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The interplay between the electronic and structural subsystems has strong implications on the character of
collective excitations in cooperative systems. Their detailed understanding can provide important information on
the coupling mechanisms and coupling strengths in such systems. With the recent developments in femtosecond
time-resolved optical probes, numerous advantages with respect to conventional time-integrated probes have
been put forward. Owing to their high dynamic range, high-frequency resolution, fast data acquisition, and an
inherent access to phases of coherent excitations, they provide direct access to the interplay between various
degrees of freedom. In this paper, we present a detailed analysis of time-resolved optical data on blue bronzes
(K0.3MoO3 and Rb0.3MoO3), prototype quasi-one-dimensional charge-density wave (CDW) systems. Numerous
coherent (Raman active) modes appear upon the phase transition into the CDW state. We analyze the temperature
dependence of mode frequencies, their damping times, as well as their oscillator strengths and phases using
the time-dependent Ginzburg-Landau model. We demonstrate that these low-temperature modes are a result of
linear coupling between the Fermi surface nesting driven modulation of the conduction electron density and the
normal-state phonons at the CDW wave vector, and determine their coupling strengths. Moreover, we are able
to identify the nature of excitation of these coupled modes, as well as the nature of the probing mechanisms in
this type of experiments. We demonstrate that in incommensurate CDW systems, femtosecond optical excitation
initially suppresses the electronic density modulation, while the reflectivity changes at frequencies far above
the CDW induced gap in the single-particle excitation spectrum are governed by the modulation of interband
transitions caused by lattice motion. This approach can be readily extended to more complex systems with
spatially modulated ground states.
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I. INTRODUCTION

Understanding the interaction between different degrees of
freedom seems to be crucial for the description of many novel
advanced solid-state systems such as manganites, high-Tc

superconductors [1], multiferroics, and/or (their) proximity
coupled multilayers [2]. For studying the interplay between
different subsystems, real-time femtosecond techniques are
becoming increasingly important. Here, a femtosecond optical
pulse is used to drive the system out of equilibrium, while
the variably delayed light (from THz [3–6], visible [7] up to
x-ray range [8]) or electron pulse [9,10] is utilized to track the
relaxation back to equilibrium. One of the main advantages
of these techniques is the ability to disentangle different
spectrally overlapping components (excitations) based on their
different temporal characteristics [5,6,11]. Moreover, resonant
pumping schemes are recently being pursued giving access
to dynamics following perturbation of a specific excitation
[12–15]. In this way, the interplay between different excitations
can be determined, clarifying their role in the functional
properties of the material under scrutiny.

Low-dimensional charge-density wave (CDW) sys-
tems [16,17], where the low-temperature symmetry-broken
state involves spatial modulation of both the conduction
electron density and the underlying lattice, present a prototype
system for investigating the interplay between the electronic
and lattice degrees of freedom. In the past decade or so,
various one- and two-dimensional CDWs have been studied by

time-resolved optical [18–25], photoemission [26–30], as well
as structural probes [8–10]. The initial focus of research was in
identifying various components in the observed photoinduced
transients with the corresponding ones obtained by standard
time-averaging spectroscopic techniques, as well as in coher-
ent control of the collective modes [31]. It was shown that
photoexcitation with an intense optical pulse can nonthermally
quench the charge-density modulation which represents the
electronic part of the charge-density wave [23,27]. Systematic
studies of relaxation phenomena as a function of temperature
and excitation density implied that the suppression of the
carrier density modulation amplitude can be achieved on a
time scale much faster than the time it takes for the lattice
modulation to relax [9,23,30]. These observations imply that
on a time scale comparable to the period of the characteristic
lattice vibrations, the electronic and lattice components of the
order parameter may follow different temporal trajectories.

Recent studies have demonstrated that Raman-active col-
lective modes can be studied with unprecedented dynamic
range and frequency resolution by all-optical pump-probe
methods [24,25,32]. By studying reflectivity dynamics in the
prototype quasi-one-dimensional CDW material K0.3MoO3

(commonly referred to as blue bronze), it was shown that
numerous Raman-active modes appear upon lowering the
temperature through the CDW transition temperature [24].
Low-temperature frequencies of these modes could be linked
to frequencies of the phonons at the CDW modulation wave
vector (qCDW) in the normal state, as measured by inelastic
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neutron spectroscopy [33]. Importantly, most of these low-
energy modes showed comparable (and incomplete) softening
upon approaching the phase transition from below [24]. In
order to determine the nature of these collective modes,
the time-dependent Ginzburg-Landau (TDGL) analysis was
applied. It was argued that most (but not all) of these low-
temperature modes are a result of linear coupling of the phonon
modes at qCDW with the modulated density of the conduction
electrons. The incomplete softening of these modes, which
seems to be a general feature in the class of quasi-one-
dimensional CDW materials [18,20,22,32], was attributed
to the fact that the spatially modulated conduction electron
density does not adiabatically follow the ionic motion [24].
Finally, the subpicosecond overdamped component, whose
decay time diverges near Tc and is commonly observed in many
CDW compounds [18,20,22], was attributed to an overdamped
amplitude mode of predominantly electronic character [24].

The results of the TDGL analysis applied to the experimen-
tal data on K0.3MoO3 (Ref. [24]) are summarized in Fig. 1.
Here, the temperature evolution of the mode’s frequencies
and damping times is shown to be well reproduced by TDGL
simulations. However, as opposed to the conventional equilib-
rium Raman spectroscopy, time-domain methods provide also
access to phases of individual modes. The mode’s amplitudes
depend critically on the nature of excitation as well as probing

FIG. 1. (Color online) Comparison of experimental results on the
prototype quasi-one-dimensional CDW K0.3MoO3 with the TDGL
simulation. Left panel presents the temperature dependence of
frequencies (solid symbols) and dampings (denoted by bars) of the
three most intense oscillatory modes, all showing softening upon
approaching T c = 183 K. The low-temperature values of mode
frequencies (in THz) are written. The TDGL model solution for
eigenfrequencies (solid lines) and dampings (shaded areas whose
widths correspond to damping) demonstrate an excellent agreement
with the data (considering the simplicity of the model). Open symbols
present frequencies of several weaker narrow modes, which were not
included in the analysis. The right panel presents the temperature
dependence of damping (solid symbols) of the fast overdamped
component, demonstrating critical slowing down as T c is approached.
The solid line presents the TDGL prediction (a detailed discussion
can be found in Sec. VI and in the Appendix), while the dashed line
corresponds to the time resolution in this experimental configuration.

mechanism. Given the fact that the TDGL model nearly
perfectly captures the evolution of the mode’s frequencies and
damping times, the analysis of the mode’s amplitudes and
phases within this model can provide important information
on the nature of excitation of collective modes as well as
the underlying probing mechanisms. These points were not
elaborately addressed thus far.

The goal of this paper, which is essentially a followup
of Ref. [24], is to address the above-mentioned aspects by
reanalyzing the data on K0.3MoO3, focusing on temperature
dependencies of the collective mode’s phases and oscillator
strengths. Here, the experimentally achieved high-frequency
resolution and high dynamic range enable detailed comparison
with TDGL predictions. We start by introducing the TDGL
description of the dynamics of CDW systems (Sec. II). We
show that different degrees of freedom, while being (linearly)
coupled, exhibit different dynamics. By comparing experimen-
tal data to model predictions, we can thus shed light on the
nature of the probing mechanism in the all-optical configura-
tion (see Sec. III). Similarly, the phases of coupled modes and
their temperature dependence provide important information
as to the nature of excitation process (Sec. IV). In the earlier
publication, several weak “satellite” modes in K0.3MoO3

showed qualitatively different temperature dependence as the
most intense main modes [24]. It was argued that these
modes might result from higher-order coupling. To resolve
this question, we have performed additional measurements on
Rb0.3MoO3, where the mode’s splitting is much stronger than
in K0.3MoO3. In Sec. V, we demonstrate that a closer look
at the temperature dependence of oscillator strengths can be
used to determine the order of coupling of the electron density
modulation to the phonons. In particular, we show that in the
blue bronzes (K0.3MoO3 and Rb0.3MoO3), all the observed
symmetric, Raman-active (non-Goldstone [34]) modes of the
low-temperature CDW phase are a result of linear coupling
between the Fermi surface nesting driven conduction electron
density modulation and normal-state phonons at the CDW
wave vector. Finally, in Sec. VI, we address the overdamped
components for completeness.

We should note that the presented analysis could be applied
to model time-resolved optical data in a broader class of
materials undergoing phase transitions into modulated ground
states.

II. CHARGE-DENSITY WAVE ORDER-PARAMETER
DYNAMICS WITHIN THE TIME-DEPENDENT

GINZBURG-LANDAU FRAMEWORK

This section motivates and introduces the mathematical
framework for the time-dependent Ginzburg-Landau analysis
to analyze the dynamics of the coupled electron-lattice CDW
system. Some graphical examples of selected solutions of the
equation of motion are presented. We elaborate on derivations
that were presented in an earlier publication [24], especially
with respect to the case where multiple phonon modes are
coupled to the electronic order.

Below the critical temperature (in blue bronze Tc =
183 K), new low-energy modes appear in the excitation
spectrum. These are Raman-active modes, as recorded by
Raman [35,36] or time-resolved optical spectroscopy [24], and

045106-2



COLLECTIVE MODES IN QUASI-ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 89, 045106 (2014)

infrared active modes [37–39]. In order to describe the phase
transition and the appearance of these modes, it is convenient
to use the phenomenological theory of the second-order phase
transitions with further application of equations of motion
of Landau-Khalatnikov type. This approach allows one to
describe qualitatively and in some cases even quantitatively
the temperature dependence of the frequencies and dampings
of modes induced by the phase transition.

Charge-density wave transition in solids is commonly
related to the singularity in the electronic susceptibility at
the certain wave vector, which makes the system unstable
with respect to the periodic deformation corresponding to this
wave vector (qCDW) [16]. This vector is usually incommen-
surate and does not coincide with a high-symmetry point of
the Brillouin zone. In the simplest case, as in the case of blue
bronze (space group C3

2h), the phase transition is characterized
by a propagation vector k3 of the Brillouin zone according to
Kovalev’s notation [40]. This vector belongs to the two-prong
star and corresponds to a non-Lifshitz point of the Brillouin
zone. The two prongs of the star transform one to another
via inversion. The phase transition is thus characterized by
two nonidentical points (qCDW and −qCDW), whereby in blue
bronze qCDW = (1,0.748,−0.5) [41].

As it is widely accepted, the application of Landau theory
does not require the knowledge of the symmetry in the low-
temperature symmetry-broken phase, i.e., this theory is based
on the symmetry of the high-temperature phase only. Thus, the
properties of the low-temperature incommensurate phase are
determined by minimizing the thermodynamic potential and
applying dynamic Landau-Khalatnikov equations. In general,
there are two different approaches for describing the phase
transition into an incommensurate CDW phase [42]. Within
the first approach, the incommensurate phase is described as
an intermediate phase between the high-temperature metallic
(unmodulated) and the low-temperature commensurate CDW
phase. Here, the incommensurate phase appears due to the
presence of Lifshitz invariants (the terms in the free-energy
expansion which are linear with the gradient of the order
parameter), which lead to a discommensuration of the com-
mensurate order parameter. The second approach is based on
the construction of the order parameter that corresponds to the
(experimentally determined) incommensurate wave vector. In
this case, the Lifshitz invariants should be neglected since the
phase transition occurs at this particular wave vector. In our
case, it is more convenient to follow the latter approach.

For the above-mentioned incommensurate CDW state char-
acterized by two nonidentical points (qCDW and −qCDW), the
order parameter has two components which are proportional
to exp (±iqCDWr). This means that the order parameter may be
represented by a complex number �̃, whereby �̃(−qCDW) =
�̃∗(qCDW). The free-energy expansion has the form [42,43]

φ = φ0 + α

2
(T − Tc)|�̃|2 + β

4
|�̃|4, (1)

where α and β are the Ginzburg-Landau constants and
φ0 the free-energy density of the high-temperature unmod-
ulated phase. While there are no additional invariants in
the incommensurate case, the situation is different in the
commensurate case. Here, invariants of higher order in the
order parameter, which explicitly depend on the phase of

the order parameter, are allowed. Since CDW modulation in
K0.3MoO3 is incommensurate [33], we will not discuss the
higher-order invariants further.

Below the critical temperature Tc, a nontrivial (nonzero)
value of the order parameter appears:

|�̃|2 = α(Tc − T )/β, (2)

which is associated with the appearance of the conduction
electron density modulation at the Fermi nesting wave vector.

In the low-temperature CDW phase, numerous oscillatory
modes appear at q = 0, displaying pronounced softening when
T → Tc from below. These modes are clearly no simple
zone-folded phonons (in a strictly incommensurate state all
phonons are folded to q = 0). However, these q = 0 modes
can be a result of linear (or higher-order) coupling between
the modulated conduction electron density at qCDW with
normal-state phonons of the same symmetry at qCDW.

To describe this situation, we define � = (�r,�i) as the
(complex) order parameter associated with the electronic
density modulation at the wave vector qCDW and refer to it as
the electronic part of the order parameter (EOP). Conversely,
the normal-state phonons at qCDW are referred to as normal
modes. Thus, we include in the thermodynamic potential [see
Eq. (3)] their normal coordinates which are coupled linearly
to the order parameter [44]. In principle, such procedure is
unnecessary if we consider thermodynamical properties only
(when normal modes are left aside). However, as pointed out
in Ref. [45], dynamic properties in this case (normal phonon
modes linearly coupled to EOP) are significantly different. For
illustrative purposes, we include only one lattice mode coupled
to EOP and define the generalization of the expansion to
multiple modes later (particularly when comparing the model
predictions to the results on blue bronze). The free-energy
expansion for this case is given by

φ = φ0 + 1

2
α(T − Tc0)

(
�2

r + �2
i

) + 1

4
β
(
�2

r + �2
i

)2

+ �2
0

2

(
ξ 2
r + ξ 2

i

) − m(�rξr + �iξi). (3)

Here, ξ = (ξr ,ξi) is the normal coordinate of the normal mode,
which (generally) does not belong to the soft mode [24] and
transforms as �. �0 is the frequency of the normal mode at
T � Tc0, m describes the coupling strength between the EOP
and the normal mode, and α, β > 0 are the Ginzburg-Landau
constants. Here, Tc0 is the bare critical temperature for the case
of negligibly small coupling (when m → 0). We assume that
the effective mass of the mode is equal to 1.

Since the thermodynamic potential is phase independent
in the case of incommensurate CDW order, we can choose
ξ

(0)
i = �

(0)
i = 0. Minimizing Eq. (3) with respect to �r and

ξr , we obtain the equilibrium solution

∣∣�(0)
r

∣∣ =
√

m2

β�2
0

− α

β
(T − Tc0) =

√
α

β
(Tc − T ), (4)

ξ (0)
r = m�0

�2
0

. (5)
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Here, Tc = Tc0 + m2

α�2
0

is the experimentally observable Tc. We

see that from the thermodynamics point of view, Eq. (3) is
identical to Eq. (1). The linear coupling of the EOP (�) to
normal coordinates ξ results in renormalization of the critical
temperature only. We should point out that deformations
belonging to 2qCDW, 3qCDW, 4qCDW, . . . may only be coupled
to higher orders of � (e.g., �2 couples to normal modes at
2qCDW) and will therefore not be taken into account.

Let us now focus on the dynamics of the coupled order
parameter. Here, we are interested in small variations around
equilibrium, where we define x1,2(t) = �r,i(t) − �

(0)
r,i and

y1,2(t) = ξr,i(t) − ξ
(0)
r,i (following the above definition �

(0)
i =

ξ
(0)
i = 0). We assume that in the soft-mode channel (the

overdamped mode showing critical slowing down as Tc

is approached from below [24,32]), the motion is strictly
dissipative while the motion in the normal-mode channel is
oscillatory. The assumption that the (predominantly) electronic
mode is overdamped is based on the fact that its bare
frequency �ω = √

2|�| lies above the gap for single-particle
excitations [16].

With this, the equations of motion describing Raman-active
modes (for consistency we refer to the collection of symmetric
modes as the non-Goldstone channel [34] from here on) have
the following form:

ẋ1 = −2κα(Tc + m2

2α�2
0

− T )x1 − κmy1,

(6)
ÿ1 = −�2

0y1 − mx1.

Here, κ is the damping of the electronic mode in the absence
of coupling. Importantly, Eqs. (6) are decoupled from the
equations of motion in the Goldstone channel that describe
the infrared active modes

ẋ2 = −κ
m2

�2
0

x2 − κmy2, ÿ2 = −�2
0y2 − mx2. (7)

Equations (6) and (7) describe the overdamped and oscillatory
excitations in the non-Goldstone and Goldstone channels,
respectively, including the amplitude and the phase modes.
Here, each coupled phonon mode at ±qCDW generates in the
low-temperature phase one Raman-active and one infrared-
active mode [34,39,46] with eigenfrequencies close to the
frequency of the corresponding normal modes.

First, we demonstrate that the standard amplitude and
phase mode relations can be recovered from these equa-
tions. If we assume that the adiabatic condition is fulfilled
(κ → ∞), which means that the dynamics in the EOP is
fast and adiabatically follows the ionic motion, we obtain
the temperature dependence of the amplitude mode [16]; i.e.,
� → 0 as T → Tc:

� = �0

√√√√ Tc − T

Tc + m2

2α�2
0
− T

.

Similarly, in the adiabatic limit, Eqs. (7) lead to the known
result that the phase mode is gapless, i.e., it has zero frequency
at q = 0 and is a true Goldstone mode.

The general solution of Eqs. (6) can be found by the ansatz
x1 = a1 exp (λ1t) and y1 = b1 exp (λ1t) resulting in a cubic
equation for λ1:

λ3
1 + 2κα

(
Tc − T + m2

2α�2
0

)
λ2

1 + �2
0λ1

+ 2κα�2
0(Tc − T ) = 0. (8)

One of the roots λ
(1)
1 is real and negative below Tc reaching

λ
(1)
1 = 0 at T = Tc. This root corresponds to an overdamped

mode, whose relaxation time diverges near Tc and thus
represents the true soft mode of the system. The other two
roots are complex conjugate [at T = Tc the roots are given

by λ
(2,3)
1 = ±i�0

√
1 − ( κm2

2�3
0
)2 − κm2

2�2
0
)]. Here. the real part

� = Reλ1 is the damping, while the imaginary part � = Imλ1

is the frequency of the non-Goldstone excitation.
Similar derivation shows that in the Goldstone mode sector,

describing infrared-active modes given by Eqs. (7), one root is
given by λ

(1)
2 = 0. This indicates that the thermodynamic po-

tential does not depend on the phase of the order parameter (as
already previously stipulated), and the phase mode is (naturally
in the absence of pinning) a true Goldstone mode with zero
frequency at q = 0. The two other roots are also temperature

independent, λ
(2,3)
2 = ±i�0

√
1 − ( κm2

2�3
0
)2 − κm2

2�2
0
. Here, � =

Reλ2 is the damping while � = Imλ2 is the frequency of the
new infrared-active mode at the zone center which appears
below Tc. Note that at Tc the frequencies of the mode(s) in the
non-Goldstone sector are exactly equal to the frequencies of
the corresponding modes in the Goldstone sector.

The solution of Eqs. (6) thus yields the eigenmodes as
a function of temperature. Figure 2 shows the temperature
dependence of the frequency and damping of the oscillatory
mode, as well as the damping of the overdamped mode. The
two examples correspond to the adiabatic coupling regime

(a) (b)

FIG. 2. (Color online) The temperature evolution of the eigenval-
ues of the collective excitations (mode frequencies and dampings) as
predicted by the TDGL. The dotted (blue) line represents the damping
of the overdamped mode, while the solid and dashed (red) lines
represent, respectively, the frequency and damping of the oscillatory
mode. Panel (a) presents the adiabatic coupling limit (κm2 � �3

0),
while panel (b) shows the results for the nonadiabatic case, where
κm2 = �3

0.
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[Fig. 2(a)] where κm2 � �3
0, and the nonadiabatic regime

[Fig. 2(b)], where κm2 ≈ �3
0. While the adiabatic case leads

to a true soft-mode behavior, with frequency of the oscillatory
mode going to zero near Tc, this is not true in the nonadiabatic
case. In the latter case, we observe only partial softening of the
oscillatory mode while damping of the true soft mode shows
critical behavior near Tc.

Because the infrared modes are silent in the optical pump-
probe configuration in systems with inversion symmetry and
since the thermodynamic potential does not depend on the
phase we adopt Im�,Imξ = 0 and omit (r,i) indices for
simplicity. Generalization of the thermodynamic potential to
the case of multiple modes interacting with EOP is straightfor-
ward. In the general case of n-normal modes with frequencies
�l (1 < l < n) linearly coupled to �, we have to substitute
�2

0ξ
2/2 → �2

l ξ
2
l /2 and m�ξ → ml�ξl in Eq. (3) and sum

over all normal modes. Accordingly, the equilibrium values of
�0, ξ0,l (from here on �(0)

r = �0 and ξ
(0)
rl = ξ0,l , or simply ξ0

in case of a single normal mode coupled to �) are given by

�0 =
√

α

β
(Tc − T ) with Tc ≡ Tc0 +

n∑
l=1

m2
l

α�2
l

,

(9)

ξ0,l = ml�0

�2
l

.

Here, l numerates the normal modes which are coupled
linearly to �. The equations of motion for the case of coupling
of n-normal modes are also very similar to Eq. (6):

1

κ
ẋ = − ∂2φ

∂�2
x −

∑
l

∂2φ

∂�∂ξl

yl,

(10)

�lẏl + ÿl = − ∂2φ

∂�∂ξl

x − ∂2φ

∂ξ 2
l

yl .

All partial derivatives are taken at the equilibrium values
of �0 and ξ0,l . For generality, we introduced also internal
dampings �l of normal modes. These were neglected in
Eqs. (6) and (7) since it was shown that the temperature
dependence of damping is mainly governed by coupling to �

(see Fig. 6 in Ref. [47]). Equations (10) describe the complete
dynamics in the non-Goldstone sector and can be solved
numerically, with the number of equations increasing with the
number of normal modes involved.

It is interesting to look at the model solution if two or
more normal modes are coupled to �. Figure 3 presents
the result of simulations with two normal modes of similar
frequency (�2/�1 = 1.2) coupled to �. Figure 3(a) presents
the case where the coupling of both modes to � has the
same strength, i.e., m2 = m1 = m. It is obvious that the
lower-frequency mode shows much stronger renormalization
as the higher-frequency mode. If the coupling strength for the
high-frequency mode (�2) is substantially higher than that of
the mode with lower frequency, the situation can be reversed
as shown in Fig. 3(b), where m2 = m and m1 = m/10. Finally,
if the coupling strengths are further increased (m2 = 2m and
m1 = m/5), an avoided crossing can be realized [Fig. 3(c)]
very similar to recent observations in the rare-earth tellurides
[22] [Fig. 3(d)].

From this analysis, it follows that in an incommensurably
modulated ground state any normal mode being linearly

FIG. 3. (Color online) Temperature evolution of the eigenvalues
of the collective excitations as predicted by the TDGL for two coupled
normal modes with �2 = 1.2�1. (a) Identical coupling strength for
both modes m2 = m1. (b) Stronger coupling of the high-frequency
mode m2 = 10m1. (c) The same as in (b) yet both coupling constants
increased by a factor of 2. The color coding represents the spectral
weight and shape of the modes as probed via electronic response,
neglecting any effects of excitation or probing mechanism (discussed
in Secs. III and IV). (d) Experimental data on HoTe3, adapted from
Ref. [22].

coupled to the underlying electronic instability results in a
pair of modes in the low-temperature phase. One of them is
an infrared-active mode in a Goldstone channel, while the
other is Raman-active mode in the non-Goldstone channel. In
the absence of intrinsic damping, only the modes in the non-
Goldstone channel are found to exhibit temperature depen-
dence. The extent of damping and softening depends strongly
on coupling strengths, so that situations like avoided crossing
can be realized. The true soft mode of the system is found to
be an overdamped mode of predominantly electronic nature.

III. PROBING MECHANISM

When using optical time-resolved (pump-probe) experi-
ments, where two light pulses are used to excite and probe
the sample, the understanding of the light-matter interaction
is important for proper data evaluation. This section discusses
the probing mechanism while the next will discuss the details
of photoexcitation.

Given the linear coupling between the normal mode and
the electronic modulation, both of them contain contributions
of the overdamped and oscillating responses. One question to
be answered is which normal coordinate and the associated
normal mode is actually reflected in the time traces of
photoinduced reflectivity recorded in the all-optical pump-
probe experiment.

In the pump-probe experiment the induced change in
reflectivity δR is generally given by

δR = ∂R

∂ε1
δε1 + ∂R

∂ε2
δε2,
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where ε1 and ε2 are the real and imaginary components of the
dielectric function ε(q = 0,�ω), which is in general a tensor.
At optical frequencies (�ω much larger than CDW induced gap
in the single-particle excitation spectrum), we can expand the
dielectric constant in the vicinity of the CDW phase transition
in powers of order parameters � and ξ . Thus, ε(q = 0,�ω)
has the following form:

εj (�,ξ ) = εj,0 + cj,0

2
�2 + cj,1

2
ξ 2 + cj,2�ξ. (11)

Here, εj,0 (j = 1,2) is the dielectric constant of the high-
temperature phase, while cj,0, cj,1, and cj,2 are constants.
Linear terms in � or ξ are not allowed by symmetry and
higher-order terms such as �4, �2ξ 2 are neglected. Constants
εj,0, cj,0, cj,1, etc., are in principle temperature dependent, but
below T c the temperature dependence of the order parameter
normally dominates the variation of the dielectric function.
Therefore, we assume εj,0, cj,0, cj,1, and cj,2 to be temperature
independent.

For small perturbations, the resulting changes in the
dielectric function can be expanded to

δεj = cj,0�0δ� + cj,1ξ0δξ + cj,2(�0δξ + ξ0δ�). (12)

Thus, the photoinduced change in reflectivity below the phase
transition is given by

δR(∝ |δε|) = �0(a1 δ� + a2 δξ ). (13)

Here, we made use of the fact that ξ0 ∝ �0 [see Eq. (9)] and
introduced new proportionality constants a1 and a2.

Since EOP and normal modes are linearly coupled, all of
them contain contributions of the overdamped and oscillating
responses. To demonstrate that, it is instructive to plot the time
evolution of δ�(t) = �(t) − �0 and δξl(t) = ξl(t) − ξ0,l fol-
lowing the perturbation of the system. Figure 4(a) presents the
time evolution of δ�(t) and δξ1(t) following the instantaneous
suppression of � at time zero. Here, we considered the case

(a) (b)

FIG. 4. (Color online) (a) The time evolution of δ�(t) and δξ1(t),
for the case of three modes (�3 = 1.15�2 = 1.5�1) coupled to �

with the same coupling constant m. For the initial condition (t = 0),
we assumed a suppressed � while δξ1(0) = 0. (b) The temporal
evolution of the shift of the binding energy for the CDW band
(solid line) and lower band (dashed) in TbTe3 (T = 100 K, excitation
density is 2 mJ/cm2) recorded by time-resolved photoemission
(adapted from Ref. [28]).

of three normal modes (�3 = 1.15�2 = 1.5�1) coupled to
� with the same coupling constant m. While the dominant
contribution to δ�(t) is the overdamped mode, all three
oscillatory modes are also revealed. The same goes for δξ1(t),
whereby the dominant contribution is the one oscillating with
frequency close to �1 (coupling to � gives rise to damping
which slightly modifies the frequency [48]).

Generally, it is expected that the ratio of the overdamped
and oscillatory components depends on the probe photon
energy [see Eq. (13)]. In the case of probe photon energy
matching some band to band optical transition the oscillatory
components may largely dominate the response.

To illustrate this point, we present here the recent data
on CDW system TbTe3 [Fig. 4(b)] obtained by time-resolved
photoemission [28]. While the dynamics of the CDW band
is largely dominated by a damped electronic response, the
dynamics of the band at the binding energy of −0.5 eV (data
recorded at high excitation densities are presented) shows a
predominantly oscillatory response.

From the above discussion, it follows that spectrally
resolved studies have to be performed in order to pinpoint
the microscopic mechanism of the probe process, i.e., to
determine what is the dominant term giving rise to reflectivity
change at optical frequencies. However, as noted, due to the
linear coupling between the EOP and normal modes, all of
the collective modes should be observed, provided that the
signal-to-noise level is high enough.

IV. PHOTOEXCITATION MECHANISM

It was demonstrated on several CDW systems that the
data on the temperature dependence of frequencies and
dampings of the collective modes, recorded by time-resolved
optical methods, have superior dynamic range and fre-
quency resolution[22–25,32] to standard Raman spectroscopy.
In addition, the time-domain approach provides us with
the temperature dependence of phases and amplitudes of the
oscillatory components. The two naturally depend on the
nature of photoexcitation and probing mechanisms. In this and
the following sections, the expected temperature dependencies
of phases and amplitudes of the non-Goldstone modes will be
discussed for different excitation scenarios and compared to
the experimental data. To do so, we first derive solutions of
Eqs. (10) by considering the interaction of the system with a
short optical pulse.

The coupling of the laser field 
E(t) with normal coordinates
is governed by the force tensor. According to Refs. [49]
and [50], the force tensor is similar to a Raman tensor, where
forces acting on normal coordinates �, ξl are given by [50]

Fν(t) =
∑
i,j

∫ t

−∞
Ei(τ )χν

i,j (t − τ )E∗
j (τ ) dτ. (14)

Here, i and j denote the symmetry directions of the force tensor
χi,j and ν numerates invariants appearing in the free-energy
expansion. In the transparent media, force tensor coincides
with the Raman tensor. In absorbing media, however, the
imaginary part of the force tensor is essentially different from
the Raman tensor. The integral over τ takes into account
the retardation (memory) effects, which are usually caused
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by the imaginary part of the force tensor [49,50]. In the
case of retardation, Fν(t) may substantially differ from the
instantaneous response to the electric field. The resulting
force Fν(t) can act on any normal mode including the totally
symmetric (Ag) and other Raman-active modes in the low-
temperature phase.

Since susceptibilities are defined as negative derivatives of
the thermodynamic potential, the forces may be approximated
by

F� = −G(t)(A�0 − μξ0),
(15)

Fξ = −G(t)(γ ξ0 − μ�0).

Here, A, μ, and γ are constants proportional to the interaction
strength of the external electric field with different normal
modes [see Eq. (14)]. The time dependence of different
susceptibilities [Eq. (14)] may in general be different. Here,
for simplicity, we assume their temporal characteristics to
be identical, and parametrize all interaction channels with a
single time-dependent function G(t). The sign in front of the
cross/coupling terms (μξ0 and μ�0) in Eqs. (15) is chosen to
be negative to match the definition in Eq. (3).

We first consider the simplest case of one coupled normal
mode, where x(t) = �(t) − �0 and y(t) = ξ (t) − ξ0. Substi-
tuting the generalized forces into the equations of motion
[Eqs. (10)], we obtain

1

κ
ẋ = − ∂2φ

∂�2
x − ∂2φ

∂�∂ξ
y + F�,

(16)

�ẏ + ÿ = − ∂2φ

∂�∂ξ
x − ∂2φ

∂ξ 2
y + Fξ .

Here, all partial derivatives are calculated at the equilibrium
values �0 and ξ0. After evaluating all second derivatives
of the thermodynamic potential and replacing ÿ by a new
variable ż (in order to keep only first-order time derivatives),
the equations of motion can be represented by the following
matrix equation:

−

⎛⎜⎝ẋ

ẏ

ż

⎞⎟⎠ =

⎛⎜⎝M1,1 −κm 0

0 0 −1

−m �2
0 �

⎞⎟⎠
⎛⎜⎝x(t)

y(t)

z(t)

⎞⎟⎠

−

⎛⎜⎝F�(t)

0

Fξ (t)

⎞⎟⎠ . (17)

Here, the matrix element M1,1 is M1,1 = κ(α + 3β�2
0).

Let us first solve the homogeneous part of Eq. (17). The
transformation of the homogeneous part of the equation from
the time to frequency space is realized via the ansatz

x(t) =

⎛⎜⎝x(t)

y(t)

z(t)

⎞⎟⎠ = x̃eλt , (18)

leading to the eigenvalue problem −λx̃ = M x̃. The solution
is given by the diagonal eigenvalue matrix � (λi’s are the
diagonal elements) and eigenvector matrix S, giving the

general solution

x(t) = S

⎛⎜⎝E1e
λ1t

E2e
λ2t

E3e
λ3t

⎞⎟⎠ , (19)

where Ei’s are complex parameters defined by the boundary
conditions.

For the inhomogeneous part of Eq. (17), we first assume the
temporal dependence of the driving force G(t) to be a simple
step function [G(t) = 0 for t < 0 and G(t) = 1 for t � 0].
This is physically motivated by the fact that photoexcitation
in opaque medium results in absorption, i.e., generation of
excess quasiparticles. In view of the theory of coherent phonon
generation [50], this would correspond to the displacive
excitation limit [48,50]. In the first approximation, we thus
assume that the recovery of excess quasiparticle density is
slow, leading to the above-mentioned steplike driving force
(the effect of finite relaxation time is addressed in the
Appendix).

Depending on the interaction strengths between the driving
force and the normal modes (determined by parameters A, μ,
and γ ), we can formally distinguish between three excitation
processes. Here, parameter A corresponds to a change in the
electronic system (e.g., heating of electrons), μ corresponds to
a change in the coupling strength between the electron density
modulation and the phonon mode, and γ accounts for a change
in the elastic constants of the lattice.

The solution of Eq. (17) for a steplike excitation can
be further simplified by considering that in a harmonic
system a steplike force is equivalent to a sudden change
in the equilibrium position. Therefore, we choose the initial
conditions for x and y at zero time delay (t = 0) to correspond
to a shift of equilibrium positions of � and ξ [48]. In
other words, upon excitation at t = 0 the equilibrium values
�0 and/or ξ0 are instantaneously reduced (similarly to the
displacive mechanism of coherent phonon generation) [48].
The initial conditions [we further assume that ẋ(t = 0) = 0]
define the phases as well as the amplitudes of the eigenmodes
via Eqs. (18) and (17):

M x(t = 0) = −

⎛⎜⎝F�

0

Fξ

⎞⎟⎠ = M S

⎛⎜⎝E1

E2

E3

⎞⎟⎠ . (20)

We will now restrict the discussion to the two extreme
scenarios where photoexcitation primarily results in a change
of �0 or ξ0 (for both cases μ = 0).

Case 1. A > 0 (while γ = μ = 0). A is chosen to be
positive in order for the perturbation to result in a suppression
of the order upon excitation. The resulting forces are

F�(t = 0) = −A�0, Fξ (t = 0) = 0. (21)

Moreover, for the case of a weak perturbation regime, |A| �
|α(T − Tc)| has to be satisfied.

Case 2. γ > 0 (while A = μ = 0). γ is again chosen to be
positive in order for the perturbation to result in a suppression
of the order upon excitation. The resulting forces are

F�(t = 0) = 0, Fξ (t = 0) = −γ ξ0 = −γ
m

�2
0

�0. (22)
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Following the same reasoning as above, γ is presumed to be
small, i.e., |γ |m � �2

0.
As discussed in Sec. III, the measured signal can be

governed either by probing the electronic order (�), the lattice
order (ξ ), or both of them [see Eq. (13)]. Assuming that one of
the probing mechanisms is dominant, we can distinguish four
possible scenarios: (a) probing and excitation both occur via
EOP, (b) we perturb the EOP (�) but probe the lattice order
(ξ ), (c) we perturb the lattice order and probe the EOP, or
(d) probing and excitation both occur via the lattice order.

The above four scenarios can be confronted by comparing
the model simulations for each of the scenarios with exper-
imental data on K0.3MoO3. In all simulations, three normal
modes linearly coupled to the EOP are considered. We used
the mode-coupling strengths extracted by analyzing the tem-
perature dependence of frequencies and dampings [24]: κm2

1 =
600 THz3 for the 1.68-THz mode, κm2

2 = 325 THz3 for the
2.22-THz mode, and κm2

3 = 1200 THz3 for the 2.55-THz
mode. Moreover, for simplicity, we assumed that γi’s are the
same for all normal coordinates. In the case when it is assumed
that the dynamics is probed via the lattice orders we use
prefactors ( mi

�2
i

) to scale the response according to the factor that

is found for the excitation interaction [see Eq. (22)]. Finally, to
enable one to one comparison, the measured amplitudes were
normalized such that the experimentally measured amplitude
of the 1.68-THz mode matches its simulated value at low
temperatures.

The model simulations for the above four scenarios (lines)
are compared to the data (symbols) in Fig. 5. The scenar-
ios 5(b) and 5(c) can well reproduce the nearly temperature-
independent mode amplitudes (up to ≈ 150 K) as observed
experimentally. In contrast, if probing and excitation occur
via the same channel, the mode amplitudes either increase
or decrease with temperature in this temperature range. From
this, we conclude that excitation and probing do not occur via
the same channel.

Scenario 5(c) describes excitation of the lattice by changing
the bare phonon frequencies as defined by Eq. (22). In order
for this type of excitation to result in a suppression of ξ0, it
has to correspond to a hardening of the bare phonon mode(s).
Typically, photoexcitation results in a phonon softening rather
than hardening, thus this scenario seems unlikely, despite the
fact that photoinduced phonon hardening has been observed on
ultrashort time scales in special cases [51]. Far more plausible
seems to be scenario 5(b), where photoexcitation initially per-
turbs the EOP, while the optical response is dominated by the
lattice motion. This scenario is also consistent with high pertur-
bation experiments where signatures of transient melting of the
electronic order were found at excitation densities comparable
to the electronic part of the condensation energy [22,23].

Apart from the temperature dependence of mode am-
plitudes, the above scenarios can be tested by comparing
the measured temperature dependencies of phases of the
oscillatory modes φ with results from model simulations. In
Fig. 6, the temperature dependence of phases {defined by
cos[2πν(t − t0) + φ]} of the three dominant oscillatory com-
ponents [ν1 = 1.68 THz (circles), ν2 = 2.22 THz (squares),
and ν3 = 2.55 THz (crosses)] in K0.3MoO3 are plotted and
compared with the model simulations for scenarios 6(b) (left

(a) (b)

(c) (d)

FIG. 5. (Color online) The temperature dependence of the am-
plitudes of the oscillatory modes compared to simulations based on
different excitation/probing scenarios (see text). The lines represent
model solutions while the symbols show the experimental data. The
colors/symbol shapes/line styles for the three dominant modes are
as follows: 1.68-THz mode, red/open circle/straight line; 2.22-THz
mode, green/open square/dashed line; and 2.55-THz mode,
blue/cross/dotted line. The simulated amplitudes were scaled such
that the simulated amplitude for the 1.68-THz mode matches the
experimental data in the zero-temperature limit.

panel) and 6(d) (right panel). Also, here the case where probing
and excitation occurs through different channels (left panel)
fits the experimental data better.

For simplicity, the driving force G(t) was considered to be a
simple step function. The model simulations can be extended to
the case where the driving force is short lived. As shown in the
Appendix, the effect of the finite lifetime of the driving force
can be revealed in the temperature dependence of the rise-time
dynamics. Again, the qualitative agreement between the exper-
imental data and the TDGL simulations is surprisingly good.

To summarize, based on the experimental data on temper-
ature dependence of the mode’s amplitudes and phases, we
conclude that photoexcitation initially perturbs the electronic
order while the resulting changes in the dielectric constant
reflect the dynamics of the lattice order parameter. This is
supported by observations that the electronic order could be
transiently quenched without collapsing the periodic lattice
modulation [23].

V. ORIGIN OF WEAK SATELLITE MODES

In addition to the three dominant oscillatory modes dis-
cussed above, there are numerous additional modes observed
in K0.3MoO3 [24,47]. Most of the modes appear only below
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FIG. 6. (Color online) The temperature dependence of exper-
imentally measured phases of the oscillatory modes (symbols)
compared to the model simulations. Color/line style assignment is
the same as in Fig. 5. The left panel shows the model solution for
the case of primary excitation of the electronic order, while the right
panel shows the simulation for the case of excitation through the
lattice order. For both cases, probing occurs via the lattice order.

the phase transition temperature, but some are seen also in the
metallic state (albeit with a dramatically reduced amplitude).
The natural question to be answered is whether all these modes
are linearly coupled to � or higher-order coupling terms need
to be included (which we commonly neglected thus far).

One physical observable that might be able to distinguish
between the linear and higher-order coupling is the tem-
perature dependence of the mode’s amplitude. This issue
has already been discussed [24,47], but not in detail. In the
analysis presented earlier [24,47], the peak amplitudes were
discussed. Here, we will consider amplitudes as extracted by
the Lorentzian line-shape analysis (i.e., the corresponding os-
cillator strengths), and compare them to the TDGL model sim-
ulations (see also Fig. 5 and the related discussion in Sec. IV).

Figure 7(a) shows the normalized (to their lowest-
temperature data point) amplitudes of all observed modes in
K0.3MoO3 up to ≈3 THz. When looking at the temperature
dependence of amplitudes (oscillator strengths) of dominant
modes (see also Fig. 5), we see that they are nearly constant
up to ≈150 K. As elaborated in Sec. IV, such behavior can be
expected for the case of linear coupling.

The weak mode at 1.35 THz has nearly the same temper-
ature dependence and is therefore also likely to be linearly
coupled to �. When including this mode in the TDGL
model fit (as the fourth linearly coupled mode) we find that
its coupling strength (m4) is about an order of magnitude
lower than those of the three dominant modes. The large
difference in coupling strengths accounts for both the barely
noticeable mode softening, as well as its low oscillator
strength (see also Fig. 3 and the corresponding discussion
in Sec. II). The polarization character of phonons at qCDW is
neither fully transversal nor fully longitudinal. It is expected
that phonons with different polarizations will have different
coupling strengths to �, e.g., the lattice displacements in
the CDW state found in x-ray diffraction [52] are mainly

(a)

(c)

(b)

FIG. 7. (Color online) (a) The temperature dependence of the
oscillator strengths of the modes (normalized to the corresponding
values at the lowest temperature). (b) The temperature dependence
of frequencies for the five most pronounced modes below 3 THz
in Rb0.3MoO3. (c) The experimental spectra of K0.3MoO3 (top) and
Rb0.3MoO3 (bottom) at ≈10 K. Insets present the corresponding sim-
ulated temperature dependencies, which are in very good agreement
with experimental data (Ref. [24]).

perpendicular to the chain direction, while the Kohn anomaly
is observed in a phonon branch of optical character with
polarization along the chain direction [41]. From the low
coupling strength of the 1.35-THz mode, we conclude that it
originates from a phonon mode at ±qCDW whose eigenvector
is nearly (but not completely) orthogonal to the periodic lattice
displacements of the CDW state.

Several weak side modes in K0.3MoO3, which show only
weak softening upon approaching T c (see Fig. 1), display
however a drop in their oscillator strengths by an order
of magnitude [see Fig. 7(a)]. Such a behavior could be a
signature of higher-order coupling nature of these modes. On
the other hand, these three modes all lie in a close proximity
to another (lower-energy) mode. And, as shown in Sec. II,
in the case of two nearly degenerate modes with identical
coupling strength to �, the higher-frequency one displays a
much weaker softening (see Fig. 3).

To address this question experimentally, we performed
the temperature-dependent study on Rb0.3MoO3, where the
splitting between the high-frequency modes is substantially
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larger [53]. The low-temperature (≈10 K) spectra for
K0.3MoO3 and Rb0.3MoO3 are shown in Fig. 7(c). The
low-frequency modes (ν < 2 THz) resulting from coupling
with acoustic phonons [33] at qCDW are in Rb0.3MoO3 just
slightly red-shifted compared to K0.3MoO3 (as expected due
to the higher atomic mass of Rb). The two nearly degenerate
doublets of K0.3MoO3 at ≈2.2 and ≈2.55 THz, resulting from
coupling of � with optical phonon branches, are however
split up into four well-separated modes in Rb0.3MoO3. Unlike
in K0.3MoO3, where in both doublets the higher-frequency
modes show nearly no softening, all four modes soften in
Rb0.3MoO3, as shown in Fig. 7(b). This suggests that all
of the low-temperature non-Goldstone modes observed in
blue bronzes result from linear coupling of normal modes
(normal-state qCDW phonons) to �.

This assignment is further supported by model simulations
for both compounds, which are shown in insets to Fig. 7(c). For
the case of K0.3MoO3, we assumed to have three pairs of nearly
degenerate phonon modes as observed in the experiment. For
each doublet, we assumed that both modes have identical cou-
pling strengths (mi). The simulated temperature dependence
closely reproduces the experimental data. In each doublet, the
lower-frequency mode shows pronounced softening, while the
higher-frequency mode does not. For simulating Rb0.3MoO3,
we adjusted the mode frequencies to match the experimentally
determined values, while keeping the coupling constants the
same as for K0.3MoO3. As soon as the mode frequencies
are split (only the four modes derived from optical phonon
branches are split, while the modes at 1.6 THz remain nearly
degenerate), they all show softening and linewidth broadening
upon approaching Tc, as observed experimentally.

Furthermore, it follows from simulations that the temper-
ature dependence of the oscillator strengths of modes also
depend on the mode splitting. For the case of well-separated
modes, as in Rb0.3MoO3, all high-frequency modes show
similar temperature dependence (oscillator strengths nearly
constant up to 150 K). For the case of nearly degenerate modes,
as in K0.3MoO3, the higher-lying modes of each doublet show
a pronounced decrease in the oscillator strength as observed
in the experiment. Here, a quick note regarding the insets
to Fig. 7(c) is in order. Due to the increasing linewidth of the
lower-lying modes of the doublets, it may seem as if their oscil-
lator strengths are decreasing with temperature. However, they
remain nearly constant (the oscillator strength is determined
by the product of peak amplitude and its width). In contrast,
for the higher-lying modes in doublets, their linewidths remain
nearly unchanged with increasing temperature, thus a decrease
in peak amplitude indeed corresponds to a decreasing oscillator
strength.

Finally, as shown in Fig. 7(c) (see also Refs. [24] and [47]),
there are numerous additional modes above 3 THz which
couple to �. Most of them show weak temperature depen-
dence. This is expected since higher-frequency modes show
generally weaker softening compared to the lower-frequency
ones even for the case of comparable coupling strengths to �

(see Sec. II). The exception is the mode at 4.07 THz, which
shows strong softening [24,47] and thus seems to be very
strongly coupled to �.

To summarize, we have shown that in K0.3MoO3

(Rb0.3MoO3) all the non-Goldstone modes (at least up to

(a) (b)

FIG. 8. (Color online) (a) The temperature dependence of the
damping times extracted by fitting the overdamped part of the
reflectivity transients in K0.3MoO3 (open symbols) and Rb0.3MoO3

(solid symbols) with a double exponential decay. (b) Reflectivity
transient recorded on Rb0.3MoO3 at 4 K (blue solid line) and the
corresponding overdamped response (red dashed line).

3 THz) result via linear coupling of normal modes to �. Apart
from the weakly coupled 1.35-THz mode, all these modes
exhibit comparable coupling strengths to �. We conclude that
in an incommensurate quasi-1D CDW higher-order coupling
seems to be negligible.

VI. OVERDAMPED MODES

The discussion so far has focused on the nature of
low-temperature oscillatory modes. For completeness, we
now briefly address the overdamped components. The solid
line in Fig. 8(b) presents the raw data taken on Rb0.3MoO3

at 4 K while the dashed line presents a two-component
exponential fit to it. Similarly to K0.3MoO3, we find a fast
(200–300 fs) and a slow (≈10 ps) time scale. It should be
noted that the presence of two decaying components, one of
the 100 fs and the other one on the ps time scale, seems to be
a general feature in CDW systems.

The temperature dependencies of the two time scales
for both K0.3MoO3 (open symbols) and Rb0.3MoO3 (solid
symbols) are shown in Fig. 8(a). Close to the phase transition
the time scales of both components become comparable which
results in great uncertainty [denoted by the shaded area in
Fig. 8(a)].

The characteristic slowing down of the fast component
(circles) with increasing temperature is attributed to an over-
damped amplitude mode of � (see also Fig. 1). As elaborately
discussed in the Appendix, the fast component may contain a
considerable contribution from the oscillatory components as
well as of the normal-state electronic response. Especially at
low temperatures these two contributions may overshadow the
overdamped amplitude mode, which is expected to become
faster as our time resolution. At temperatures above ≈100 K,
however, a reasonable agreement between the experimentally
measured time scale and the damping time from simulations
is obtained.

045106-10



COLLECTIVE MODES IN QUASI-ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 89, 045106 (2014)

The slower, picosecond decay time [squares in Fig. 8(a)]
shows the opposite temperature dependence, decreasing with
increasing temperature. We note that this time scale and its
temperature dependence are comparable to the damping time
of the collective modes [24]. This observation suggests that
the picosecond process could be linked to incoherently excited
collective oscillations.

VII. CONCLUSION

In this paper, we presented a detailed analysis of time-
resolved optical data on blue bronzes (K0.3MoO3 and
Rb0.3MoO3), prototype quasi-one-dimensional charge-density
wave (CDW) systems. Owing to advances in femtosecond
time-resolved optical methods, coherently excited low-energy
modes can be probed with high dynamic range and frequency
resolution. Moreover, the inherent access to phases of these
coherent modes enables deeper insight into their microscopic
origin. We used the time-dependent Ginzburg-Landau (TDGL)
model to analyze the temperature-dependent reflectivity
transients. Apart from analysis of the mode’s frequencies
and damping times [24], we focused on their amplitudes
and phases. We demonstrated that the Raman-active (non-
Goldstone) modes observed in the low-temperature CDW
phase are all a result of linear coupling between the nesting
driven conduction electron density modulation and the normal-
state phonons at the CDW wave vector. The true soft mode of
the system was found to be an overdamped mode, which is
mostly electronic in nature. By analyzing the temperature de-
pendencies of oscillator strengths and phases of the individual
modes, we were able to show that photoexcitation initially
suppresses the electronic order-parameter component, while
the response being probed by visible pulses is dominated
by phonon-driven modulation of dielectric function (e.g.,
via modulation of the interband transitions caused by lattice
vibrations). With this model, we can simulate the temperature-
dependent reflectivity transients following photoexcitation
with femtosecond pulses. The overall agreement between the
simulations and experimental data is better than expected
(see Fig. 10), considering the simplicity of the underlying
assumptions.

This approach can be readily extended to more complex
systems with spatially modulated ground states.
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APPENDIX: EXCITATION WITH A TIME-DEPENDENT
(REALISTIC) DRIVING FORCE

In Sec. IV, it was shown that photoexcitation with a visible
light pulse is most likely to initially perturb the EOP via

FIG. 9. (Color online) Transient reflectivity change at 1.55 eV
after excitation of blue bronze with a 50-fs optical pulse. Solid cyan
line presents the response in the CDW phase (10 K), while the dashed
red line presents the data in the metallic phase (300 K). Inset: the same
data zoomed in.

generation of excess quasiparticles. In the first approximation
we considered a light pulse to be infinitely short, while the
quasiparticle recovery time was infinite in comparison with
damping times of the oscillatory modes (i.e., the driving force
was a step function). Here, we consider a light pulse with
a finite width generating excess quasiparticle density (EQD)
with realistic recovery dynamics. A good first approximation
for the EQD dynamics can be found in the time-resolved
data in the metallic phase (T > Tc). In Fig. 9, the measured
transient reflectivity change in the CDW (solid cyan line) and
metallic (red dashed line) phases are shown. Comparison of
rise times in both data sets shows that the initial response in the
metallic phase is limited by the experimental time resolution
(∼70 fs), while the rise time in the CDW phase is about
200 fs.

In the metallic phase, the dynamics of the reflectivity
transient is mainly linked to the EQD dynamics. The time
evolution of the EQD can therefore be described by an
instantaneous rise (limited by the pulse duration) and a sub-
sequent recovery on a 100-fs time scale. Following this rapid
thermalization of the electronic and lattice subsystems, the
overall temperature of the excited volume is somewhat higher
than the temperature before photoexcitation. The recovery
dynamics is governed by the heat diffusion and proceeds on a
time scale of tens of nanoseconds. This bolometric response
H (t), describing the temporal evolution of the temperature
increase, can be considered to be a slow, adiabatic, process.
Since by increasing temperature the equilibrium positions
are also shifted, the equations of motion, Eq. (17), have to
be extended to include the (adiabatic) temporal evolution of
temperature. In the weak perturbation limit H (t) � |T − T c|,
resulting in

−ẋ = M

⎛⎜⎝x(t) − ∂�0
∂T

H (t)

y(t) − ∂ξ0

∂T
H (t)

z(t)

⎞⎟⎠ +

⎛⎜⎝F�(t)

0

Fξ (t)

⎞⎟⎠ , (A1)

where ∂�0
∂T

= − α
2β�0

and ∂ξ0

∂T
= − αm

2β�0�2 .
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To retrieve the inhomogeneous solution of Eq. (A1), the
equation was Fourier transformed:

iω x̃(ω) = iω

⎛⎜⎝x̃(ω)

ỹ(ω)

z̃(ω)

⎞⎟⎠
= M[x̃(ω) − h̃(ω)] + F̃(ω). (A2)

Here, h̃(ω) describes the shift of the equilibrium values of �0

(and ξ0) due to the temperature variation, while the (coherent)
driving forces are given by

F̃(ω) =

⎛⎜⎝F̃�(ω)

0

F̃ξ (ω)

⎞⎟⎠ . (A3)

The solution of Eq. (A2) is given by

(iω + M)x̃(ω) = F̃(ω) − M h̃(ω)

⇒ x̃(ω) = (iωI + M)−1[F̃(ω) − M H̃(ω)]

(A4)

with I being the identity matrix.
Following the conclusions of Sec. IV, we assume that

the coherent part of the driving force is primarily perturbing
the EOP. Accordingly, we assume Fξ (t) = 0 while F�(t) =
f�G(t). Here, G(t) reflects the dynamics of EQD and is ap-
proximated by the dynamics observed in the high-temperature
phase (Fig. 9), while the prefactor f� describes the interaction
strength. The decay component with the characteristic time
scale of ≈4 ps which is found in the experiment [18] and
briefly discussed in Sec. VI is not included in this simulation.

Figure 10 shows the reflectivity dynamics for different
temperatures as observed in the experiment (upper panels)
and the corresponding model simulations (lower panels). We
should emphasize that the driving force was kept temperature
independent in the simulation. The same goes for all the
coupling constants, which were determined from the fit to
the temperature dependence of frequencies and damping
(see Fig. 1). Thus, the temperature dependence of transients
comes solely from the temperature dependence of � via

� =
√

α
β

(Tc − T ). The time evolution of the coherent force

F�(t) and the bolometric contribution H (t) are shown in the

(a) (b)

(c) (d)

FIG. 10. (Color online) Photoinduced reflectivity transients
recorded at several temperatures (upper panels) compared to model
simulations (lower panels). The right panels present a zoom-in into
the zero time delay region. The 105-K transient has been omitted in
the left panels for clarity. In panel (b), an additional transient (thin
solid line) presents the room-temperature data. The lower panels
include the assumed coherent driving force (thin black line) and the
bolometric response (black dashed line).

lower panels by the solid and dashed lines, respectively. The
corresponding normal-state reflectivity transient is shown as a
thin black line in Fig. 10(b).

Due to the restriction to only three modes in the simulation,
some of the beating signatures appearing in the experiment
are not reproduced (see, e.g., the low-temperature data in
left panels). Second, the picosecond decay component is
not included in the simulation. However, despite the above
limitations, the overall agreement between the data and the
simulation is astonishingly good. Focusing on the subpicosec-
ond time dynamics (right panels), we observe that in the low-
temperature CDW phase the rise time is longer and not limited
by the experimental resolution. Moreover, both the experiment
as well as the simulation reveal a clear increase in the rise time
upon approaching T c. Since photoinduced reflectivity changes
seem to be dominated by the dynamics of the lattice component
of the order parameter (see Sec. IV), the changes in the rise time
can be associated to the temperature dependence of phase and
damping of the most intense 1.68-THz mode, both resulting
from coupling of the normal mode to EOP.
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[19] J. Demsar, L. Forró, H. Berger, and D. Mihailovic, Phys. Rev.

B 66, 041101 (2002).
[20] K. Shimatake, Y. Toda, and S. Tanda, Phys. Rev. B 75, 115120

(2007).
[21] D. M. Sagar, A. A. Tsvetkov, D. Fausti, S. van Smaalen, and

P. H. M. van Loosdrecht1, J. Phys.: Condens. Matter 19, 436208
(2007).

[22] R. V. Yusupov, T. Mertelj, J.-H. Chu, I. R. Fisher, and
D. Mihailovic, Phys. Rev. Lett. 101, 246402 (2008).
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[24] H. Schäfer, V. V. Kabanov, M. Beyer, K. Biljakovic, and
J. Demsar, Phys. Rev. Lett. 105, 066402 (2010).

[25] T. Mertelj, P. Kusar, V. V. Kabanov, P. Giraldo-Gallo,
I. R. Fisher, and D. Mihailovic, Phys. Rev. Lett. 110, 156401
(2013).

[26] L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen,
H. Berger, S. Biermann, P. S. Cornaglia, A. Georges, and M.
Wolf, Phys. Rev. Lett. 97, 067402 (2006); L. Perfetti, P. A.
Loukakos, M. Lisowski, U. Bovensiepen, M. Wolf, H. Berger,
S. Biermann, and A. Georges, New J. Phys. 10, 053019 (2008).

[27] F. Schmitt et al., Science 321, 1649 (2008).
[28] F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G. Moore, J.-H.

Chu, D. H. Lu, L. Rettig, M. Wolf, I. R. Fisher, and Z.-X. Shen,
New J. Phys. 13, 063022 (2011).

[29] T. Rohwer, S. Hellmann, M. Wiesenmayer, C. Sohrt, A. Stange,
B. Slomski, A. Carr, Y. Liu, L. M. Avila, M. Kallane, S. Mathias,
L. Kipp, K. Rossnagel, and M. Bauer, Nature (London) 471, 490
(2011).

[30] J. C. Petersen et al., Phys. Rev. Lett. 107, 177402 (2011).
[31] D. Mihailovic, D. Dvorsek, V. V. Kabanov, J. Demsar, L. Forró,
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