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Measuring Berry curvature with quantum Monte Carlo
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The Berry curvature and its descendant, the Berry phase, play an important role in quantum mechanics. They can
be used to understand the Aharonov-Bohm effect, define topological Chern numbers, and generally to investigate
the geometric properties of a quantum ground state manifold. While Berry curvature has been well studied
in the regimes of few-body physics and noninteracting particles, its use in the regime of strong interactions
is hindered by the lack of numerical methods to solve for it. In this paper I fill this gap by implementing
a quantum Monte Carlo method to solve for the Berry curvature, based on interpreting Berry curvature as a
leading correction to imaginary time ramps. I demonstrate my algorithm using the transverse-field Ising model
in one and two dimensions, the latter of which is nonintegrable. Despite the fact that the Berry curvature gives
information about the phase of the wave function, I show that the algorithm has no sign or phase problem for
standard sign-problem-free Hamiltonians. My algorithm scales similarly to conventional methods as a function
of system size and energy gap, and therefore should prove a valuable tool in investigating the quantum geometry
of many-body systems.

DOI: 10.1103/PhysRevB.89.045107 PACS number(s): 02.70.Ss, 03.65.Vf, 75.10.Pq

I. INTRODUCTION

From the Aharonov-Bohm effect [1,2] to topological
insulators [3–8], geometry and topology play a major role
in modern condensed matter physics. Topological properties
of such systems yield edge states, quantized transport, and
other robust physical quantities [1,4,5,9–13]. Topologically
nontrivial systems have even been proposed as having major
implications for cosmology [14].

Nearly all of the topological invariants in quantum mechan-
ical systems are based on the concept of geometrical phase,
a.k.a. Berry phase, a quantity that reflects the geometry of
the ground state manifold [1]. Berry phase is directly tied to
a local tensor known as the Berry curvature. Integrals of the
Berry curvature define many important topological quantities
such as the Chern number [9,11], and its presence in electron
systems plays a role from the anomalous quantum Hall effect
[15] to crystal polarization [16,17] and DC transport [18].

While the Berry curvature and its integrals are relatively
well understood for noninteracting electrons [4,9,10,13], their
use in strongly interacting systems remains in its infancy.
For weakly-correlated systems, density functional theory does
very well [16], but for strongly-correlated systems the best
exact method to determine the Chern number is currently
numerical diagonalization [17,19], which scales very poorly
with system size. Therefore, it is important to develop methods
to extend calculations of the Berry curvature to larger system
sizes.

In this paper, I develop a quantum Monte Carlo (QMC)
method for measuring the (many-body) Berry curvature. QMC
methods remain the gold standard for exact numerical methods
in many-body physics, scaling efficiently with system size
for a wide class of problems [20–22]. Here I describe and
implement such a method which, similar to the original work
by Berry [1], uses spin systems. In particular, I demonstrate
these ideas using the quantum spin-1/2 transverse-field Ising
(TFI) model in d dimensions [23–27], which is a nonintegrable
strongly-interacting spin system for d � 2. The algorithm can
be readily extended to other sign-problem-free spin [28–30],
bosonic [31–33], or even certain fermionic systems [34,35].

Given that the Berry curvature is a measure of the invariant
ground state phase, it is surprising that QMC methods can solve
this quantity without encountering the notorious sign problem.
To accomplish this, I rewrite the Berry curvature as the leading-
order correction to an asymmetric ramp in imaginary time
[27,36], whose dynamics can be solved exactly using sign-
free QMC methods. At the end of the paper, I show that this
algorithm scales with system size L and gap � comparably
to ground state algorithms for more conventional observables,
demonstrating that its use for large and complicated systems
is quite feasible.

II. BERRY CURVATURE FROM RAMPS

Consider an arbitrary manifold of Hamiltonians H (�λ)
parameterized by some externally-controlled parameters �λ
(e.g., magnetic field). Given the ground states |ψ0(�λ)〉, the
Berry phase is defined for some closed loop C in parameter
space as follows: consider ramping the parameters around this
loop adiabatically and returning to the initial point �λi . A naive
expectation is that the wave function will return to |ψ0(�λi)〉 up
to a dynamical phase factor e−i

∫
E0dt , where E0 is the ground

state energy. However, there is an additional phase factor eiγB

known as the geometric or Berry phase [1], which derives from
the quantum geometry of the ground state manifold. The Berry
phase is given by

γB = i

∮
C
〈ψ0| �∇|ψ0〉 · d�λ ≡

∮
C

�A · d�λ, (1)

where �A is the Berry connection. If we think of �A as a magnetic
vector potential, then its curl is the “magnetic field” F , called
the Berry curvature:

Fμν = ∂μAν − ∂νAμ. (2)

Just as the phase of a charged particle acquires an
Aharonov-Bohm phase when moving around a magnetic flux,
the surface integral of the Berry curvature over a manifold M
with C as its boundary gives the Berry phase: γB = ∫

M F · dS.
If M is a closed manifold, then single valuedness of the wave
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function demands that the phase be 2πn for some integer

n = 1

2π

∮
M

F · dS, (3)

where n is a topological invariant known as the first Chern
number. In the language of effective magnetic field, n is the
number of magnetic flux quanta piercing the surfaceM, which
is an integer due to Dirac monopole quantization [37]. It can
be used to define the topological order of many materials, e.g.,
quantum Hall systems and topological insulators [4,9,11,13].
Therefore, the Berry curvature plays a crucial role in the
geometry and topology of the ground state manifold.

Recently, Gritsev and Polkovnikov [36] pointed out that
the Berry curvature emerges naturally as a leading order
correction to adiabatic dynamics in ramped systems. While
Monte Carlo methods are unable to simulate such real-time
dynamics, a similar analysis in imaginary time [27] gives
the Berry curvature for asymmetric ramps. More explicitly,
consider an imaginary time ramp along some direction λμ

at rate vμ = dλμ/dt . Then, stopping at a fixed point �λf in
parameter space, the wave function to lowest order in vμ is
given by [38]

|ψ(vμ)〉 ≈ |0〉 − vμ

∑
n�=0

|n〉 〈n|∂μH |0〉
(En − E0)2

+ O
(
v2

μ

)
, (4)

where |n〉 labels the energy eigenstates of H (�λf ) with
energy En and nondegenerate ground state |0〉. Now imagine
propagating the bra and ket asymmetrically, and taking
the matrix element of the generalized force ∂νH . Noting
that 〈ψ(−vμ)|ψ(vμ)〉 = 1 to order v2

μ, we find the leading
contribution to this overlap is

〈ψ(−vμ)|∂νH |ψ(vμ)〉
〈ψ(−vμ)|ψ(vμ)〉 = 〈0|∂νH |0〉 − ivμFμν + O

(
v2

μ

)
,

(5)

where Fμν is the (many-body) Berry curvature [39]. Since ∂νH

is Hermitian, the first term in Eq. (5) is real, while the second
term is strictly imaginary. Thus,

vμFμν ≈ −Im

[ 〈ψ(−vμ)|∂νH |ψ(vμ)〉
〈ψ(−vμ)|ψ(vμ)〉

]

= Re

[ 〈ψ(−vμ)|(i∂νH )|ψ(vμ)〉
〈ψ(−vμ)|ψ(vμ)〉

]
. (6)

By taking the slow limit of these asymmetric ramps and
measuring the generalized force i∂νH , we can extract the Berry
curvature. These imaginary time ramps are amenable to QMC
methods, as long as the Hamiltonian is sign free for all values
of λμ during the ramp. As a demonstration of this method,
I now construct an algorithm for numerically computing
Eq. (6) in the TFI model using an extension of the quasia-
diabatic QMC method [27].

III. APPLICATION TO THE TFI MODEL

Consider the TFI model on a d-dimensional lattice, with
Hamiltonian

H = −J
∑
〈jj ′〉

σx
j σ x

j ′ − h
∑

j

σ z
j , (7)

where J > 0 is the ferromagnetic Ising interaction acting on
nearest neighbors j and j ′, h is the transverse field, and σx,y,z

are Pauli matrices. The ground state of this Hamiltonian has
a quantum phase transition from paramagnet to ferromagnet
at the critical point hc, where hc = ±J in one dimension [23]
and hc ≈ ±3.04458J in two dimensions [27]. To get nonzero
Berry curvature, I introduce a third parameter φ corresponding
to a global rotation of all the spins by an angle φ/2 about
the z axis. The Berry phase of this extended TFI model has
been investigated experimentally [40] and theoretically [41,42]
in the integrable one-dimensional case. Here, I numerically
extend this analysis to arbitrary dimensionality d by using
QMC methods.

To fix the overall energy scale, I reparameterize the
couplings as h = s and J = 1 − s. Then the Hamiltonian
described above can be written

H (s,φ)

= −s
∑

j

σ x
j − (1 − s)

∑
〈jj ′〉

[σ+
j σ−

j ′ + eiφσ+
j σ+

j ′ + H.c.],

(8)

where σ± = 1
2 (σ z ± iσ y). We are interested in the nontrivial

component Fsφ of the Berry curvature tensor, which is
a function of the tuning parameter s. For this choice of
parameters, consider a ramp from s = 0 to s = 1. At s = 1, the
ground state consists of all spins pointing to the right, which
I denote |⇒〉. Similarly, at s = 0, the ground state consists of
either all states pointing up or all down; we manually break the
symmetry by choosing |⇑〉 [43]. Then we wish to use QMC to
measure the overlap in Eq. (6) as a function of s ∈ (0,1):

〈i∂φH 〉asym ≡ 〈ψ(−v)|(i∂φH )|ψ(v)〉
〈ψ(−v)|ψ(v)〉 =

〈⇒|T (
exp

[− ∫ τtot

τtot/2 H (τ )dτ
])

[i∂φH ]T
(

exp
[− ∫ τtot/2

0 H (τ )dτ
])|⇑〉

〈⇒|T (
exp

[− ∫ τtot

0 H (τ )dτ
])|⇑〉 ≈ vFsφ,

(9)

where T denotes imaginary time ordering of the exponential. The time-dependent Hamiltonians are given by H (τ ) = H (s = vτ ),
where the ramp rate is v = 1/τtot. To implement this ramp more easily, I use a trick from quasiadiabatic QMC (QAQMC) and
approximate Eq. (9) by an expansion into M equally-spaced steps [27]:

〈i∂φH 〉asym ≈ 〈⇒|(−HM )(−HM−1) · · · (−Hm)[i∂φH ](−Hm−1) · · · (−H1)|⇑〉
〈⇒|(−HM )(−HM−1) · · · (−Hm)[1](−Hm−1) · · · (−H1)|⇑〉 , (10)
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where the Hamiltonians at each step are Hp ≡ H (s = p−1/2
M

).
The effective ramp rate is now v ≈ −E0/M , with E0 the
ground state energy of H at the measurement point smeas =
m/M . This expression becomes exact in the limit of M,E0 →
∞, which can be achieved by taking the limit of large system
size L (see Appendix B for a more detailed analysis of the
QAQMC approximation).

In order to use an SSE-like method to extract Fsφ , I split
the Hamiltonian up into bond and site operators (after adding
a constant offset):

H (s,φ = 0)

= −s
∑

j

[
1j − σx

j

] − (1 − s)
∑
〈jj ′〉

[
σ z

j σ z
j ′ + 1jj ′

]
, (11)

as in equilibrium SSE-QMC simulations of the Ising model
[44]. I also introduce operators corresponding to the general-
ized force,

∂φH |φ=0 = i(1 − s)
∑
〈jj ′〉

(σ+
j σ+

j ′ − σ−
j σ−

j ′ )

= −1 − s

2

∑
〈jj ′〉

[
σ

y

j σ z
j ′ + σ z

j σ
y

j ′
]
. (12)

To this end, I define the measurement operator

M =
∑
〈jj ′〉

[
1jj ′ − iσ

y

j σ z
j ′ − iσ z

j σ
y

j ′ + σx
j σ x

j ′
]

= Nbond1 + 2

1 − s
(i∂φH ) + Hxx. (13)

Here the identity term 1 is used in sampling the denominator
of Eq. (10), the generalized force term i∂φH is used for the
numerator, and the spurious Hxx term is included to maximize
ergodicity. Finally, I measure the ground state energy E0 within
the same simulation by sampling

〈⇒|(−HM ) · · · [Hm] · · · (−H1)|⇑〉
〈⇒| · · · [1] · · · |⇑〉 = E0 + O(v2). (14)

I efficiently sample the overlaps in Eqs. (10) and (14) via
cluster updates similar to those in conventional SSE-QMC
[44]; details of the algorithm, including the cluster updates, can
be found in Appendix A. In addition to standard diagonal and
cluster updates for the Ising Hamiltonians, I introduce cluster
update rules to sample the operators from M. The crucial idea
there is that the σyσ z terms in i∂φH are “half-diagonal,” i.e.,
σy flips the spin and σ z does not. Therefore, for the cluster
update, I treat the operators in M as two separate sites, which
are updated according to the same rules as the on-site σx and 1
operators. So, for example, if the incoming node is connected
to the σ z

j ′ vertex of a σ
y

j σ z
j ′ operator, then the vertex is flipped

to give σx
j σ x

j ′ [45].
The simple method as described above works well for many

cases, but devotes unnecessary time to ramping through values
of s far from the measurement point. I therefore improve the
algorithm by starting with si and sf closer smeas, zooming
in on a range of small width �s = sf − si around it [46]. By
changing si and sf , 〈⇒| and |⇑〉 are no longer the ground states
at the boundaries. In principle, one could modify the algorithm
to first project to the ground state at each end; however, as

we are performing imaginary time ramps, the dynamics will
continually project toward the ground state. Therefore, the
boundary states don’t matter for slow enough ramps [38], and
the algorithm works as before if M is large enough to allow
the initial transients to relax [47].

For a given smeas, as the operators (−Hp) are applied M

times, physical observables relax to their ground state value
roughly exponentially [48] with decay rate proportional to
the (many-body) energy gap. Therefore, to approach the limit
M → ∞ where the algorithm becomes exact, I measure Fsφ

while varying M , and perform an exponential fit to estimate
the decay constant Mdecay. I subsequently work with M much
larger than Mdecay [49].

With this improvement, we now see that the QMC method
for extracting Berry curvature scales similarly to conventional
ground state methods. As noted earlier, the number of steps
required to reach the ground state scales as M ∼ Ld/� [48].
Then, to obtain a given velocity, we simply tune the range
�s. Therefore, the scaling of the number of steps M to get
a given velocity is M ∼ �−1, as opposed to M ∼ �−2 as
might be expected from more naive methods (to get v � �2).
In addition, there is only one step (the measurement) which
involves signed sums, and this “sign problem” does not scale
with system size. Therefore, there is no exponentially bad
sign problem; indeed, since the scaling of M is dominated by
the number of steps required to reach the ground state, it is
identical to similar ground state algorithms.

IV. RESULTS

For the one-dimensional case, the TFI model is exactly
solvable via Jordan-Wigner transformation [23], from which
the Berry curvature can easily be obtained numerically [42]. As
an initial test of the algorithm, I check that the exact and QMC
solutions match for an example point in Fig. 1. As expected,
the generalized force i∂φH scales linearly with v at low ramp
rates, with slope given by the Berry curvature.

I now proceed to obtain the Berry curvature of the full
phase diagram in the one-dimensional model with L = 50 and
in two dimensions for a range of L (Fig. 2). The 1D results are
compared to the exact solution, where clear deviations are seen

FIG. 1. (Color online) To extract the Berry curvature of the one-
dimensional TFI model from QMC, I plot the generalized force
〈i∂φH 〉asym as a function of ramp rate vasym for smeas = 0.25 and
L = 50. The slope at low velocity gives the Berry curvature Fsφ ,
which matches well with the exact result (dashed line).
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FIG. 2. (Color online) Berry curvature of the TFI model in one
(a) and two (b) dimensions. (a) Results for one-dimensional model
on an L = 50 site lattice at two small ramp rates. The dashed line
shows the exact result (v → 0) for comparison. (b) Measured Berry
curvature of the d = 2 TFI model as a function of system size at fixed
v ∼ Ld�s/M = 10−2. Unlike the one-dimensional case, the Berry
curvature does not diverge in the thermodynamic limit.

at finite velocity. This is not surprising, given that the adiabatic
limit requires that the velocity be less than the gap squared:
v � �2 [50]. So, given that the gap vanishes at the critical
point (s = 1/2) in the thermodynamic limit, the finite-velocity
deviations are strongest near there [51]. However, for the case
of a gapped spectrum, low velocities are already sufficient to
get the Berry curvature.

Having established that the method works in the integrable
one-dimensional case, we can now easily do the calculation
for the nonintegrable case of two dimensions. The results of
this simulation are shown in Fig. 2(b). We immediately see
a qualitative difference from the one-dimensional model: The
Berry curvature no longer is divergent (in the thermodynamic
limit) at the quantum critical point. Indeed, unlike in one
dimension, the two-dimensional Berry curvature appears to
approach the thermodynamic limit for systems as small as
L = 10.

One can understand this difference using critical scaling
arguments. As shown in Ref. [52], the scaling dimen-
sion of the Berry curvature is given by Fsφ/Ld ∼ |s −
sc|−νs (d+2z−�s−�φ ) ≡ |s − sc|α , where �λ = d + z − 1/νλ is
the scaling of the operator ∂λH . For the one-dimensional
TFI model, we get α = 0 [i.e., Fsφ/L ∼ log(|s − sc|)], while
for two dimensions (using the exponents in Ref. [27]), we
get α ≈ 0.258, which is singular but not divergent. Thus,
the 2D Berry curvature will be some smooth function of s

plus a nondivergent singularity at the critical point. While my
simulations are unable to resolve this singularity, Fig. 2(b) is

consistent with its existence and clearly rules out the existence
of a divergent Berry curvature at the critical point.

V. CONCLUSIONS

In conclusion, I have implemented a QMC method to
measure Berry curvature. Despite the fact that Berry curvature
measures properties of the ground state Berry phase, my
algorithm has no sign problem for the same set of Hamiltonians
as more conventional QMC methods. In addition, the algorithm
scales efficiently with both system size and energy gap. Using
a specific implementation similar to quasiadiabatic QMC, I
solved for the ground state Berry curvature of the transverse-
field Ising model in one and two dimensions. In agreement with
critical scaling theory, I saw a qualitative distinction between
the models, namely the presence (absence) of divergence in
the Berry curvature in one (two) dimensions.

I demonstrate a QMC method to solve for the Berry
curvature with respect to global (as opposed to local [53])
coupling parameters. Having seen that this idea works for a
simple case, it is readily extensible to other models. Possible
extensions include understanding the response to twisted
boundary conditions (“flux insertion” [54]) and topological
phase transitions in bosons [21], spins [28], or even fermions
[35]. An interesting open question is whether a small ramp
along a direction with a sign problem is sufficient to create
a sign problem in the algorithm. If it is possible to do small
ramps around a sign-problem-free point, this would further
open the class of problems solvable via such a method.
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APPENDIX A: DETAILS OF QMC SCHEME

In this section, I detail the QMC scheme used to solve for
the Berry curvature of the TFI model. With the exception of the
measurement operator M, it is very similar to the algorithm
found in Ref. [27], which in turn is based on SSE-QMC for the
TFI model [44]. I start by briefly reviewing the QMC update
steps for the Hamiltonians, then discuss how this is modified
by the presence of M. Finally, I discuss the computation
of observables, namely the generalized force i∂φH and the
ground state energy E0.

In the SSE method, the Monte Carlo configuration consists
of an operator string with one operator for each step p.
Throughout this Appendix, I will discuss the improved version
of the Berry curvature algorithm, in which si = smeas − �s

2
and sf = smeas + �s

2 . Therefore, step p samples from the
Hamiltonian Hp ≡ H (s = sp), where sp = si + (p−1/2

M
)�s. I

denote by H
p

ip
such an operator sampled from Hp, where ip

iterates over the possible operators in Eq. (11). SSE generally
requires sampling over spin states at the boundaries, but as
we’ll see, this is unnecessary in the current case. We sample
an additional operator for the measurement, denoted MiM .
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All told, a configuration c is represented by the operator string
(H 1

i1
, . . . ,HM

iM
,MiM ).

Given the desired measurement [Eq. (10)], I define the
sampling weight w for configuration c to be proportional to

w(c) ∝ 〈⇒|(−H 1
i1

) · · · ( − Hm
im

)
(MiM) · · · (−HM

iM

)|⇑〉.
(A1)

These weights can be negative because the measurement
operator has terms of the form iσ yσ z which have negative
matrix elements. Therefore, the sampling probability is just
the amplitude of this weight: p(c) = |w(c)|.

Configurations can be efficiently sampled according to this
probability distribution using a straightforward extension of
SSE cluster updates. The basic QMC step of SSE-QMC on
the TFI model consists of two parts: the diagonal update,
followed by the off-diagonal cluster update [44]. The diagonal
update only re-samples operators that are diagonal in the spin
basis. Since I choose to quantize the spins along the z axis,
the diagonal operators in Eq. (11) are the Ising operator and
the heat bath operator 1j . At each step p for which one of
these operators is in the operator string (i.e., the current Monte
Carlo configuration), a new diagonal operator is selected at
random such that the new configuration c′ is selected with
probability proportional to p(c′). The heat bath positions are
therefore selected at random, while the Ising bond is only
allowed to be inserted in positions where the spins on either
side of the bond are aligned. The diagonal update of M is
also straightforward, since the only diagonal operator is 1jj ′ .
Therefore, if the operator MiM starts as an identity, we move
it to a random bond during the diagonal update step.

The cluster update is more complicated, and is responsible
for the efficiency of the SSE algorithm. The idea is to generate
a connected cluster of “nodes,” where each node is an entrance
or an exit vertex from a given operator. Then, with probability
p = 1/2, each cluster is flipped, meaning that the spin state
at each node is flipped with the operator changed accordingly.
The rules for generating the cluster are simple: Nodes that
enter a heat bath (1j ) or spin flip (σ z

j ) operator terminate the
cluster, while nodes entering an Ising bond continue the cluster
growth from the other three nodes on that Ising operator [44].
The 50% acceptance rate comes from the fact that a cluster has
the same sampling probability p(c) before and after flipping.
There is one slight difference between our situation and that
of some other algorithms: One of our boundaries has all spins
pointing up (|⇑〉), meaning that clusters that are in contact with
that boundary are not flipped. This is in contrast to the other
boundary |⇒〉, where clusters touching the boundary can be
flipped because the |⇒〉 state has equal overlap with all spin
states in ↑/↓ basis.

In extending these ideas to the measurement step, given by
the operator M in Eq. (13), the tricky part is that the σyσ z

terms are “half-diagonal.” They are therefore similar in spirit
to two copies of the site operators σx

j and 1j . By introducing
the otherwise useless σxσ x operator, which flips both sites, we
can complete this analogy by doing the cluster update of all
terms inM by just treating them as two separate site operators,
which just happen to lie on the same bond. For example, if we
start with operator σ

y

j σ z
j ′ on some bond 〈jj ′〉 and generate a

cluster that comes in with entrance vertex on site j ′, then we

stop the cluster upon entering the σyσ z vertex. If the cluster
is subsequently chosen to be flipped, we flip the operator at
site j ′ to get σx

j σ x
j ′ . As before, the clusters can be flipped

with probability 1/2, because the amplitude p(c) is the same
before and after flipping. Note that, in flipping the operators,
σy and σx are treated as identical because they have the same
magnitude of their matrix elements [i.e., they give the same
p(c)]. The signs that distinguish these Pauli matrices enter into
the actual measurement.

In taking operator expectation values [with respect to
p(c)], the sign of the weight w(c) must be considered. More
explicitly, the asymmetric expectation value of i∂φH can be
measured using the indicator observables

Oyz(c) =
{

sgn[w(c)] if MiM ∈ {
σ z

j σ
y

j ′
}

0 otherwise
(A2)

O1(c) =
{

1 if MiM ∈ {1jj ′ }
0 otherwise

. (A3)

Then the overlap is given by

〈i∂φH 〉asym = Nbond(1 − s)

2

〈Oyz〉p(c)

〈O1〉p(c)
, (A4)

where 〈· · · 〉p(c) is the statistical expectation value and the
Nbond(1−s)

2 term comes from the prefactor in Eq. (13).
To obtain the velocity v ≈ −E0/M , we need access to the

ground state energy E0. Rather than separately solving this
energy, I use the approximate form

E(v) ≡ 〈ψ(−v)|H |ψ(v)〉
〈ψ(−v)|ψ(v)

, (A5)

which can be obtained at the same time as we measure the
asymmetric expectation value 〈i∂φH 〉asym. Furthermore, since
this observable is diagonal in the energy basis, the leading order
correction will be of order v2 [38], so that E(v) = E0 + O(v2).
Therefore, in the limit v → 0, using E(v) in place of E0 in the
formula for Fsφ should still be accurate to order v.

The energy consists of two terms: an Ising energy that
is diagonal in the z basis and a field energy that is off-
diagonal. Diagonal and off-diagonal operators are generally
measured differently in SSE-QMC [28]. In particular, while
both energies are measured only for the case where MiM is an
identity matrix, the Ising energy is measured precisely at the
measurement step m, while the field energy is averaged over
steps m − 1 and m. More explicitly, the indicator observable
for the Ising energy is

Oising(c) =
{∑

〈jj ′〉 ηjj ′ if MiM ∈ {1jj ′ }
0 otherwise

, (A6)

where ηjj ′ = 1 if the spin states on sites j and j ′ match in the
configuration c and ηjj ′ = −1 otherwise. Similarly, the field
energy at step p is given by the indicator variables

Op

field(c) =
{

1 if MiM ∈ {1jj ′ } and H
p

ip
∈ {

σx
j

}
0 otherwise

(A7)

Op

bath(c) =
{

1 if MiM ∈ {1jj ′ } and H
p

ip
∈ {1j }

0 otherwise
. (A8)
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Then the Ising and field energy densities at the point smeas are

Eising

Nsite
= Jz〈Oising〉p(c)

Nbond〈O1〉p(c)
,

Efield

Nsite
=

h
〈
Om−1

field +Om
field

2

〉
p(c)

〈Obath〉p(c)
, (A9)

in terms of which the ground state energy is well approximated
by [see Eq. (11)]

EM ≡ Eising + Ebond + Nsite. (A10)

In summary, I use the following formula as a QMC estimate
of the Berry curvature,

Fsφ(M) ≡ −MNbond(1 − s)〈Oyz〉p(c)

2EM〈O1〉p(c)
, (A11)

which becomes exact in the limit M → ∞.

APPENDIX B: QAQMC APPROXIMATION

My algorithm is based on the quasiadiabatic quantum
Monte Carlo (QAQMC) of Ref. [27], but could equally well
have been based on the nonequilibrium QMC (NEQMC)
method of Ref. [38]. In NEQMC, we would instead expand
the time ordered exponential in Eq. (9) to get [38]

|ψ(v)〉 =
∞∑

n=0

∫ τtot /2

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1[−H (τn)]

· · · [−H (τ1)]|⇑〉, (B1)

and similarly for the bra 〈ψ(−v)|. This expansion is sampled
stochastically, and via similar arguments as equilibrium

finite-temperature SSE-QMC (with τtot playing the role of β),
the average expansion order is given by 〈n〉 ∼ τtot 〈H 〉, which
is just 〈n〉 ∼ τE0 for nearly-adiabatic ramps. Supplementing
the method described earlier in this paper with an update of the
time string {τ1,τ2, . . . ,τn}, identical to that in Ref. [38], my
algorithm could easily be implemented in an NEQMC-like
form.

However, it is much easier to implement QAQMC and avoid
the time-update step. The basic idea of QAQMC is to fix both
the expansion order M and the sampling times τi in Eq. (B1)
as described in the main text. This works well if the expansion
order was already fairly stable, such that fixing it does not
significantly bias the results, and if the ramp is slow enough
that removing fluctuations in the sampling times τi is similarly
unimportant. The second requirement is why this method is
generally only applicable to ramps near the adiabatic limit,
which is not a problem for our algorithm. The first requirement
translates to demanding that M = 〈n〉 be large, such that its
fluctuations σ ≈ √

M are much smaller than M . Both of these
requirements are satisfied in my algorithm, which justifies the
use of the QAQMC.

In point of practice, convergence of the QAQMC approxi-
mation can be verified at fixed ramp rate v and ramp width �s

by adding a (negative) constant offset C to the Hamiltonian.
As C is increased, so is the number of steps M that we must
sample over, and it is clear that in the limit M → ∞, QAQMC
reproduces NEQMC exactly. For a handful of data points in
the main paper, I have checked that the Berry curvature is
unchanged by adding an offset C (data not shown). Therefore,
I conclude that the data in the main text is fully converged with
respect to the QAQMC approximation.
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