller than the Fermi momentum), we approximate the full
G(K) = G(k,ωk) by its quasiparticle part. We first take k
and p to be right at hot spots separated by qπ = (π,π ) (we
recall that a hot spot kh is a kF point on the FS in Fig. 1 for
which kF + qπ is also located on the FS). For k and p at the
hot spots, V (K − P ) = gξ 2. Using8 v∗

F,k+q = v∗
xqx + v∗

yqy ,
v∗

F,k+q+qπ
= v∗

xqx − v∗
yqy , and the fact that, by symmetry,

the quasiparticle weight Zkh
must be the same at each of

the hot spots, we express Ic = −Id = ∫
G(K + Q)G(P +

Q)V 2(Q)d3Q/(2π )3 with Q = (q + qπ ,ωq) as

Ic = g2
∫

dqxdqydωq

(2π )3Z2
kh

1

iωq − (v∗
xqx + v∗

yqy)

× 1

iωq − (v∗
xqx − v∗

yqy)

1

(q2 + ξ−2 + γ |ωq |)2
. (3.15)

Because typical qx and qy in the two Green’s functions are of
order ωq and typical q in the bosonic proparator [the interaction
V (Q)] are of order

√
ξ−2 + γ |ωq |, i.e., much larger, one can

integrate over momenta in the two fermionic propagators
(this integral is ultraviolet convergent) and set q = 0 in the
bosonic propagator. The 2D integration over dqxdqy yields
−π2/(Z2

kh
v∗

xv
∗
y ) independent of ωq . Integrating over ωq in the

bosonic propagator we then obtain

Ic = −gξ 2 g

γ

1

4πZ2
kh

v∗
xv

∗
y

. (3.16)

The bosonic damping rate has been calculated before8 and we
cite just the result,

γ = g
2

πZ2
kh

v∗
xv

∗
y

= g
4

π (Zkh
v∗

F )2 sin θ
, (3.17)

where θ is the angle between the velocities at the hot spots
(sin θ = 2v∗

xv
∗
y/(v∗

F )2). Substituting into (3.16) we obtain

Ic = − 1
8gξ 2. (3.18)

We see that Ic has the same structure gξ 2 as the first-order
term. To properly compare the overall factors, we now recall
that we need to substitute the two terms into the right-hand
side of the diagrammatic expression for the triple vertex in
Fig. 3, i.e., compare the diagrams shown in Fig. 11. For the
interaction terms given by Figs. 10(c) and 10(d), the internal
fermion loop yields an additional −1 and, besides, one needs
to sum over all hot regions kF which are separated from the
external pF by (±π, ± π ). The constraint is that the velocity
at k should not be antiparallel to that at pF , otherwise the
integral in (3.15) over one of the momentum components of q

would vanish. A simple experimentation shows that there are
four allowed hot regions of kF , i.e., the additional factor for
the second-order diagrams of Figs. 10(c) and 10(d) is −4.

Incorporating this extra factor into Ic, we find that the
nominally second-order contributions to �ω from the AL
diagrams [Figs. 10(c) and 10(d)] add an extra term to the
vertex function for K and P at the hot spots of the form

�ω,AL = 2gξ 2 �σαγ �σβδ. (3.19)

Combining this with �ω,RPA = gξ 2 �σαδ �σβγ , we obtain

�
ω,RPA+AL
αβ,γ δ = �

ω,RPA
αβ,γ δ + �

ω,AL
αβ,γ δ

= gξ 2(�σαδ �σβγ + 2�σαγ �σβδ)

= 3
2gξ 2(δαγ δβδ + �σαγ �σβδ). (3.20)

We see that now spin and charge components are of equal sign
and magnitude, a precondition for the Ward identities to be
satisfied.

The analysis of Figs. 10(c) and 10(d) can be extended to
K and P away from hot spots. Performing the integration
in the same way as before, we find, to leading order in ξ ,
Ic = −(1/8)V (K − P ) and �ω,AL = 2V (K − P )�σαγ �σβδ . The
total �ω,RPA+AL = �ω,RPA + �ω,AL is given by

�
ω,RPA+AL
αβ,γ δ (K,P ) = V eff(K − P ), (3.21)

where

V eff(K − P ) = V (K − P )(�σαδ �σβγ + 2�σαγ �σβδ)

= 3
2V (K − P )(δαγ δβδ + �σαγ �σβδ). (3.22)

This vertex function has equal spin and charge components
and obviously satisfies the relation (2.11) imposed by the
Ward identities. We emphasize, however, that the equivalence
between the components �c(K,P ) and �s(K,P ) holds only as
long as both have the same dependence on K − P [given, in
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our case, by V (K − P )]. This is true only when the system is
sufficiently close to a magnetic transition, such that the charge
component of the RPA interaction can be neglected, together
with non-RPA contributions. In a generic FL, �c(K,P ) and
�s(K,P ) have different functional forms and do not have to
be equal, although Eq. (2.11) must, indeed, hold.

The importance of AL terms for the proper description of a
FL has been emphasized earlier in various contexts: in the anal-
ysis of the effect of fluctuations near a superconducting22,23

or a ferromagnetic transition18 or also at the disorder driven
metal-insulator transition in disordered systems.19 That these
terms must generally be included into the irreducible vertex
function within the conserving approximation scheme can
also be seen by explicitly differentiating the diagrammatic
expression for G−1(k,ω) = ω − vF (k − kF ) + �(k,ω). The
argument that the spin-mediated interaction is a building block
for the diagrammatic expansion implies that the fermionic
self-energy can be expressed via V (K − P ). The one-loop
self-energy diagram is shown in Fig. 9. A variation of this
self-energy caused by an external perturbation (either a weakly
time-dependent component of the chemical potential or a
weakly time-dependent magnetic field, both homogeneous in
space) generates two parts—one comes from the variation
of the internal fermionic line in Fig. 9 and the other is
generated by the variation of a Green’s function within the
RPA interaction line.23 By varying the internal fermionic line,
we reproduce Fig. 3 with �ω = �ω,RPA. To see the effect of
the variation of the interaction line, we recall that �ω,RPA is
obtained by summing up particle-hole bubbles; using Eq. (3.5)
for �ω,RPA, and varying �(K − P ), we see that contributions
involving two fluctuation propagators are thereby generated.
We show this procedure graphically in Fig. 12. Varying each
one of the two Green’s functions making up �(K − P ), we
obtain two additional terms for �ω, which are exactly the two
AL diagrams.

1. The accuracy of the calculation of �ω in an ordinary FL and
the crossover to a critical FL

The consideration above is essentially that of the conserving
approximation scheme17,24 in the sense that the guiding
principle which forced us to look at additional terms for �ω

beyond �ω,RPA is the set of charge and spin Ward identities
associated with the conservation of the total number of
particles and total spin. In terms of a perturbative expansion,
in the derivation of (3.21), we collected terms of order g and
neglected the term of order g2 and also the term of order g log ξ ,
which had the same spin structure as the RPA interaction.

Consider, first, the g2 term [Fig. 10(a)]. A simple analysis
shows that in 2D the extra power of g comes in the form of a

k-q,ω-Ωk,ω k,ω

V(q,Ω)

Σ(k,ω) =
k-q,ω-Ωk,ω k,ω

V(q,Ω)

k-q,ω-Ωk,ω k,ω

V(q,Ω)

Σ(k,ω) =

FIG. 9. One loop diagram for the fermionic self-energy.
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FIG. 10. The four “two-loop” diagrams for the vertex function
�ω in an ordinary FL. The difference with Fig. 5 is that now the
interaction line (the wavy line) is the RPA potential V (K − P ) rather
than the bare interaction potential U . To avoid double counting, we
did not include terms which contain �(K − P ) as these terms are
already included into the RPA renormalization from U to V . Like
before, we did not include the diagram which contains a particle-hole
bubble with zero momentum and finite frequency transfer.

dimensionless ratio gξ/vF . For small-enough ξ ∼ a, this ratio
is of order g/EF , where EF ∼ vF /a.

For the rest of this paper we assume that the spin-mediated
coupling g is smaller than EF . This will allow us to separate
the low-energy sector (energies smaller than g) from the high-
energy sector (energies of order EF ) and also to keep using the
linearized form of the quasiparticle dispersion near the FS. To
rigorously justify the assumption that g is small compared to
EF , one has to consider a sufficiently long-ranged interaction
with a range a  1/kF ,12,25 because the Stoner condition
holds at U/a2 ∼ 1/ma2, i.e., g ∼ U/a2 ∼ EF /(akF )2. We
will not explicitly keep akF large but rather treat g as
a phenomenological parameter, not directly related to U .
Previous works8,9,12 did not find a qualitative difference in the
system behavior in the regimes g � EF and g � EF . Hence,
the assumption g � EF seems to be safe to make.

For g � vF /a, the dimensionless parameter gξ/vF can be
kept small even when ξ is already larger than the interatomic

FIG. 11. (a) The contributions from direct spin-fluctuation ex-
change and from the two AL diagrams to the vertex function in an
ordinary FL. (b) The full irreducible vertex function in an ordinary
FL [see Eq. (3.20)].
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spacing. The condition ξ  a,gξ/vF < 1 specifies what we
call the ordinary FL regime near a SDW QCP. The expansion in
g, however, necessarily breaks down at larger ξ , when gξ/vF

gets large. At g � EF , the boundary between the two regimes
is at ξcr ∼ a(EF /g)  a. That ξcr  a means that the ordinary
FL regime extends deep into the range of large ξ/a. Still, at
sufficiently large ξ > ξcr, the system crosses over into a new
regime which we identify as the critical FL.

In the next section we extend the conserving approximation
to this CFL regime (defined more accurately in the next
section) and show how �ω gets modified. We show that
in the CFL regime the most relevant corrections to �ω are
not Fig. 10(a) (and higher-order terms of this kind) but
rather the diagrams which we termed “forbidden,” i.e., the
ones which contain particle-hole bubbles with strictly zero
transferred momentum and a finite transferred frequency. We
show below that our initial argument that these diagrams are
irrelevant for �ω has to be reconsidered once we use the
dynamical interaction �ω,RPA(K − P ) as the building block
for the expansion in powers of g.

How to handle the terms which yield g log ξ corrections
to �ω is a more tricky issue. These corrections are relevant
already in an ordinary FL, once ξ gets large. Like we said,
the g log ξ term coming from the diagram with two wavy
interaction lines acquires a small overall factor 1/N once
we extend the model to N  1 fermionic flavors. However,
at higher orders of perturbation theory, there are additional
logarithms associated with backscattering from composite
processes,9,16,26 which do not contain 1/N . To put it simply,
there is no straightforward way at the moment to sum up
these logarithmical corrections, even the ones which scale as
1/N .9 An approach advocated by one of us11 is to adopt a
plausible phenomenological form of the fully renormalized
bosonic propagator, compute the observables, and judge the
validity of the assumption by comparing the results with the
experimental data. In the rest of this paper we simply neglect
all logarithmical corrections and focus on how to find the �ω

satisfying the Ward identities in the CFL regime. We expect

FIG. 12. The relation between the derivative of the self-energy
with respect to a time-dependent correction to the chemical potential
δμ(t) and the direct and AL terms in the particle-hole irreducible
vertex function. The cross shows which Green’s function is varied.
The AL terms are generated by varying the bosonic propaga-
tor V (q) which contains particle-hole bubbles with transferred
momentum q ∼ qπ .

that the effects associated with the additional log ξ terms can
be incorporated on top of our analysis in which our focus will
be how to reproduce the leading power-law dependence on ξ

in a situation when gξ/vF becomes a large parameter of the
theory.

We will see in the next section that the ordinary FL regime
near a SDW QCP is a weak-coupling regime in which Zk ≈ 1
and m∗ ≈ m. In this regime, Eqs. (2.7) and (2.10) determine the
leading small correction to Zk ≈ 1, and the relation between
�ω, given by (3.21) and the Landau function Fαβ,γ δ(KF ,PF )
takes the simple form

Fαβ,γ δ(KF ,PF ) ≈ 2NF �ω
αβ,γ δ(KF ,PF ), (3.23)

where NF is the density of states of free fermions. In the CFL
regime, however, Zk and m∗/m become large and both, �ω

and the relation between �ω and the Landau function, change.
In the next two sections we extend the conserving ap-

proximation scheme to the critical FL regime. We compute
the quasiparticle self-energy and quasiparticle Zk in a direct
diagrammatic expansion. In Sec. V we analyze the form of
�ω for the CFL, guided by the fact that it has to satisfy the
Ward identities with Zk obtained diagrammatically in a certain
approximation.

IV. CRITICAL FERMI LIQUID

A. The strength of the effective coupling and the
role of Landau damping

The quantity g/vF ξ−1 is the ratio of the interaction energy
g and the typical internal scale vF ξ−1. It is natural to expect
that the magnitude of this ratio determines the strength of
the renormalization of the effective mass, and therefore of
Zk , and the calculations confirm this (see below). From this
perspective, the ordinary FL regime in the spin-fermion model
at g � EF is a weak-coupling regime, where Zk ≈ 1 and
m∗ ≈ m, while the CFL regime is a strong-coupling regime,
in which one can expect strong renormalizations of both
Zk and m∗/m. To be more precise, we introduce the same
dimensionless parameter as in earlier works,8–10,27

λ = 3g/(4πvF ξ−1). (4.1)

The ordinary and the critical FL regimes correspond to λ < 1
and λ > 1, respectively.

The crossover at λ ∼ 1 can also be identified by looking at
the bosonic propagator and analyzing the role of the Landau
damping. Indeed, at a given k − kF , the frequency of a free
fermion is vF (k − kF ), while a typical bosonic frequency for
the same k − kF is (k − kF )2/γ ∼ (vF (k − kF ))2/g. Typical
k − kF are of order ξ−1 simply because this is the only long-
wavelength scale with the dimension of momentum. Landau
damping of collective bosons is irrelevant as long as these
bosons are fast compared to fermions. This holds when g �
vF ξ−1, i.e., in the ordinary FL regime. In the CFL regime
g  vF ξ−1, collective bosons are slow modes compared to
fermions, and the Landau damping plays the central role.
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B. Loop expansion for the fermionic self-energy in
the critical Fermi liquid

The quasiparticle residue 1/Zk and the mass renormal-
ization can be obtained from the fermionic self-energy,
�(k,ω), at the smallest k − kF and ω. At these energies Ginc

can be neglected, i.e., G ≈ Gqp. Using the sign convention
in which � is counted as a positive frequency shift, we
have G−1

qp (k,ω) = iω − vF,k(|k| − kF ) + �(k,ω) = Zk[iω −
v∗

F (|k| − kF )]. The one-loop self-energy diagram with the
effective interaction V (K − P ) is shown in Fig. 9. Given the

analysis in the previous section, one may wonder whether
one should also include AL diagrams. The answer is no,
because one can easily make sure that adding AL terms
gives extra contributions to the self-energy which contain
V 2(Q)�(Q). Such terms are already included into the RPA
series for V (Q) and keeping them will result in double
counting.

The evaluation of this diagram has been presented in some
detail before8 and we will be brief. In analytical form we
have

�(k,ω) = − 3g

8π3

∫
d2qd�

1

i(ω + �) − vF,k+q+qπ
(|k + q + qπ | − kF )

1

q2 + ξ−2 + γ |�| . (4.2)

For definiteness, let us focus momentarily on a fermion located infinitesimally close to a hot spot. It is convenient to subtract from
Eq. (4.2) a constant term �(kF ,0), whose effect, the renormalization of the chemical potential, we already incorporated by writing
the bare dispersion as vF (|k| − kF ). Approximating vF,k+q+qπ

(|k + q + qπ | − kF ) as vF (|kF + q + qπ | − kF ) + vF,kF +qπ
(|k| −

kF ), we rewrite Eq. (4.2) as

�(k,ω) − �(kF ,0) = 3ḡ

8π3

∫
d2qd�

iω − vF,kF +qπ
(|k| − kF )

[i(ω + �) − vF,k+q+qπ
(|k + q + qπ | − kF )][i� − vF,kF +q+qπ

(|kF + q + qπ | − kF )]

× 1

q2 + ξ−2 + γ |�| . (4.3)

The integral is ultraviolet convergent and can be evaluated
by integrating over d2q and d� in any order. Integrating over
momentum first, we get two contributions—one comes from
the poles in the fermionic propagators and another comes
from the pole in the bosonic propagator. The first contribution
is nonperturbative in the sense that it comes from internal
frequencies |�| � ω. Evaluating this term, we find that the
term iω − vF,kF +qπ

(|k| − kF ) in the numerator of (4.3) is
canceled out by the equivalent term in the denominator,
after integrating over the component of q normal to the
FS at kF + qπ . As a result, the contribution from the
fermionic pole yields a self-energy contribution which only
depends on frequency ω. This term renormalizes both Zk and
m∗

k/m.
The second term is perturbative and comes from internal

�  ω. This term is proportional to iω − vF,kF +qπ
(|k| − kF ),

i.e., it renormalizes the residue but not the effective mass. The
sum of the two self-energy contributions is

�(k,ω) − �(kF ,0)

= λ[iω − (iω − vF,kF +qπ
(|k| − kF ))f (λ)], (4.4)

where f (0) = 1 and f (λ  1) ∼ (log λ)/λ � 1.
We see that at small λ (the case of the ordinary FL), the

self-energy predominantly depends on momentum: �(k,ω) ≈
�(k). This result is an expected one as in the ordinary FL
regime the interaction is essentially static (Landau damping
is a small perturbation). In the CFL, however, the first term
∝ iω in (4.4) is the largest, and �(k,ω) ≈ �(ω). From this
perspective, the CFL regime near a QCP is a regime of self-
generated locality.28,29 In this regime, �(k,ω) ≈ iλω and Z ≈
m∗/m ≈ 1 + λ.

Before we proceed, a comment is in order. From the
presentation above it may look as if �(k,ω) ≈ iλω would

come from internal fermions located in an infinitesimally small
range of order ω around the FS. Indeed, the pole contribution
comes from this range. However, a more careful calculation of
the perturbative contribution without setting ω and εk to zero in
the denominator of (4.3) shows that it can also be represented
as the sum of two terms—One comes from the nearest vicinity
of the FS and another from a distance ξ−2/γ ∼ ωsf from the
FS. The sum of these two terms is f (λ) in (4.4), which is
small at large λ. However, if we treat the two perturbative
contributions separately, we find that the one from the nearest
vicinity of the FS cancels the contribution from the fermionic
poles, and, as a result, �(k,ω) ≈ iλω actually comes from
fermions located at distance of order ωsf away from the FS.
This explains why the quasiparticle residue is not determined
within Landau theory (which accounts for the effects coming
from an infinitesimally small region near the FS) but rather
is treated an an input quantity. That Z comes from fermions
at distance ωsf from the FS can be also seen explicitly if we
integrate in (4.3) first over frequency and then over εp. We will
not demonstrate this explicitly here but we will discuss in detail
a very similar calculation of the vertex function in Sec. (V A 1).

The quasiparticle residue in the CFL regime can be
evaluated for momenta away from the hot spots. To simplify
notations, below we set k in Zk to be the distance from a
hot spot at kF,hs, along the FS, i.e., define a scalar variable
k = k‖ ≡ (kF − kF,hs)|‖, which from now on will denote the
component of the momentum vector along the FS, relative
to the nearest hot spot. The component normal to the Fermi
surface is denoted by k⊥ and will turn out to be confined to
small values. The result for Zk , obtained in Refs. 8 and 9, may
then be expressed as

Zk = 1 + λ√
1 + (kξ sin θ )2

, (4.5)
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where, we recall, θ is the angle between the Fermi velocities at
kF,hs and kF,hs + qπ (see Fig. 1). For a FS like in the cuprates,
θ is not far from π/2, i.e., sin θ ≈ 1. Right at a hot spot (k = 0),
Z = 1 + λ. As k moves away from a hot spot by a distance
k > ξ−1, Zk begins to decrease and becomes O(1) at |k| �
g/vF . The effective mass m∗

k follows Zk: m∗
k/m = Zk .

Below we will also need the residue Zk(ω) at a nonzero
frequency. It is given by

Zk(ω) = 1 + 2λ√
1 + (kξ sin θ )2 + γ ξ 2|ω| +

√
1 + (kξ sin θ )2

,

(4.6)

where the Landau damping coefficient is explicitly expressed
via g as γ = (4/π )g/(v2

F sin θ ). The frequency-independent
form of Zk , Eq. (4.5), is valid for γ |ω| � (k sin θ )2

or, for typical k ∼ ξ−1, for ω < ωsf ∼ (vF ξ−1)2/g. When
γ |ω|  (k sin θ )2  ξ−2, Zk(ω) ≈ 1 + (ω̄/ω)1/2, where ω̄ =
9g sin θ/(16π ). The quasiparticle residue becomes O(1) at
ω ∼ ω̄ ∼ g. A more complex form of the self-energy emerges
if one keeps a regular �2 term in the bosonic propagator.30

In the next section we show that the Ward identities,
Eqs. (2.7) and (2.10), are not reproduced in the CFL regime if
we use Zk , which we just obtained, and approximate �ω(K,P )
by V eff(K − P ), as in Eq. (3.21). We show that �ω(KF ,PF )
in the CFL regime differs from Eq. (3.21) because our earlier
reasoning to identify �ω and V eff(K − P ) neglected Landau
damping of collective excitations, which, as we now know,
plays a central role in the CFL regime. We obtain the correct
�ω and show that Eqs. (2.7) and (2.10) with the correct �ω

does reproduce Eq. (4.5), as they indeed should.

C. The accuracy of the loop expansion for �(k,ω)

Before we do this, we briefly discuss the accuracy of the
loop expansion in the CFL regime. In the analysis above,
we neglected the dependence of the self-energy on k − kF

as the latter does not contain λ as an overall factor. Still,
∂�/∂(k − kF ) is not small and in fact scales as log λ [see
Eq. (1.3)]. This is similar to what we found earlier in the
analysis of the corrections to the vertex function. The lowest-
order logarithmical corrections can again be made small by
extending the theory to a large number of fermionic flavors N ;
however, as noted earlier, at higher-loop orders there appear
additional logarithms associated with backscattering from
composite processes,9,16,26 and these terms do not contain
1/N .

We follow the same line of reasoning as we outlined in the
previous section, neglect logarithmical corrections, and focus
on how to reproduce the Ward identity in the CFL regime.
We expect that the effects associated with the additional log λ

terms can be incorporated on top of our analysis.

V. �ω IN A CRITICAL FERMI LIQUID

A. Failure of approach used for an ordinary FL

We recall that the vertex function is given by

�ω
αβ,γ δ(K,P ) = �c(K,P )δαγ δβδ + �s(K,P )�σαγ �σβδ. (5.1)

In an ordinary FL,

�c(K,P ) = �s(K,P )

= 3

2
V (K − P )

= 3

2

g

ξ−2 + |k − p − qπ |2 + γ |ωk − ωp| . (5.2)

We assume and later verify that the equality �c(K,P ) =
�s(K,P ) holds also in the CFL regime and use only �c(K,P )
in this section.

The Ward identities between the true �ω and Zk , Eqs. (2.7)
and (2.10), are reexpressed in terms of �c(KF ,P ) as

Zk = 1 + I, (5.3)

where

I = 2
∫

�c(KF ,P )
{
G2

qp(P )
}

ω

d2pdωp

(2π )3
(5.4)

and{
G2

qp(P )
}

ω
= lim

ω→0
Gqp(p,ω + ωp)Gqp(p,ωp). (5.5)

We recall that this relation does not require Galilean invariance.
Let us assume momentarily that the relation �c(KF ,P ) =

(3/2)V (KF − P ) extends into the CFL regime. We use
the coherent part of the fermionic propagator in the form
Gqp(p,ωp) = 1/[iωpZp − vF (p⊥ − kF )] and neglect the in-
coherent part because, as we will see, typical p in the integral
in the right-hand side of (5.4) are close to kF . We also assume
that p is near a hot spot and approximate the Fermi velocity
by its value at this hot spot, which for brevity we label as
just vF . Substituting this propagator into the right-hand side
of Eq. (5.4), we find that the 3D integral over d2pdωp is
convergent and can be evaluated by doing momentum and
frequency integration in any order. Evaluating the integral over
momentum first we again find that the integral is the sum of two
contributions, I = I1 + I2. The first contribution (I1) comes
from the near-degenerate poles in the fermionic propagators;
the other one, I2, comes from the pole in V (KF − P ).
Both terms can be readily evaluated. The contribution from
the fermionic poles comes from the tiny range when the
poles in the two Green’s functions, viewed as functions of
complex x = vF (p⊥ − kF ), are in different half-planes of x,
i.e., −ω < x < 0 (we assume ω to be positive). Accordingly,
|p⊥ − kF | for the pole scales with ω and is vanishingly small.
The interaction V (K − P ) can then be safely approximated
by the static V (KF − PF ) = g/((kF − pF )2 + ξ−2), i.e., the
Landau damping term formally plays no role. Integrating over
p⊥ − kF and ωp, we obtain

I1 = 3g

4π2vF

∫
dp

Zp

1

p2 − 2pk cos θ + ξ−2 + k2
, (5.6)

where, we recall, k and p are momenta along the FS counted
from the corresponding hot spots kF,hs and kF,hs + qπ , and
θ is the angle between Fermi velocities at hot spots at kF,hs

and kF,hs + qπ . If we were to neglect Zp in the denominator
of (5.6), the integration over p would give exactly the same Zk

as in (4.5). However, this is only legitimate in the ordinary FL
regime, when λ is small and Zp ≈ 1. In the CFL regime Zp is
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large near a hot spot and cannot be neglected. Then the result
of the integration over p in (5.6) is much smaller than without
Zp. As an example, consider k = 0 (i.e., take a fermion right
at the hot spot). Typical p in (5.6) are between ξ−1 and λ/ξ−1,
when Zp ≈ λ/(pξ | sin θ |). Substituting this form into (5.6)
and integrating over p we obtain

I1 = 2| sin θ |
π

log λ. (5.7)

The second term (I2) comes from the pole in the interaction,
viewed as a function of p. In this term, the frequency
dependence of the interaction is relevant as typical (p − kF )2

are of order ξ−2 and typical ωp ∼ ωsf ∼ ξ−2/γ , such that
typical values of Landau damping term γωp are also of order
ξ−2. We then obtain, after proper rescaling,

I2 = B

∫
dxdy√

x2 + y + 1

1

[
√

x2 + y + 1 + yCx(y)]2
, (5.8)

where the variables are x = pξ , y = ωp/ωsf , B = O(1),
Cx(y) = Zξ−1x(y)ξ−1/(γ vF ) ∼ Zξ−1x(y)/λ, and Zξ−1x(y) is
the frequency-dependent Z factor given by (4.6). It reduces to
Zξ−1x in the CFL regime, which in these notations corresponds
to y � 1 and becomes Zξ−1x/

√
y in the quantum-critical

regime at y > 1. The upper limit of the integration over x

is ξ/a  1. For large λ and Zξ−1 � λ, relevant x and y in
the integral in (5.8) are large, i.e., the integral predominantly
comes from the quantum-critical region. Evaluating the inte-
gral we find that I2 ∼ log λ.

If we take these results at face value and substitute into
Eq. (5.4) for Z, we find

Z − 1 = O(log λ), (5.9)

clearly inconsistent with the anticipated Z − 1 = λ.
To make the next step, we observe that the contributions I1

and I2 differ qualitatively. The contribution I2 has the same
form as the prefactor of the iω − vF,kF +Q(k − kF ) term in
the fermionic self-energy in Eq. (4.3), and the logarithmical
dependence on λ parallels the logarithmical dependence of the
renormalization of the k − kF term. This analogy can be made
even more precise if we extend the model to a large number
of fermionic flavors N and assume that the spin-fermion
vertex conserves flavor. In this situation, the Landau damping
term gets enhanced by N , and I2 and the prefactor of the
iω − vF,kF +Q(k − kF ) term in Eq. (4.3) both scale as 1/N .
On the other hand, I1 does not contain 1/N . Earlier we argued
that we neglect the logarithmical renormalization of the k − kF

term in the fermionic propagator (even without invoking the
large N limit) as the corrections to Z from the corresponding
∂�/∂(k − kF ) come on top of the O(λ) renormalization from
iωλ term in the self-energy. We apply the same strategy in
the FL approach and neglect the I2 term. We show below
that for large λ there is a series of O(1) corrections to �c and,
when the full �c(KF ,PF ) is used instead of (3/2)V (KF − PF ),
the I1 term becomes exactly λ/

√
1 + (kξ )2 sin2 θ , i.e., Zk =

1 + I1 becomes consistent with the loop-expansion result,
Eq. (4.5).

k p

k p

+     …

l

l

k p

k p

+     …

l

l

FIG. 13. An example of a “forbidden” diagram for �ω for
diagrammatic series in which the interaction is the dynamical
V eff (K − P ). This diagram still has an internal particle-hole bubble
with zero momentum transfer, but, contrary to the corresponding
diagram in Fig. 6, this one does not vanish because V eff (K − P )
and V eff (L − P ) have branch cuts in both half-planes of complex
Matsubara frequency (see the text).

1. The role of “forbidden” diagrams for the vertex

The reason why �c(KF ,PF ) in the CFL differs from
(3/2)V (KF − PF ) becomes clear once we look back at our
reasoning regarding which diagrams should be included into
the calculation of �ω. We argued earlier that the vertex
function is the sum of all diagrams except the ones which
contain fermionic bubbles with zero momentum transfer
and vanishingly small frequency transfer (see Fig. 6). The
mathematical argument to neglect these last diagrams was
that, if one integrates the bubble in the diagram in Fig. 6
first over frequency and then over momentum, the integral
vanishes because both poles in frequency space are in the
same half-plane.

This is true, however, as long as the interaction can be
treated as static. Once the interaction acquires a Landau
damping, the situation changes because the product of the
Green’s functions and the interactions (the combination that
we actually have in the diagram in Fig. 13) contains, in
addition to poles, also branch cuts associated with the Landau
damping, which in Matsubara formalism contains |ω| =

√
ω2.

Now, when we integrate over frequency, we have both
pole and branch-cut contributions. The contributions from
the poles can still be avoided by closing the integration
contour in the half-plane of frequency where there are no
poles; however, the branch cuts are located in both half-
planes of frequency and cannot be avoided. As a result,
the contributions from “forbidden” diagrams are generally
nonzero.

To estimate the strength of “forbidden” contributions,
consider as an example the diagram from Fig. 13 with wavy
lines instead of dashed lines. It gives, for external K = KF

and P = PF ,

δ�c(KF ,PF ) = 2
∫

dεldldωl

(2π )3vF

1

i(ω + ωl)Zl − εl

× 1

iωlZl − εl

V (KF − L)V (L − PF ),

(5.10)

where, as before, L = (l,ωl), k and p are deviations from
a hot spot at kF,hs along the FS, l is the deviation along
the FS from kF,hs + qπ , εl is the linearized dispersion near
kF,hs + qπ , the overall factor 3 comes from the summation
over spin indices, and the dynamical interactions V (KF − L)
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and V (L − PF ) are given by Eq. (3.8). We assume and then
verify that the dominant contribution to δ�ω comes from the

interaction between fermions taken right on the FS. In this
case,

V (KF − L)V (L − PF ) = V (k − l,ωl)V (l − p,ωl)

= g2 1

ξ−2 + l2 + k2 − 2kl cos θ + γ |ωl|
1

ξ−2 + l2 + p2 − 2pl cos θ + γ |ωl| . (5.11)

Like we did in the case of a static interaction, we integrate first over the fermionic frequency ωl . That the poles in the two Green’s
functions in (5.10) are splitted by ω does not make much difference because both poles are in the same half-plane of ωl . We can
then safely set ω = 0 and rewrite Eq. (5.10) as

δ�c(KF ,PF ) = −2g2
∫

dεldl

(2π )3vF Z2
l

∫
dωl

1

(ωl + iεl/Zl)2

1

γ |ωl| + ξ−2 + l2 + p2 − 2pl cos θ

× 1

γ |ωl| + ξ−2 + l2 + k2 − 2kl cos θ
. (5.12)

The location of the poles in (5.12) (whether they are in the upper or in the lower half-plane of complex ωl) is determined by the
sign of ε. For each sign, we choose the half-plane in which there are no poles. The branch cut, coming from the γ |ωl| term in
the interaction, is, however, present in each half-plane and cannot be avoided. One can easily make sure that contributions to the
integral in (5.12) from positive and negative εl are the same, i.e., the full result is twice the contribution from εl > 0. Using this,
we reexpress (5.12) as

δ�c(KF ,PF ) = −4g2
∫ ∞

0

dεl

2πvF

∫
dl

(2π )2Z2
l

∫
dωl

∫
1

(ωl + iεl/Zl)2

1

γ |ωl| + ξ−2 + l2 + p2 − 2pl cos θ

× 1

γ |ωl| + ξ−2 + l2 + k2 − 2kl cos θ
(5.13)

and close the integration contour over ωl in the upper half-plane (see Fig. 14). The branch cut renders the γ |ωl| term ill defined
along the imaginary frequency axis, where ωl = iω [|ωl| =

√
ω2

l =
√

(iω + δ)2 = iωsgn(δ) for ω > 0]. Choosing the contour
to avoid the imaginary axis and using the fact that the integral over the arcs D1 and D2 in Fig. 14 vanishes because the integrand
in (5.13) vanishes faster than 1/ωl , we obtain, after simple algebra,

δ�c(KF ,PF ) = 4ig2
∫

dl

(2π )2Z2
l

∫ ∞

0

dεl

2πvF

∫ ∞

0

dω

(ω + εl/Zl)2

(
1

ξ−2 + l2 + p2 − 2pl cos θ + iγ ω

× 1

ξ−2 + l2 + k2 − 2kl cos θ + iγ ω
− 1

ξ−2 + l2 + p2 − 2pl cos θ − iγ ω

1

ξ−2 + l2 + k2 − 2kl cos θ − iγ ω

)
.

(5.14)

Performing now elementary integrations over ω and over εl (in
any order) we obtain

δ�c(KF ,PF ) = 1

2π2vF

∫
dl

Zl

V||(k,l)V||(l,p), (5.15)

Re[ωl]

D1D2

Im[ωl]

Re[ωl]

D1D2

Im[ωl]

FIG. 14. The integration contour for the integration over fre-
quency in Eq. (5.13).

where we defined the static interaction between fermions on
the Fermi surface near two conjugated hot spots as

V||(k,p) = V (kF − pF )

= g/(ξ−2 + k2 + p2 − 2kp cos θ ). (5.16)

The notation V||(k,p) is introduced to emphasize that this is
a function of momenta along the FS, and each momentum
is a deviation from the corresponding hot spot. With this
definition,

V eff(KF − PF ) ≡ V||(k,p)(�σαδ �σβγ + 2�σαγ �σβδ). (5.17)

It is essential for our further discussion, particularly for the
analysis of spin and charge susceptibilities in Sec. VII B, that,
although the final expression for δ�c(KF ,PF ), Eq. (5.15),
contains the static interaction between the particles on the
FS, the result does not come from the immediate vicinity
of the FS in the sense that typical εk ∼ ωZl and typical
γω ∼ max(k2,p2,ξ−2), which are at least of order ξ−2. When
ξ = O(1), the leading contribution to δ�c(KF ,PF ) comes
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from fermions far from the FS. When ξ is large, the leading
contribution comes from states near the FS, but still at some
distance from the FS. In Sec. VII B we will contrast these
contributions with the contributions which come from an
infinitesimally small region around the FS.

This δ�c(KF ,PF ) has to be compared with our ear-
lier result �c(KF ,PF ) = (3/2)V (KF − PF ) = (3/2)V||(k,p).
Taking for simplicity the external fermions to be right at a
hot spot [i.e., in our notations setting k = p = 0 and also
setting the bare interaction to be V||(k,p) = V||(0) = g/ξ−2],
we obtain

δ�c(KF ,PF ) = 1

2π2vF

g2
∫

dl

Zl

1

(l2 + ξ−2)2

= V||(0)

(
1

3π

) ∫ ∞

0
dx

√
1 + x2 sin2 θ

(x2 + 1)2
.

(5.18)

We see that δ�c(KF ,PF ) is of the same order as the bare
term V||(0). The implication is that, in a CFL, previously
forbidden contributions to �ω(KF ,PF ) are of the same
order as �c taken from an ordinary FL. As we know, we
need to increase �c(KF ,PF ) roughly by λ to reproduce
the result for Zp, Eq. (4.5), using the Ward identities.
We now show that this can be achieved by summing up
a series of previously forbidden diagrams for �ω, which
contain powers of δ�c(KF ,PF )/V (KF − PF ). To select this
series, we analyze in the next subsection the structure of
the diagrammatic representation of the Ward identities in a
CFL.

Before we proceed, we return momentarily to the evaluation
of δ�c(KF ,PF ) and discuss two issues. First, in evaluating the
integral in Eq. (5.11) we assumed that the dominant contribu-
tion to δ�c comes from the interaction between fermions taken
right on the FS. From (5.10), we see that typical transverse
momenta in V (k − p) are of order (ε/vF ) ∼ ωZl , while typical
longitudinal momenta along the FS are of order (γω)1/2. If Zl

was of order 1, then at large ξ typical transverse momenta
would then definitely be smaller than typical longitudinal
momenta. In our case the situation is more involved because
for ξ−1 < l < g/vF , Zl by itself scales as 1/l, Zl ∼ g/vF l.
A simple analysis shows that then-typical transverse and
longitudinal momenta are both of order (ωg)1/2/vF , i.e., the
terms we neglected in the evaluation of the integral in (5.10)
are of the same order as the ones we included. However, if
we again extend the model to N  1 flavors, the terms that
we neglected turn out to be small in 1/N . In this respect,
the approximation we made here by neglecting the transverse
term in the interaction is the same as the one we made in
the calculation of the self-energy, and, like we did there, we
use large N as a formal justification of the approximation to
neglect the transverse-momentum component in the bosonic
propagator.

Second, as we already discussed, the integral (5.10)
involving two dynamical interactions and two fermionic G’s
is ultraviolet convergent and can be evaluated by integrating
over ωl and εl in any order and within infinite limits. In the
calculation above, we integrated over the frequency first and
found that the nonzero result for δ�c(KF ,PF ) comes from
the branch cuts in the dynamical interaction. Integrating over

momentum first, we find that there are two contributions
to δ�c. One comes from a tiny range where the poles in
the two Green’s functions are in different half-planes of the
(complex) momenta, and the other comes from the poles in
the interactions, viewed as functions of momenta. For static
interaction, the two contributions cancel each other, just like
the two iω terms cancel each other in Eq. (4.3) for the
self-energy if one neglects the Landau damping. However,
when λ is large and Landau damping cannot be neglected,
we found the same result as in our earlier calculation of
the self-energy, namely that the dominant contribution is
the one from the splitted poles in the Green’s function,
while the one from the poles in the interaction is smaller
by a power of λ. For the contribution from the splitted
poles, typical ω and εl are small and we again can treat
the interaction as static. Performing the integration this way,
we obtain

δ�c(KF ,PF ) = 2
∫

dl

2π
V||(k,l)V||(l,p)�l, (5.19)

where

�l = lim ω→0
1

vF

∫
dωldεl

4π2

1

i(ω + ωl)Zl − εl

1

iωlZl − εl

= 1

2πvF Zl

. (5.20)

The final result is the same as Eq. (5.15), and the computation
is easier this way than by integrating over ω first. We caution,
however, that integrating over εl first and keeping only the
contribution from splitted poles gives the false impression that
δ�c(KF ,PF ) comes from states in an infinitesimally small
region around the FS (in the splitted poles contribution, ωl and
εl are both of order of external ω, which is vanishingly small).
In reality, one has to include the contribution from the poles in
the interaction and represent this contribution as the sum of two
terms—one from the infinitesimal vicinity of the FS and an-
other from the region a distance ξ−2 from the FS. The two terms
nearly cancel each other and this is what makes the contribution
from the poles in the interaction small. However, taken sep-
arately, the contribution from the infinitesimal small vicinity
of the FS cancels the one from the splitted poles, and the one
which remains comes from states a small but finite distance
away from the FS, like we found by integrating over ωl first.

B. Ward identities and the equivalence of diagrammatic
and FL expressions for Zk

We recall that, in diagrammatic language, the Ward identity
associated with the particle number conservation relates the
self-energy �(k,ωk) = iωk(Zk − 1) to a triple charge vertex
�c(�,K)δαβ , where � is set to be infinitesimally small. The
relation simply states that

�c(�,K) = Zk. (5.21)

The issue is which diagrams one should keep in order to
reproduce this relation, given that the fermionic Zk comes
from the one-loop diagram of Fig. 9. We now demonstrate
that, to the same accuracy, the vertex �c(�,K) is given by
the ladder series of diagrams shown in Fig. 15, with the bare
�c,0(�,K) = 1 (for simplicity we set the spin projections of
incoming and outgoing fermions to be equal). To see this, we
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FIG. 15. Diagrammatic expression of the ladder series for the triple vertex �c(�,K). The shaded triangle represents the full vertex, and the
unshaded triangle is the bare vertex which, for the same spin projections of incoming and outgoing fermions, is just equal to 1. The interaction
(the wave line with big cite circles) is V eff (K − P ), which is the sum of the direct RPA spin-mediated interaction and the two AL terms.

observe that the ladder series gives rise to the integral equation
for �c(�,K) as follows:

�c(�,K)

= 1 + 3
∫

d2pdωp

(2π )3
�c(�,P )

{
G2

qp(P )
}

�
V (P − K).

(5.22)

We assume and then verify that the dependence on � and ωk in
�c(�,K) is nonsingular and can be safely neglected, i.e., one
can approximate �c(�,K) = �c(�,ωk,k) by �c(0,0,k) =
�c(k) and set the external ωk to zero in the diagrammatic
series in Fig. 3.

The integral on the right-hand side of (5.22) is ultraviolet
convergent and can be evaluated by integrating over frequency
ωp and over quasiparticle dispersion εp in any order. Inte-
grating over frequency first (which, incidentally, is always
the safest way to proceed as in any system the frequency
integration at T = 0 extends over infinite limits), we find the
same result as in the earlier calculation of the “forbidden”
diagram for the vertex function, namely the integral contains
poles coming from the two Green’s functions (the {G2

qp}�
term) and the branch cut coming from the |ωp| term in the
interaction. The poles are in the same half-plane of frequency
and can be avoided by closing the integration contour in the
half-plane where there are no poles, but the branch cuts are in
both frequency half-planes and cannot be avoided. Choosing
the integration contour as in Fig. 16 and performing the same
calculation as for the vertex, we obtain∫

dp⊥dωp

(2π )3

{
G2

qp(P )
}

�
V (P − K + Q)

= g

4π2vF

1

Zp

1

k2 + p2 − 2kp cos θ + ξ−2
. (5.23)

The integral comes from internal ωp ∼ εp/Zp ∼ (k2 + p2 −
2kp cos θ + ξ−2)/γ , which are small, at least in λ/EF . This
justifies our approximation to neglect the dependence on ωk

in the triple vertex. The dependence on external � appears in
�γ/(k2 + p2 − 2kp cos θ + ξ−2) and can also be neglected if
� is small enough. At the same time, we clearly see that the
integral comes from fermions located at some finite distance
from the FS rather than from the immediate vicinity of the FS.
This is yet another indication that the physics associated with
the renormalization of the quasiparticle residue is not confined
to the FS. If one would integrate only over an infinitesimally
small range around the FS, one would obtain Zk = �c(k) = 1.
Furthermore, in an ordinary FL the integral in (5.23) comes

from fermions which are generally far from the FS. Only in a
CFL does the integral come from near the FS: from fermions
with ωp ∼ ξ−2/γ ∼ ωsf for external k in a hot region and
from ωpk2/γ � g � EF for external k in a lukewarm region
ξ−1 < k < g/vF .

The same result, Eq. (5.23), can be also obtained by
integrating over εp first. This way, the computation is easier to
carry out as one only has to include the contribution from the
poles splitted by �, but it requires more effort to make sure
that the integral comes from fermions at some distance from
the FS.

Substituting (5.23) into (5.22) and using the definition of λ

we obtain

�c(k) = 1 + λ

πξ

∫
dp

�c(p)

Zp

1

k2 + p2 − 2kp cos θ + ξ−2
.

(5.24)

We now recall that the one-loop formula for Zk [Eq. (4.5)] is

Zk = 1 + λ

πξ

∫
dp

1

k2 + p2 − 2kp cos θ + ξ−2

= 1 + λ√
1 + (kξ sin θ )2

. (5.25)

FIG. 16. The diagrammatic derivation of the relation between the
triple vertex and �̃ω, which we show to be equal to the actual vertex
function �ω. White and black triangles denote bare and full triple
vertices. Wavy lines with big circles at the end points are V eff (K − P ),
and the shaded rectangular vertex with big circles at the end points
is the trial vertex function �̃ω. We show in the text that �̃ω coincides
with the actual vertex function �ω.
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FIG. 17. Integral equation for �ω
K,P . The wavy line with big

circles at the end points is V eff (KF − PF ). Its charge and spin
components are both equal to (3/2)V||(k,p).

One can easily see that the two equations are identical when
Zk = �c(k) [= �c(�,K)], as it should be, according to (2.7).

As the next step, we observe that the same ladder series for
the full �c(�,K) can be rearranged, as shown in Fig. 16,
and reexpressed in terms of the vertex function [let us
call it �̃c(KF ,PF )], which is the sum of the interaction
V eff(KF − PF ) and the ladder series of diagrams involving
the combinations of two G’s and the interaction (see Fig. 16).
Taking care of spin indices, we obtain

�c(�,K) = 1 + 2
∫

�̃c(KF ,P )
{
G2

qp(P )
}

ω

d3P

(2π )3
. (5.26)

Because �c(�,K) = Zk , this equation takes exactly the same
form as the Ward identity, Eq. (5.3). Then, if we identify
�̃c(KF ,P ) with the actual vertex function �c(KF ,P ), the
FL formula for Zk is guaranteed to coincide with the result
obtained in the diagrammatic loop expansion. This simple
logics implies that, within our conserving approximation, the
correct �c(KF ,P ) is given by the series of ladder diagrams with
the charge component of V eff(KF − PF ) [=(3/2)V||(k,p)]
as the leading term. Below we express the series of ladder
diagrams in Fig. 16 through an integral equation, solve it, and
obtain �c(KF ,PF ) for particles on the FS as a function of k

and p, which, we recall, are the deviations of the momenta kF

and pF from the corresponding hot spots.

C. The structure of the vertex function �ω
αβ,γ δ(KF,PF)

Our reasoning for the selection of a particular ladder series
of diagrams for �c does not rely on the fact that in the previous
two subsections we analyzed only the charge component of
the vertex function. The same reasoning can be applied to the
spin component of the vertex function. One can easily make
sure that, by selecting the same set of diagrams for �s(K,P )
as we did for �c(K,P ), one reproduces the spin Ward identity.
Each of the two components of the full �ω

αβγ δ(KF ,PF ) then
can be reexpressed, as shown in Fig. 17, and presented as an
integral equation,

�a(KF ,PF ) = Va(KF − PF ) + 2
∫

Va(KF − L)

Zl

×�a(L,PF )
{
G2

qp(L)
}

ω

d3L

(2π )3
, (5.27)

where a = c,s and Va(K,P ) = (3/2)V (K − P ).
Note that in each term in perturbation series the momenta

are along the FS near the corresponding hot spots. In terms
with odd numbers of the interaction lines, k and p are close
to the hot spots kF,hs and kF,hs + qπ , respectively. In these
diagrams, the momentum k is along the FS around kF,hs and

the momentum p is along the FS around kF,hs + qπ . In terms
with even numbers of the interaction lines, k and p are close
to the same hot spot khs, and the momenta k and p are along
the FS around khs.

It is convenient to introduce the function fk,p via

�a(KF ,PF ) = fk,pVa(KF − PF ) = 3
2V||(k,p). (5.28)

The functions fk,p show how much the charge and spin
components of the actual vertex function in a CFL differ from
the corresponding components in an ordinary FL.

For further convenience, we also rescale the momenta
along the FS to k̄ = kξ , p̄ = pξ . There are three regimes
of rescaled momenta near each hot spot. First, there is the
true hot region k̄ < 1 (in original units, |kF − khs| � ξ−1).
In this regime, Zk ≈ λ is a constant. The second is the
“lukewarm” region 1 < k̄ < λ (ξ−1 < |kF − khs| < g/vF ). In
this regime Zk ≈ λ/|k̄ sin θ | (= g/(vF |kF − khs|) decreases
with increasing separation from the hot spot. Both the first
and second regimes correspond to the CFL because Zk is large
compared to one. Finally, the third region is the cold one, k̄ > λ

(|kF − khs| > g/vF ). In this region, Zk ≈ 1, i.e., the system
remains in the ordinary FL regime. The boundary between CFL
and the ordinary FL regime is k̄ ∼ λ (|kF − khs| ∼ ḡ/vF ).
Note that the corresponding |kF − khs| are smaller than kF , as
we assumed from the beginning that g is small compared to
EF .

Substituting �a(KF ,PF ) in terms of fk,p into (5.27) and
integrating over l − kF and ωl in the same way as before, we
find that the function fk̄,p̄ satisfies the integral equation

fk̄,p̄ = 1 + λ

π

∫
f a

k̄,l̄

Kk̄,l̄Kl̄p̄

Kk̄,p̄

dl̄

Zl̄

, (5.29)

where Zl̄ = 1 + λ/
√

1 + l̄2 sin2 θ and

Kk̄l̄ = V||(k,l)

gξ 2
= 1

k̄2 + l̄2 + 1 − 2k̄l̄ cos θ
. (5.30)

By construction, fk̄,p̄ must satisfy the FL formula for Zk ,
Eq. (5.3), which plays the role of a “boundary condition” for
Eq. (5.29),

λ

π

∫
fk̄,p̄Kk̄,p̄

dp̄

Zp̄

= Zk̄ − 1 = λ√
1 + k̄2 sin2 θ

. (5.31)

VI. THE SOLUTION OF THE INTEGRAL
EQUATION FOR fk̄, p̄

To gain some intuition on how fk̄,p̄ looks, consider first the
perturbation theory in λ. At zero order, fk̄,p̄ = 1. To first order
in λ, we have

fk̄,p̄ = 1 + λ
k̄2 + p̄2 + 1 − 2k̄p̄ cos θ

(k̄ − p̄)2 cos2 θ + (Sk̄ + Sp̄)2

(
Sk̄ + Sp̄

Sk̄Sp̄

)
,

(6.1)

where Sk̄ = √
1 + k̄2 sin2 θ . Substituting this solution into

the “boundary condition,” we obtain, after straightforward
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algebra, that the left-hand side of Eq. (5.31) reduces to

λ

π

∫
dp̄

k̄2 + p̄2 + 1 − 2k̄p̄ cos θ

(
1 − λ

Sp̄

)

+ λ2

π2

∫
dp̄dl̄

(l̄2 + p̄2 + 1 − 2l̄p̄ cos θ )(l̄2 + k̄2 + 1 − 2l̄k̄ cos θ )

+O(λ3). (6.2)

Performing elementary integrations, we find that the two O(λ2)
terms cancel out, and (6.2) reduces to

λ

π

∫
dp̄

k̄2 + p̄2 + 1 − 2k̄p̄ cos θ
= λ√

1 + k̄2 sin2 θ

≡ Zk̄ − 1. (6.3)

We see that the “boundary condition” is satisfied in the
perturbation theory in λ, as it indeed should.

The perturbative expansion in λ is a nice way to check the
internal self-consistency but is of little practical use for us as we
are interested in the CFL regime at large λ. One can try to solve
Eq. (5.29) iteratively at large λ, using Zk̄ ≈ λ/

√
1 + k̄2 sin2 θ .

But then iterations just generate additional terms O(1) at each
subsequent order, i.e., this procedure also does not lead to a
meaningful result.

We analyzed the integral equation (5.29) “as is,” i.e.,
without doing an expansion or iterations, and found, after some
experimentation, that the trial function

fk̄,p̄ = A
k̄2 + p̄2 − 2k̄p̄ cos θ

|k̄p̄| sin θ
, (6.4)

with a constant A, satisfies (5.29) when k̄ and p̄ are in
the lukewarm regime 1 < |k̄|,|p̄| < λ, and one momentum
is much larger than the other, such that fk̄,p̄  1. This can be
checked explicitly by noticing that the relevant l̄ are of order p̄,
and for those Zl̄ = λ/|l̄|. Indeed, substituting the trial form fk̄,l̄

into the right-hand side of Eq. (5.29) we find that the integral
gives back the same fk̄,p̄. Equation (5.29) is then satisfied as
long as fk̄,p̄ is large compared to 1.

This solution also has to satisfy the “boundary condi-
tion” (5.31), i.e., reproduce the large value of Zk ∼ λ inside the
CFL regime. One possibility would be that the integral over p̄

in (5.31) is confined to p̄ ∼ k̄, and the overall factor A is large
and of order λ. This is what happens near a nematic QCP, when
the analog of fk̄p̄ weakly depends on the location of momenta
on the FS and is just a constant of order λ (Ref. 12). In our case,
however, the result differs. Substituting our trial solution into
the “boundary condition” (5.31), we find that for 1 � k̄ � λ

the boundary condition reduces to

2A| sin θ |
π

∫ p̄max

dp̄ = 2Ap̄max| sin θ |
π

= λ, (6.5)

where p̄max = cλ/| sin θ | and c = O(1) is the upper limit of
applicability of the relation Zp̄ = λ/(|p̄| sin θ ). We see that
the overall factor A = π/(2c) turns out to be O(1) rather
than O(λ), and the “boundary condition” on Zk is reproduced
because the width of the region of integration over p̄ is of
order λ, i.e., is large. In other words, for k̄ deep inside the
CFL regime, the integral over p̄ in (6.5) is confined not to
O(k̄) but rather to the upper limit of the CFL behavior. The
implication of this result is that Zk for a fermion deep inside the
CFL regime is determined by the behavior of the quasiparticle
vertex function when the other momentum p is at the boundary
between CFL and an ordinary FL.

Analyzing the form of Eq. (6.4) we see that fk̄,p̄ = O(λ)
only when k̄ = O(1) and p̄ = O(λ). In all other regions, fk̄,p̄

is smaller. In particular, when k̄ and p̄ are comparable fk̄,p̄ =
O(1), i.e., �c is not enhanced compared to the interaction
V||(k,p). We also verified explicitly that fk̄,p̄ remains O(1) in
the hot region when k̄,p̄ < 1.

Assembling the forms of fk̄, barp in the various regions, we
obtain

fk̄,p̄ ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|p̄|
|k̄| when λ  |p̄|  |k̄| > 1
|k̄|
|p̄| when λ  |k̄|  |p̄| > 1

O(1) when |p̄| ∼ |k̄| > 1 or |p̄|,|k̄| < 1.
λ

|k̄| when |p̄|  λ,|k̄| � λ
λ

|p̄| when |k̄|  λ,|p̄| � λ

(6.6)

Note that this behavior holds independent of the value
of θ . The prefactor in each regime, however, depends
on θ .

The full vertex function is �ω
αβ,γ δ(KF ,PF ) =

(3/2)V||(k̄,p̄)fk̄,p̄(δαγ δβδ + �σαγ �σβδ). Substituting fk̄,p̄

from (6.4) and returning to original variables k and p we
obtain in the “lukewarm” regime λ  k̄,p̄  1,

�ω
αβ,γ δ(KF ,PF ) = 3A

2

g

|k||p| sin θ
(δαγ δβδ + �σαγ �σβδ). (6.7)

We show the behavior of the charge components f c
k̄,p̄

=
fk̄,p̄ and �c(KF ,PF ) for k̄ = O(1) as a function of p̄

in Fig. 18. The behavior of the spin components is
identical.

The selective enhancement of the quasiparticle vertex
function is specific to the SDW QCP and may be essential for
the analysis of higher-order renormalizations of the bosonic
propagator.11

A. Contributions to �c,s(KF,PF) with large
and small KF − PF

More information about the physics of the CFL can be
obtained if one looks more carefully into the diagrammatic
series for �ω(KF ,PF ) and realizes that the full �ω(KF ,PF ) is
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FIG. 18. (a) The behavior of f c
k̄,p̄

= fk̄,p̄ for k̄ = O(1) as a function of p̄. (b) The same for �c(KF − PF ) ≡ �c
k̄,p̄

= (3/2)V||(k̄,p̄)f c
k̄,p̄

. The

behavior of the spin components f s
k̄,p̄

and �s
k̄,p̄

is the same. We recall that k̄ = kξ , p̄ = pξ , and p and k are deviations from the corresponding
hot spots along the FS.

the sum of the contributions in which momenta kF and pF are
located near hot spots separated by qπ (these are the diagrams
with an odd number of spin-fermion interaction lines), and
contributions in which momenta kF and pF are located near
the same hot spot (these are the diagrams with an even number
of spin-fermion interaction lines). We label the corresponding
contributions to fk̄,p̄ as f

(π)
k̄,p̄

and f
(0)
k̄,p̄

. The fk̄,p̄ in (6.4) is the

sum of the two contributions: fk̄,p̄ = f
(π)
k̄,p̄

+ f
(0)
k̄,p̄

≡ f
(+)
k̄,p̄

.

The set of coupled equations for f
(π)
k̄,p̄

and f
(0)
k̄,p̄

is readily
obtained from Fig. 19. We have

f
(π)
k̄,p̄

= 1 + λ

π

∫
f

(0)
k̄,l̄

Kk̄,l̄Kl̄p̄

Kk̄,p̄

dl̄

Zl̄

,

(6.8)

f
(0)
k̄,p̄

= λ

π

∫
f

(π)
k̄,l̄

Kk̄,l̄Kl̄p̄

Kk̄,p̄

dl̄

Zl̄

.

Summing up the two equations we reproduce Eq. (6.4). To
compare the relative strength of the two contributions to fk̄,p̄

it is also instructive to analyze f
(−)
k̄,p̄

= f
(π)
k̄,p̄

− f
(0)
k̄,p̄

. Subtracting
the second equation in (6.8) from the first one, we obtain that
the equation for f

(−)
k̄,p̄

decouples from that for f
(+)
k̄,p̄

and takes
the form

f
(−)
k̄,p̄

= 1 − λ

π

∫
f

(−)
k̄,l̄

Kk̄,l̄Kl̄p̄

Kk̄,p̄

dl̄

Zl̄

. (6.9)

FIG. 19. The set of coupled equations for �(π )(KF ,PF ) =
f π

k̄,p̄
V||(k̄,p̄) and �(0)(KF ,PF ) = f 0

k̄k,p̄
V||(k̄,p̄).

The difference with the corresponding expression for f
(+)
k̄,p̄

≡
fk̄,p̄, Eq. (5.29), is the negative sign of the integral term in

the right-hand side of (6.9). Just like f
(+)
k̄,p̄

is related to the
triple vertex �k = Zk by the “boundary condition,” Eq. (5.31),
the function f

(−)
k̄,p̄

is related to the “triple” vertex �
(−)
k , which is

given by the same set of diagrams as of �k (see Fig. 3), but with
different signs of contributions with even and odd interaction
lines. The “boundary condition” on f

(−)
k̄,p̄

is

λ

π

∫
f

(−)
k̄,p̄

Kk̄,p̄

dp̄

Zp̄

= 1 − �
(−)
k̄

(6.10)

and the function �
(−)
k̄

satisfies the integral equation

�
(−)
k̄

= 1 − λ

π

∫
dp̄

�
(−)
p̄

Zp̄

1

k̄2 + p̄2 − 2k̄p̄ cos θ + 1
,

(6.11)

which is similar to Eq. (5.24) (after rescaling) but with a
different sign of the integral term.

The function �
(−)
k has been analyzed by Hartnoll et al.

in the context of vertex corrections for conductivity.14 They
found that �

(−)
k has a power-law dependence �

(−)
k = B(−)kβ

for 1 < k̄ < λ/ sin θ , with

β = θ

π − θ
, 0 < θ < π/2,

= π − θ

θ
, π/2 < θ < π. (6.12)

Note that now the exponent does depend on the value of θ .
The prefactor B(−) is determined by the condition �

(−)
0 = 0

(or, more accurately, �
(−)
0 � 1). This yields

1 = 2B(−) sin θ

π

∫ p̄max

0
dp̄p̄β−1, (6.13)

where, we recall, p̄max = aλ/ sin θ and a = O(1). The integral
is confined to the upper limit and yields

B(−) = πβ

2 sin θ

(
sin θ

aλ

)β

. (6.14)
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Using (6.14) we then find that

�
(−)
k = πβ

2 sin θ

(
k̄ sin θ

aλ

)β

≡ πβ

2 sin θ

(
4πvF k sin θ

3ag

)β

.

(6.15)

At smaller k̄ � 1 the momentum dependence becomes weak
and �

(−)
k saturates at a small value �

(−)
k ∼ (1/λ)β . At k̄ >

λ/(sin θ ) a straightforward analysis shows that �
(−)
k saturates

at �
(−)
k ∼ 1/(sin θ ).

That �
(−)
k is small at k̄ < 1 has a direct implication for

the form of f
(−)
k̄,p̄

at k̄ < 1 and 1 < p̄ < λ/ sin θ . Namely, the

“boundary condition” on f
(−)
k̄,p̄

, Eq. (6.10), becomes

sin θ

π

∫
dp̄

|p̄|f
(−)
0,p̄ ≈ 1. (6.16)

To satisfy this equation, f
(−)
k̄,p̄

must be a decreasing function
of p̄. Accordingly, we search for the solution of Eq. (6.9) for
k̄ � 1 and p̄  1 in the form f

(−)
k̄,p̄

∝ (p̄)−β(−)
. Substituting

this form into (6.9) we obtain after simple algebra the self-
consistency condition on β(−) in the form

1 = sin θ

π

∫ ∞

−∞

|x|−β(−)
(x − 2sgn(x) cos θ )

x2 + 1 − 2x cos θ
. (6.17)

The integration in (6.17) can be performed analytically and
yields

cot
πβ(−)

2
= cot

[
θ (1 + β(−))

2

]
for 0 < θ < π/2

(6.18)

and

cot
πβ(−)

2
= cot

[
(π − θ )(1 + β(−))

2

]
for π/2 < θ < π.

(6.19)

Solving for β(−) we obtain β(−) = β, where β is given by
Eq. (6.12).

When both k̄ and p̄ are between 1 and λ/ sin θ , the solution
of (6.9) is more complex, but we found that it is rather well
approximated by

f
(−)
k̄,p̄

= A(−)

( |k̄p̄| sin θ

k̄2 + p̄2 − 2k̄p̄ cos θ

)β

. (6.20)

The prefactor A(−) = O(1) is determined by the “boundary
condition,” Eq. (6.10). For k̄ < λ/(sin θ ), �

(−)
k ∼ (k̄ sin θ/λ)β

is still small compared to 1, and, neglecting it, we obtain
from (6.10)

2β−1A(−) sin θ

π

∫ ∞

−∞

|x|β+1dx

(x2 + 1 − 2x cos θ )β+1
= 1 − �

(−)
k ≈ 1,

(6.21)

where x = p̄/k̄. This equation is not an exact one because
Eq. (6.20) is valid only for p̄,k̄ > 1, but it should be good for
an estimate of the value of A(−). One can easily check that the
prefactor A(−) remains O(1) for all θ and, according to (6.21),
is equal to A(−) = 2 for θ = π/2, when β = 1. To reproduce
the boundary condition with �

(−)
k included, one has to include

subleading terms of order k̄/λ and p̄/λ into f
(−)
k̄,p̄

.
Assembling contributions from various regions, we obtain,

for a generic sin θ = O(1),

f
(−)
k̄,p̄

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( |k̄|
|p̄|

)β
when λ  |p̄|  |k̄| > 1( |p̄|

|k̄|
)β

when λ  |k̄|  |p̄| > 1

O(1) when |p̄| ∼ |k̄| > 1 or |p̄|,|k̄| < 1.( |k̄|
λ|

)β
when |p̄|  λ,|k̄| � λ( |p̄|

λ|
)β

when |k̄|  λ,|p̄| � λ

(6.22)

We plot f
(−)
k̄,p̄

for k̄ = O(1) as a function of p̄ and the

corresponding �(−)
c (k,p) = Vc(k − p)f (−)

k,p in Fig. 20.

The outcome of the analysis of f
(−)
k̄,p̄

is that f
(−)
k̄,p̄

is of

order 1 when k̄ and p̄ are comparable but becomes small
when either k̄  p̄ or p̄  k̄. Comparing this with f

(+)
k̄,p̄

, we

see that both are of order one when k̄ ∼ p̄, but when one
momentum is larger than the other, f

(+)
k̄,p̄

 f
(−)
k̄,p̄

. In this last

case, f
(π)
k̄,p̄

and f
(0)
k̄,p̄

are almost identical and large, i.e., the
enhancement of �c,s compared to the interaction V||(k,p) holds
for both components of �c,s : the one in which kF and pF are
located near hot spots at distance qπ from each other and
the one in which kF and pF are located near the same hot
spot.

VII. THE LANDAU FUNCTION IN A CFL, THE DENSITY
OF STATES, AND THE UNIFORM SUSCEPTIBILITIES

A. The Landau function

The full vertex function �ω
αβ,γ δ(KF ,PF ) is given by

�ω
αβ,γ δ(KF ,PF ) = 3

2

ḡξ 2

k̄2 + p̄2 + 1 − 2k̄p̄ cos θ

× fk̄,p̄(δαγ δβδ + �σαγ �σβδ). (7.1)

In the isotropic case, the quasiparticle interaction function (the
Landau function) Fαβ,γ δ(KF ,PF ) is related to �ω

αβ,γ δ(KF ,PF )
by

Fαβ,γ δ(KF ,PF ) = 2
NF

Z2
�ω

αβ,γ δ(KF ,PF ) (7.2)
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FIG. 20. (a) The behavior of f
(−)
k̄,p̄

for k̄ = O(1) as a function of p̄. (b) The same for �(−) = f
(−)
k̄,p̄

V||(k̄,p̄).

(see, e.g., Ref. 2). The prefactors are essential, as, in the
isotropic case, Fαβ,γ δ(KF ,PF ) depends only on the angle γ

between kF and pF and may therefore be expanded in the basis
of Legendre functions of argument cos γ . The corresponding
components of Fαβ,γ δ(φ), labeled F (l)

c and F (l)
s , determine

various observables. For example, the DOS and uniform charge
and spin susceptibilities are expressed as

NF = NF,0
(
1 + F (1)

c

)
,

χc = χc,0
1 + F (1)

c

1 + F
(0)
c

, (7.3)

χs = χs,0
1 + F (1)

c

1 + F
(0)
s

,

where NF,0, χc,0, and χs,0 are the DOS and the susceptibilities
of free fermions.

In our case the situation is a bit more involved because the
quasiparticle residue depends on momentum along the FS and
also because �c(KF ,PF ) and �s(KF ,PF ) depend separately on
k and on p rather than only on k − p. It is natural to expect that
a proper extension of Eq. (7.2) to our case would be to replace
Z2 in (7.2) by ZkZp. Keeping NF intact for the moment and
combining Eqs. (2.3), (2.4), (5.28), (6.6), (6.22), and Eq. (4.5)
for Zk , we find after simple algebra that when k̄ and p̄ satisfy
1 � k̄,p̄ � λ, the charge and spin components of the Landau
function become momentum independent,

Fc,s(KF ,PF ) = 16π2NF Av2
F sin θ

3g
. (7.4)

However, how to deal with NF is a subtle issue because
NF is proportional to the effective mass m∗, which in our
case also becomes momentum dependent. Even more essential,
it is a priori unclear how to properly define F (l)

c and F (l)
s

from Eq. (7.4) to reproduce, e.g., Eqs. (7.3). Because of these
complications, below we actually derive the expressions for
spin and charge susceptibilities and see whether they can be
described by formulas similar to Eq. (7.3).

The susceptibilities in the lattice Hubbard model have been
analyzed within the renormalization group scheme by Halboth
and Metzner.31 However, the problem they studied differs from
ours—in their case fermionic self-energy still can be neglected,
while in our case it plays the major role.

B. The density of states and uniform susceptibilities

1. The density of states

We first observe that the enhanced effective mass near the
hot spots, m∗

k/m ∝ Zk , leads to a logarithmic enhancement of
the DOS at the Fermi level NF compared to the total DOS in
an ordinary FL NF,0 = m/(2π ). We have

NF = NF,0〈Zk〉k

= 2NF,0

∫ λ/ξ sin θ

1/ξ sin θ

λ

kξ sin θ

dk

2πkF

= 3gm

8π3vF kF sin θ
ln λ. (7.5)

The divergence of the total DOS NF leads to a diverging
specific heat coefficient C/T ∝ ln λ. This agrees with the
calculation in Ref. 8.

The divergence of the DOS raises the question whether
the uniform susceptibilities diverge at a SDW QCP, because
in (7.3) NF appears as an overall factor in both susceptibilities.
If we formally use the relation (7.4) and obtain F (l=0)

c and
F (l=0)

s by averaging over both k and p, we find that both F (l=0)
c

and F (l=0)
s scale as NF . This would imply that NF cancels

out between numerator and denominator in the expressions
for χc,s in (7.3), i.e., χc,s tend to finite values at a SDW
QCP.

To verify this, we perform a diagrammatic order-by-order
calculation of the susceptibilities and verify whether the
results can be cast into the forms of Eq. (7.3) with Fc = Fs

given by Eq. (7.4). As a side result of our consideration,
we also show how the Landau FL formulas for spin and
charge susceptibilities are reproduced diagrammatically. To
the best of our knowledge, this has not been presented in
detail in the textbooks (there is some discussion on this in
Ref. 12).

2. The uniform susceptibilities

Because spin and charge components of our vertex function
are the same (to leading order in ξ ) the static charge and spin
susceptibilities are the same up to the extra factor μ2

B in the
spin magnetic susceptibility.

The charge susceptibility χc = dn/dμ (equal to charge
compressibility, up to a sign) describes the change of the
number density n of particles under a change of the chemical
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FIG. 21. Diagrams for the particle-hole polarization bubble with
either spin δ functions or spin σ matrices in side vertices (for charge or
spin bubbles, respectively). (a) Particle-hole bubble for free fermions.
At � = 0 and q → 0, the result comes from fermions right on the
FS. (b) Particle-hole bubble with self-energy and vertex correction
insertions. The factor Zk is included into the fermionic propagator.
There are two contributions from each cross section: One comes from
fermions right on the FS and another comes from fermions away from
the FS. For the latter one can safely set q = 0. (c) The same skeleton
diagram as in (b) but with one selected cross section (marked by the
dashed line), in which the contribution comes from the FS. In all other
cross sections the contributions come from fermions away from the
FS. The shaded vertices here and in (d) represent the infinite sum of
such contributions. [(e) and (f)] Diagrams with two and three cross
sections in which the contribution comes from fermions at the FS.

potential. For free fermions, χc,0 is given diagrammatically
by a particle-hole bubble with zero incoming frequency, in
the limit of vanishingly small momentum [Fig. 21(a)] as
follows:

χc,0 = −2 lim
q→0

∫
d2pdωp

2π3

1

(iωp − εp)(iωp − εp+q)
,

(7.6)

where the overall factor 2 comes from spin summation and a
factor −1 from the fermionic loop. Using d2p = dp(dεp/vF )
and εp+q ≈ εp + vF q⊥ and integrating over ωp first (which,
we note, is always the safest way to proceed), we find that the
integral over ωp is confined to a tiny range of |ωp|,|εp| <

vF |q⊥|, where the poles in the two Green’s functions are
in two different half-planes of frequency. Integrating over

ωp and then over εp, we obtain χc as the integral over
the FS,

χc,0 = 2
∫

dp

4π2vF

. (7.7)

For a circular FS, vF is a constant along the FS, the integral
over p gives the length of the FS 2πkF , and we obtain the
well-known result χc,0 = 2NF,0 = m/π , where m = kF /vF .
The key point here is that the integration in (7.6) is truly
confined to an infinitesimally small range near the FS, with
the energy width of order vF q⊥. This should be contrasted
with the integrals for Zk and �ω, which come from small but
finite distances from the FS.32

Now let us perform the same calculation but use the
renormalized Green’s function instead and also add vertex
corrections. Self-energy corrections obviously replace iωp by
iωpZp. Vertex corrections are more tricky. At first glance, they
form a ladder series, shown in Fig. 21(b), and one has to dress
up only one of two side vertices to avoid double counting. The
ladder series yield the dressed vertex �c(p) = Zp. Evaluating
the integral with the product of two dressed Green’s functions
and one �c(p) we find that the factors Zp cancel out and the
result remains the same as Eq. (7.7). This does not give us the
expected proportionality to NF .

A more careful analysis, however, reveals that both side
vertices have to be renormalized. The argument is the fol-
lowing: Once we set the external q to be small but finite, we
have two contributions from each cross section in the diagram
in Fig. 21(b). One comes from the infinitesimally small range
near the FS, and another comes from a small but finite distance
from the FS. In this situation, to get the result proportional to
the bare susceptibility, we have to choose one cross section
in which we take the contribution coming from the FS and
sum up all cross sections on both sides of the selected one,
each time taking only the contribution from a finite distance
from the FS [see Figs. 21(c) and 21(d)]. In this computational
procedure, there is no double counting, and the result is

χc,1 = −2 lim
q→0

∫
d2pdωp

(2π )3
(�c(k))2

× 1

(iωpZp − εp)(iωpZp − εp+q)

=
∫

d2pdωp

(2π )3

Z2
p

(iωpZp − εp)(iωpZp − εp+q)

= 2
∫

dp

4π2vF

Zp = 1

π2vF sin θ

λ

ξ
ln λ = 2NF , (7.8)

precisely as expected. The same result can be also obtained
on physics grounds, once we use the fact that �c

k = Zk is
the renormalization factor in the coupling between fermionic
density operator c

†
kck and the change of the chemical potential.

We see therefore that at this stage we reproduced the
numerator of (7.3) by choosing one cross section in which
the integration is confined to the FS. We now show that
the denominator is reproduced by selecting terms with two,
three, and so on, cross sections of this kind, and each time
summing up an infinite series of contributions between such
cross sections and keeping only the terms coming from a finite
distance from the FS. These intermediate contributions sum
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up exactly into �ω, and this is how the Landau function enters
into the diagrammatic loop expansion. The term with two
cross sections in which contributions are confined to the FS is
shown in Fig. 21(e). The vertex between the two cross sections
is �c(KF ,PF ). Using the form of �c(KF ,PF ), Eq. (6.7),
assembling the spin factors, and evaluating the integrals, we
obtain

χc,2 = −6
Ag

(4π2vF )2 sin θ

∫ λ/ξ sin θ

1/ξ sin θ

dk

k

∫ λ/ξ sin θ

1/ξ sin θ

dp

p

= − 3Ag

2π4v2
F sin θ

(ln λ)2. (7.9)

We emphasize that the quadratic dependence on ln λ is a direct
consequence of the fact that �c(KF ,PF ) scales as 1/|kp|. If
�c would be the same as V (KF − PF ) = V||(k,p), we would
only obtain one power of the logarithm.

The diagram with three cross sections in which contribu-
tions are confined to the FS is shown in Fig. 21(f). Evaluating
the integrals, we obtain

χc,3 = 9A2g2

4π6v3
F sin θ

ξ

λ
(ln λ)3, (7.10)

and so on. We now notice that

χc,2 = −χc,1S, χc,3 = χc,1S
2, (7.11)

where

S = 3Ag

(2π2vF )

ξ

λ
ln λ, (7.12)

i.e., the first two terms in the series form a geometric
progression. One can easily make sure that this continues to
higher loops and the full χc is given by

χc = χc,0

1 + S
∝ NF

1 + S
. (7.13)

The term S(θ ) is proportional to Fc(KF ,PF ). One can easily
make sure that for a rotationally invariant system it is exactly
F (l=0)

c . From this perspective, our analysis is the diagrammatic
derivation of the FL formula for the charge susceptibility.
A very similar reasoning was used by A. Finkelstein in his
analysis of the charge susceptibility in a disordered electron
liquid with interactions.19

For our case, using λ/ξ = 3g/(4πvF ), we obtain

S = 2A

π
ln λ. (7.14)

Substituting the expressions for NF and S into (7.13) we find
that χc remains finite at the SDW QCP and is

χc = 2NF,0
3g

8πAvF kF sin θ
∼ NF,0

g

EF

. (7.15)

This expression is parametrically smaller than for free
fermions, i.e., although χc remains finite at the SDW QCP,
it gets reduced by renormalizations.

It is instructive to compare S(θ ) with Fc(KF ,PF ), averaged
over k and p. The result depends over what interval we average.
If we average only over the interval where Fc(KF ,PF ) is given

by Eq. (7.4) and is independent on momenta, we obtain

〈Fc(KF ,PF )〉 = NF

16π2Av2
F sin θ

3g

= 16π2Av2
F sin θ

3g

3gm

8π3vF kF sin θ
ln λ

= 2A

π
ln λ, (7.16)

which is exactly the same as (7.14). Then 〈Fc(KF ,PF )〉 is the
same as F (l=0)

c in the FL theory. If, however, we average over
the whole FS, we get a smaller 〈Fc(KF ,PF )〉. This uncertainty
implies that in lattice systems there is no universal formula
like Eq. (7.3), and the only way to obtain χc is to explicitly
sum up the series of terms with one, two, three, and so on,
cross sections, in which the integral comes from the FS.

The same result holds for the spin susceptibility χs , which,
as we said, differs from a charge susceptibility only by a
factor μ2

B .

χs = 2μ2
BNF,0

3g

8πAvF kF sin θ
∼ μ2

BNF,0
g

EF

. (7.17)

The reduction of χs compared to free-fermion result μ2
BNF,0

agrees with the analysis in Ref. 33. We emphasize that the
equivalence between the two is a direct consequence of the
fact that the fully renormalized vertex function has the same
functional form in the charge and spin channels, in which case
Ward identities impose equivalence between spin and charge
components of �ω (and of the Landau function).

VIII. CONCLUSIONS

In this paper we obtained the quasiparticle vertex function
�ω(KF ,PF ) for a system of interacting fermions in 2D near a
spin-density wave instability at wave vector qπ = (π,π ) [KF is
a 3D vector in momentum/frequency space with components
(kF ,0)]. Near the SDW instability, the interaction between
low-energy fermions, V (K − P ), is mediated by overdamped
collective excitations in the spin channel. We identified two
regimes near a SDW QCP: (i) an ordinary FL regime, in which
renormalizations induced by the spin-mediated interaction
are weak and (ii) a CFL regime in which they are strong.
We argued that at the boundary between the two regimes
the self-energy changes from predominantly static (in an
ordinary FL) to predominantly dynamic (in a CFL). In the
latter case, the quasiparticle Z factor (the inverse residue) and
the effective mass ratio m∗/m coincide and are large in hot
and lukewarm regions near a hot spot on the FS. We argued
that �ω

αβ,γ δ(KF ,PF ) differs from the effective spin-mediated
interaction V (KF − PF )�σαδ �σβγ already in the ordinary FL
regime due to additional contributions from AL-type diagrams.
The latter, although nominally of higher power in the (small)
interaction constant, turn out to be of similar structure as the
first order spin-fluctuation exchange term due to a singularity,
which leads to the cancellation of one power of the coupling.
The dominant effect of the AL terms is to change the sign of
the quasiparticle interaction function in the spin channel. We
demonstrated that the full �ω in an ordinary FL (the sum of the
direct spin-mediated interaction and the AL terms) has equal
spin and charge components and satisfies the constraint on
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these two components, imposed by the Ward identities related
to the conservation of the total number of particles and the
total spin.

We further considered the vertex function in a CFL.
We argued that the equivalence between charge and spin
components of �ω still holds, but each component gets strongly
renormalized due to contributions which vanish for a static
interaction and are negligible in an ordinary FL but become
essential in a CFL where the Landau damping term plays
a central role. We show that �c(KF ,PF ) = �s(KF ,PF ) are
enhanced compared to V (KF − PF ), but the enhancement
is present only when one of the fermionic momenta, either
kF or pF , is at much larger distance from the corresponding
hot spot than the other. When the deviations are comparable,
�c,s and V (KF − PF ) are of the same order. We used
this renormalized �c,s to obtain the quasiparticle interaction
function (the Landau function) F (KF ,PF ) and showed that
near a CFL it is essentially independent of momenta kF

and pF .
We further showed that the residue Zk of a fermion with

momentum kF deep in the CFL region near a hot spot is
determined by contributions from �c,s(KF ,PF ) for which the
other fermion with momentum pF is located at much larger
deviations from a hot spot, namely near the boundary between
lukewarm and cold regions of the FS. We also demonstrated
that in the momentum range where �c,s is enhanced compared
to V (KF − PF ), the enhancement holds for the part of �c,s

in which kF and pF are located near different hot spots at a
distance qπ from each other, and the part in which kF and pF

are located near the same hot spot.
As an immediate application of this result we considered

the density of states and the uniform charge and spin

susceptibilities. We showed that the DOS diverges as log ξ

upon approaching the SDW QCP. We introduced the Landau
function F (KF ,PF ) by straightforward extension of the
formula for the isotropic case but cautioned that F (KF ,PF )
depends on both kF and pF along the FS and not only on
their difference. In this situation, one cannot use the standard
FL formulas and has to obtain charge and spin susceptibilities
by explicitly summing up bubble diagrams with self-energy
and vertex corrections. We demonstrated how to do this and
paid special attention to the difference between contributions
coming from the infinitesimal vicinity of the FS and from states
at a small but still finite distance from the FS. We showed that
the charge and spin susceptibilities tend to exactly the same
value at the SDW QCP (modulo the additional factor μ2

B in
the spin susceptibility).

We demonstrated that higher-loop terms for χc,s form a
geometrical series, like in an isotropic FL. We argued that, in
this situation, one can effectively describe χc,s by a FL-like
formula in which the 〈Fc,s(KF ,PF )〉 play the role of the l = 0
Landau parameters.
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